Cấu kiện điện tử - vật liệu điện tử - Dư Quang Bình - 2
lượt xem 4
download
Từ phương trình (2.14), có thể có ba loại tiếp giáp pn được chế tạo theo kiểu pha tạp khác nhau, với mật độ điện tích biểu diễn như ở hình 2.5: - Tiếp giáp đối xứng: N A = N D ⇒ x p0 = x n0 . - Tiếp giáp bất đối xứng: N A N D ⇒ x p0 N D ⇒ x p0 Tuy nhiên, cuối cùng khi điện áp Cổng-Kênh tăng lên vượt quá giá trị điện áp Ngưỡng VTN, như ở hình 3.3c, thì các điện tử chảy vào từ vùng Nguồn, Máng...
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Cấu kiện điện tử - vật liệu điện tử - Dư Quang Bình - 2
- CẤU KIỆN ĐIỆN TỬ 20 1/2 ⎡ 2(1,04 × 10 −12 )(0,748V) ⎤ = 0 ,0297 × 10 − 3 cm xp = ⎢ (1,6 × 10 −19 )(1016 + 1015 ) ⎥ ⎣ ⎦ N xn = xp A = 0,297 × 10− 3 cm ND Từ phương trình (2.14), có thể có ba loại tiếp giáp pn được chế tạo theo kiểu pha tạp khác nhau, với mật độ điện tích biểu diễn như ở hình 2.5: - Tiếp giáp đối xứng: N A = N D ⇒ x p0 = x n0 . - Tiếp giáp bất đối xứng: N A > N D ⇒ x p0 < x n0 . + - Tiếp giáp bất đối xứng lớn, tức là tiếp giáp p n: 1/2 ⎡ 2ε φ ⎤ 1 N A >> N D ⇒ x p0
- CẤU KIỆN ĐIỆN TỬ 21 2.2 TIẾP GIÁP PN Ở TRẠNG THÁI PHÂN CỰC. Trong các mạch điện tử, phân cực là đặt cưỡng bức nguồn một chiều (dc) lên cấu kiện bán dẫn bằng nguồn ngoài (VD). Nếu nguồn điện áp với đầu dương của nguồn nối về phía anode và đầu âm nối về phía cathode của diode thì gọi là phân cực thuận, (tức VD > 0), nếu đảo ngược nguồn áp thì gọi là phân cực nghịch (VD < 0). Hình 2.7, cho thấy mạch của diode tiếp giáp pn khi được phân cực thuận. Với sụt áp ở các vùng trung hoà và tiếp giáp kim loại bán dẫn không đáng kể, điện áp VD sẽ tạo ra điện trường chủ yếu đặt vào vùng điện tích không gian có chiều ngược lại với điện trường tiếp xúc nếu được phân cực thuận, nên sẽ làm suy giảm điện trường tiếp xúc một cách hiệu quả. Điện thế tiếp xúc sẽ giảm xuống (hình 2.8). Tương tự đối với trường hợp phân cực ngược hiệu thế tiếp xúc sẽ tăng lên. Vậy chênh lệch thế hiệu qua tiếp giáp (còn gọi là rào thế [potential "barrier"]) sẽ là: - Ở trạng thái cân bằng là: φ B - Ở trạng thái phân cực thuận: φ B − VD < φ B - Ở trạng thái phân cực ngược: φ B − VD > φ B (vç VD < 0) Các đặc trưng tĩnh điện của vùng nghèo của tiếp giáp pn ở trạng thái phân cực có thể mô tả như ở hình 2.9. Khi phân cực thuận: thế tiếp xúc giảm, tức E giảm nên sẽ làm cho độ rộng vùng nghèo xd hẹp lại. Khi phân cực ngược: thế tiếp xúc tăng lên, tức E tăng nên sẽ làm cho độ rộng vùng nghèo xd tăng lên. BIÊN SOẠN DQB, B/M ĐTVT-ĐHKT CHƯƠNG 2: TIẾP GIÁP PN & DIODE BÁN DẪN
- CẤU KIỆN ĐIỆN TỬ 22 Hai vùng điện tích của vùng nghèo bị điều biến để điều chỉnh thế hiệu đặt trên tiếp giáp. Vì vậy, các đặc trưng tĩnh điện của vùng nghèo khi phân cực tương tự như các đặc trưng tĩnh điện của vùng nghèo ở trạng thái cân bằng nếu thay thế φ B bằng φ B − VD . Suy ra: 1/2 1/2 ⎡ 2ε (φ − V ) N ⎤ ⎡ 2ε (φ − V ) N ⎤ x n (VD ) = ⎢ s B D A ⎥ x p (VD ) = ⎢ s B D D ⎥ (2.20) ⎣ q( N A + N D) N D ⎦ ⎣ q( N A + N D) N A ⎦ 1/2 ⎡ 2ε (φ − V )( N A + N D ) ⎤ xd (VD ) = ⎢ s B D (2.21) ⎥ ⎣ ⎦ qN A N D 1/2 ⎡ 2q(φ B − VD ) N A N D ⎤ E (VD ) = ⎢ (2.22) ⎥ ⎣ ε s ( N A + N D) ⎦ Hoặc có thể viết dưới dạng: V V x n (VD ) = x n0 1 − D x p (VD ) = x p0 1 − D (2.23) φB φB V xd (VD ) = xd0 1 − D (2.24) φB BIÊN SOẠN DQB, B/M ĐTVT-ĐHKT CHƯƠNG 2: TIẾP GIÁP PN & DIODE BÁN DẪN
- CẤU KIỆN ĐIỆN TỬ 23 V E (VD ) = E0 1 − D (2.25) φB trong đó: x n0 ; x p0 ; xd0 ;& E0 là các đại lượng tương ứng ở trạng thái cân bằng. Ở tiếp giáp pn bất đối xứng lớn, nghĩa là được pha tạp với nồng độ ở hai phía tiếp giáp lớn, ví dụ NA >> ND, xấp xỉ các biểu thức của độ rộng vùng nghèo phía bán dẫn n, xn; độ rộng vùng nghèo phía bán dẫn p tức xp, độ rộng vùng nghèo tổng xd, điện trường E, và thế tiếp xúc φ B , ta thấy rằng tất cả các thay đổi xảy ra ở phía pha tạp thấp nhất (hình 2.10). 2.3 PHƯƠNG TRÌNH DIODE VÀ ĐẶC TUYẾN I - V CỦA DIODE. Như đã xét ở trên, bằng việc áp đặt điện áp phân cực cho tiếp giáp pn làm cho vùng nghèo sẽ rộng ra hay co hẹp lại, và cho dòng điện chỉnh lưu, ngoài ra cũng có sự lưu trữ điện tích của hạt tải điện. Đối với nồng độ hạt tải, ở trạng thái cân bằng nhiệt, có sự cân bằng động giữa dòng trôi và dòng khuyếch tán của điện tử và lỗ trống: J träi = J kh.taïn . Nếu xét nồng độ hạt tải điện trong tiếp giáp pn khi được phân cực ta thấy rằng: khi phân cực thuận (VD > 0) , rào thế tiếp giáp sẽ giảm, (φ B − VD ) ↓ , nên sẽ làm cho điện trường qua vùng nghèo giảm, ESCR ↓ , và dòng trôi giảm xuống, J träi ↓ . Sự cân bằng giữa hai thành phần dòng qua vùng nghèo đã bị phá vỡ, tức là: J träi < J kh.taïn , như mô tả ở hình 2.11. Dòng khuyếch tán thực chảy qua vùng nghèo làm cho các hạt tải điện "thiểu số" phóng thích vào hai vùng trung hoà, nên có sự vượt trội nồng độ hạt tải điện thiểu số ở hai vùng trung hoà. Vậy một lượng lớn hạt tải điện đa số khuyếch tán vào hai vùng trung hoà có thể tạo ra dòng điện lớn chảy qua tiếp giáp. Mặt khác, khi phân cực ngược (VD < 0) , rào thế tiếp giáp sẽ tăng, (φ B − VD ) ↑ , nên sẽ làm cho điện trường qua vùng nghèo tăng, ESCR ↑ , và dòng trôi tăng lên, J träi ↑ . Sự cân bằng giữa hai thành phần dòng qua vùng nghèo đã bị phá vỡ, tức là: J träi > J kh.taïn như ở hình 2.12. Dòng trôi thực chảy qua vùng nghèo làm cho các hạt tải điện thiểu số bị rút ra khỏi hai vùng trung hoà, nên có sự sụt giảm nồng độ hạt tải điện thiểu số trong hai vùng trung hoà. Có rất ít hạt tải điện thiểu số vào hai vùng trung hoà nên chi cho một dòng điện nhỏ. Do đó, khi phân cực thuận cho diode tiếp giáp pn thì các hạt tải điện thiểu số phóng thích sẽ khuyếch tán qua vùng trung hoà, tạo ra sự tái hợp tại bề mặt bán dẫn. Khi phân cực ngược, các BIÊN SOẠN DQB, B/M ĐTVT-ĐHKT CHƯƠNG 2: TIẾP GIÁP PN & DIODE BÁN DẪN
- CẤU KIỆN ĐIỆN TỬ 24 hạt tải điện thiểu số rút ra khỏi vùng nghèo, tạo ra sự tái sinh tại bề mặt và khuyếch tán qua vùng trung hoà.Vậy khi phân cực thuận sẽ có dòng điên lớn do khuyếch tán các hạt tải điện đa số; còn khi phân cực ngược sẽ có dòng trôi nhỏ do các hạt tải điện thiểu số như thể hiện ở hình 2.13. Để có độ lớn của dòng điện chảy qua diode, cần phải tính nồng độ các hạt tải điện thiểu số tại hai biên vùng nghèo là p(xn) và n(- xp), và tính dòng khuyếch tán của các hạt tải điện thiểu số trong mỗi vùng trung hoà là In và Ip, sau đó tính tổng dòng khuyếch tán của điện tử và lỗ trống, I = In + Ip . Từ quan hệ giữa thế hiệu và nồng độ hạt tải điện tại các điểm theo phương x, ta có tỷ số nồng độ điện tử và lỗ trống tại hai biên của vùng nghèo ở trạng thái phân cực, tức trạng thái tương ứng với J träi ≠ J kh. taïn : q[φ(x n ) - φ(− x p )] q(φ B − VD ) n(x n ) ≈ exp = exp n( − x p ) kT kT và tỷ số nồng độ lỗ trống tại hai biên vùng nghèo khi phân cực cho tiếp giáp: − q[φ(x n ) - φ(− x p )] − q(φ B − VD ) p(x n ) ≈ exp = exp p( − x p ) kT kT Nhưng nồng độ điện tử và lỗ trống ngay tại hai biên xấp xỉ bằng nồng độ pha tạp, được gọi là xấp xỉ phóng thích mức thấp: n(x n ) ≈ N D và p(−x p ) ≈ N A , nên ta có: q(VD − φ B ) n(−x p ) ≈ N D exp (2.29) kT q(VD − φ B ) p(x n ) ≈ N A exp và: (2.30) kT Với giá trị thế tiếp xúc là: kT N D N A φB = ln 2 q ni thay vào phương trình n(-x p ) và p(x n ) , sẽ nhận được nồng độ hạt tải điện thiểu số tại hai biên BIÊN SOẠN DQB, B/M ĐTVT-ĐHKT CHƯƠNG 2: TIẾP GIÁP PN & DIODE BÁN DẪN
- CẤU KIỆN ĐIỆN TỬ 25 của vùng nghèo là: 2 qV ni n( − x p ) ≈ exp D (2.31) NA kT 2 qV ni p(x n ) ≈ exp D và: (2.32) ND kT Vậy nồng độ hạt tải điện thiểu số khuyếch tán ngay tại hai biên của vùng nghèo tuỳ thuộc vào điện áp phân cực, tức là: - Ở trạng thái cân bằng (VD = 0) , ta có: 2 n2 ni n(− x p ) = ; p(x n ) = i NA ND như đã biết ở trên. - Ở trạng thái phân cực thuận (VD > 0) ; ngay tại giá trị rất nhỏ (VD = 0,1V) , tại nhiệt độ phòng: n2 n2 n(− x p ) >> i ; p(x n ) >> i NA ND Có một số lượng lớn các hạt tải điện được phóng thích: Vậy khi điện áp phân cực tăng lên sẽ cho nồng độ hạt tải điện phóng thích lớn, nên dòng thuận lớn. 2 n2 ni - Ở trạng thái phân cực ngược (VD < 0) , thì: n(− x p )
- CẤU KIỆN ĐIỆN TỬ 26 2 n2 qV ni exp D − i np (−x p ) − np (−Wp ) N kT N A dn J n = qD n = qD n = qD n A Wp − x p Wp − x p dx 2 qV ni Dn Jn = q × (exp D − 1) (2.34) N A Wp − x p kT Tương tự, biểu diễn dòng lỗ trống trong vùng trung hoà ở phía bán dẫn - n như ở hình 2.15: Mật độ dòng lỗ trống: n2 Dp qV Jp = q i × (exp D − 1) (2.35) N D Wn − x n kT Tổng cả hai thành phần dòng điện tử và lỗ trống khuyếch tán trong vùng trung hoà sẽ là, 2⎛ 1 Dp ⎞ ⎟(exp qVD − 1) Dn 1 J = J n + J p = qn i ⎜ × + × (2.36) ⎜ N A Wp − x p N D Wn − x n ⎟ kT ⎝ ⎠ Dòng điện chảy qua tiếp giáp pn với tiết diện A sẽ là: 2⎛ 1 Dp ⎞ ⎟(exp qVD − 1) Dn 1 I D = qAn i ⎜ × + × (2.37) ⎜ N A Wp − x p N D Wn − x n ⎟ kT ⎝ ⎠ Dòng diode thường được viết dưới dạng phương trình diode: qV V I D = IS (exp D − 1) = IS (exp D − 1) (2.38) kT VT ⎛1 Dp ⎞ Dn 1 I S = qAni2 ⎜ ⎟ × + × trong đó: (2.39) ⎜N Wp − x p N D Wn − x n ⎟ ⎝A ⎠ gọi là dòng bão hoà ngược. Vậy khi tiếp giáp pn được phân cực thuận thì mức chênh lệch điện thế ngang qua vùng nghèo sẽ giảm xuống do điện áp phân cực VD, nên sẽ tạo ra sự phóng thích hạt tải điện thiểu số vào hai vùng trung hoà. Sự khuyếch tán hạt tải điện thiểu số vào sâu trong các vùng trung hoà và tái hợp tại bề mặt của vùng trung hoà. Do được cung cấp số lượng hạt tải điện lớn cho sự phóng thích nên sẽ tạo ra dòng điện lớn tỷ lệ theo mức hàm mũ điện áp đặt vào: qV I D ∝ exp D kT Khi tiếp giáp pn được phân cực ngược thì mức chênh lệch điện thế ngang qua vùng nghèo sẽ tăng lên do điện áp phân cực VD, nên sẽ tạo ra sự rút tỉa hạt tải điện thiểu số khỏi hai vùng trung hoà. Sự khuyếch tán hạt tải điện thiểu số vào sâu trong các vùng trung hoà và phát sinh tại bề mặt của vùng trung hoà. Do được cung cấp số lượng hạt tải điện rất ít cho sự rút tỉa nên sẽ tạo ra dòng điện có giá trị bão hoà nhỏ. Từ phương trình diode (2.37), ta nhận thấy rằng: - Dòng diode tỷ lệ với nồng độ hạt tải điện thiểu số vượt trội tại hai biên của vùng điện tích n2 n2 qV qV không gian: I D ∝ i (exp D − 1) . Ở chế độ phân cực thuận: I D ∝ i exp D , nhiều hơn N N kT kT hạt tải điện được phóng thích nên sẽ cho dòng điện lớn hơn chảy qua diode. Ở chế độ phân cực n2 ngược: I D ∝ − i , nồng độ hạt tải điện thiểu số bị suy giảm đến giá trị không đáng kể và dòng N điện sẽ bão hoà. - Dòng diode cũng tỷ lệ với độ khuyếch tán: I D ∝ D , nên với sự khuyếch tán nhanh hơn sẽ cho dòng điện lớn hơn. 1 - Dòng diode tỷ lệ nghịch với độ rộng vùng trung hoà I D ∝ , vậy hạt tải điện khuyếch WQNR tán qua vùng trung hoà ngắn hơn sẽ cho dòng diode lớn hơn. BIÊN SOẠN DQB, B/M ĐTVT-ĐHKT CHƯƠNG 2: TIẾP GIÁP PN & DIODE BÁN DẪN
- CẤU KIỆN ĐIỆN TỬ 27 - Dòng diode cũng tỷ lệ với tiết diện của diode: I D ∝ A tức là diode có tiết diện lớn hơn sẽ cho dòng chảy qua diode lớn hơn. Chú ý rằng, tại x ≠ 0 , dòng tiếp giáp không phải hoàn toàn là dòng khuyếch tán, nhưng dòng tổng phải vẫn không đổi. Phương trình diode thường được hiệu chỉnh dưới dạng: V I D = I S (exp D − 1) (2.40) nVT trong đó, n là hệ số thực nghiệm, n = 1 đối với khi chỉ có dòng khuyếch tán. Nhưng khi có sự tái hợp rất lớn trong vùng nghèo (như trong silicon với các giá trị của VD thấp hơn 0,5 V), thì n có thể phải được tăng lên 2. Thực tế cũng thấy rằng n = 2 đối với phóng thích mức cao tức mật độ dòng cao. Tại các mức dòng diode vừa phải thì 1 < n < 2 . Đối với phần lớn các diode silicon, n trong khoảng từ 1,0 đến 1,1. Hình 2.16, là đặc tuyến I - V, theo phương trình diode. Bởi vì VT ≈ 26mV ở nhiệt độ phòng (300oK), dòng ID phụ thuộc giá trị VD dương trên 50mV theo dạng hàm mũ. Cũng vậy, đối với VD âm hơn - 50mV, dòng diode sẽ được bão hoà tại giá trị IS. Thang đo dòng diode âm đã được mỡ rộng để biểu diễn giá trị rất nhỏ của IS. Theo đặc tuyến I - V, cũng cần phải lưu ý rằng, trong thực tế phương trình diode sẽ trở nên không hợp lý tại giá trị VD âm đáng kể, khi đó dòng diode sẽ tăng mạnh do đánh thủng điện áp. 2.4 CÁC ĐẶC TÍNH CỦA DIODE BÁN DẪN. a) Điện trở động của diode Giữa nồng độ hạt tải điện và thế hiệu đặt vào có quan hệ theo hàm mũ, nên có thể viết biểu thức đơn theo sự phân bố nồng độ và tính toán cho cả hai trạng thái phân cực thuận và ngược. Biểu thức sẽ đúng với điều kiện điện áp không vượt quá mức điện áp đánh thủng. Quan hệ trong trường hợp tổng quát cần phải được thể hiện theo phương trình (2.41). ⎡ ⎛ qv ⎞ ⎤ iD = I S ⎢exp⎜ D ⎟ − 1⎥ (2.41) ⎣ ⎝ nkT ⎠ ⎦ trong đó, iD là dòng điện trong diode (ampere); vD là chênh lệch điện thế ngang qua diode (volt); với: VT = kT/q, suy ra: ⎡ ⎛v ⎞ ⎤ iD = I S ⎢exp⎜ D ⎟ − 1⎥ (2.42) ⎜ ⎟ ⎣ ⎝ nVT ⎠ ⎦ Nếu diode làm việc ở nhiệt độ phòng (khoảng 25oC) và chỉ ở chế độ phân cực thuận, thì số hạng đầu trong ngoặc sẽ vượt trội, nên dòng tính được gần đúng là, ⎛v ⎞ iD ≈ I Sexp⎜ D ⎟ (2.43) ⎜ nV ⎟ ⎝ T⎠ Phương trình có đặc tuyến theo hình 2.17. Như đã xét ở trên, mức dòng bảo hòa ngược IS tùy thuộc vào sự pha tạp, kích thước hình học của diode, và nhiệt độ. Hằng số thực nghiệm n có thể khác nhau tùy theo các mức dòng và áp và phụ thuộc vào sự khuyếch tán, độ trôi của điện tử, và sự tái hợp của hạt tải điện trong vùng nghèo. Hằng số n sẽ đạt bằng 2 khi số lượng tái hợp điện tử - lỗ trống trong vùng nghèo tăng lên. Nếu n =1, giá trị nVT là vào khoảng 25mV tại 25oC. Khi n = 2, thì nVT sẽ là khoảng 50mV. Để tính mức dòng và áp tại điểm làm việc Q, căn cứ vào độ dốc của đặc tuyến ở hình 2.17, thay đổi theo độ biến thiên của dòng tuân theo quan hệ hàm mũ. Có thể vi phân biểu thức của phương trình (2.42) để tính độ dốc tại mức dòng iD cố định bất kỳ. Độ dốc là độ dẫn điện tương đương của cấu kiện. diD I S [exp(vD /nVT )] = (2.44) dvD nVT BIÊN SOẠN DQB, B/M ĐTVT-ĐHKT CHƯƠNG 2: TIẾP GIÁP PN & DIODE BÁN DẪN
- CẤU KIỆN ĐIỆN TỬ 28 Từ phương trình diode cơ bản (2.42), ta có: ⎛v ⎞ i exp⎜ D ⎟ = D + 1 ⎜ nV ⎟ I ⎝ T⎠ S Thay vào phương trình độ dẫn điện (2.44), ta nhận được: diD iD + I S = (2.45) dvD nVT Điện trở động là nghịch đảo của độ dẫn điện (2.45), hay: nVT nV rd = ≈T (2.46) iD + I S iD vì IS
- CẤU KIỆN ĐIỆN TỬ 29 nhiệt vượt quá mức cho phép. Đánh thủng do nhiệt đôi khi cũng được xem như điện áp đánh thủng diode (VBR). c) Dòng ngược của các loại diode khác nhau. Như đã nói ở trên, từ phương trình diode (2.38) ta thấy rằng: dòng bão hoà ngược phụ thuộc vào tiết diện của tiếp giáp, các hệ số khuyếch tán của hạt tải điện thiểu số, nồng độ của các hạt tải điện thiểu số ở điều kiện cân bằng, và độ dài của các vùng trung hoà hay quãng đường khuyếch tán của các hạt tải điện thiểu số, mà các thông số đó lại phụ thuộc vào nhiệt độ và các mức pha tạp. Do vậy, dòng bão hoà IS có thể có giá trị vào khoảng µA đối với các diode Germanium, và vào khoảng cỡ nA đối với các diode Silicon. Nhiều diode có dòng ngược biểu hiện tăng theo điện áp ngược không tuân theo phương trình diode, vì do dòng rò qua tiếp giáp tại bề mặt của chất bán dẫn và do khi khảo sát phương trình diode ta đã bỏ qua sự phát sinh cặp điện tử - lỗ trống do năng lượng nhiệt trong vùng điện tích không gian. Đối với các tiếp giáp silicon khi được phân cực ngược thì dòng ngược không tăng do dòng điện phát sinh do nhiệt là thành phần chủ yếu của dòng bão hoà ở nhiệt độ phòng rất thấp. Vì vậy, dòng ngược ít phụ thuộc vào điện áp ngược do vùng nghèo trở nên dày hơn tại các giá trị điện áp ngược cao hơn. d) Các ảnh hưởng do nhiệt độ và hệ số nhiệt độ của diode. Nhiệt độ có vai trò quan trọng quyết định các đặc tính làm việc của các diode. Các thay đổi về đặc tính của diode gây ra do nhiệt độ thay đổi có thể cần phải điều chỉnh về thiết kế và hoàn thiện các mạch. Hệ số nhiệt độ đặc trưng cho sự thay đổi nhiệt độ là một trong những thông số quan trọng cần phải được lưu ý. Hệ số nhiệt độ liên quan đến mức sụt áp trên diode vD. Giải phương trình diode (2.41) theo sụt áp trên diode ở điều kiện phân cực thuận (với hệ số thực nghiệm n = 1), ta có: ⎛i ⎞ kT ⎛ iD ⎞ kT ⎛ iD ⎞ vD = VT ln⎜ D + 1⎟ = ⎟ q ln⎜ I + 1⎟ ≅ q ln⎜ I ⎟ [V] ⎜I ⎜ ⎟ ⎜⎟ ⎝S ⎠ ⎝S ⎠ ⎝ S⎠ Vi phân theo nhiệt độ ta có: dvD k ⎛ iD ⎞ kT 1 dI S vD 1 dI S vD − VGO − 3VT = ln⎜ ⎟ − ⎜ I ⎟ q I dT = T − VT I dT = [V/ K] dT q ⎝ S⎠ T S S trong đó ta cho rằng: iD >> I S và IS ∝ ni2 , vD là điện áp sụt trên diode; VGO là điện áp tương ứng với mức năng lượng độ rộng vùng cấm của Silicon tại 0K, (VGO = EG/ q) , và VT là áp nhiệt. BIÊN SOẠN DQB, B/M ĐTVT-ĐHKT CHƯƠNG 2: TIẾP GIÁP PN & DIODE BÁN DẪN
- CẤU KIỆN ĐIỆN TỬ 30 Hai số hạng sau rút ra từ sự phụ thuộc vào nhiệt độ của ni2 . Giản lược các số hạng ở phương trình trên đối với diode Si, chẳng hạn có VD = 0,65V, EG = 1,12eV, và VT ≈ 0,025V ta có: dv D (0,65 − 1,12 − 0,075)V = = −1,82mV/K (2.47) dT 300K Vậy, tại nhiệt độ phòng điện áp thuận của diode biểu hiện hệ số nhiệt độ âm gần bằng -1,82 mV/0C, nghĩa là tại giá trị dòng diode ID không đổi, điện áp VD sẽ giảm vào khoảng 2mV khi nhiệt độ tăng lên 1oC ở nhiệt độ từ 25oC: dVD ≅ −2mV/ o C (2.48) dT I D Bằng thực nghiệm, cũng có thể thấy rỏ sự ảnh hưởng của nhiệt độ trên các đặc tuyến của một diode Silicon như ở hình 2.19. Nhiệt độ cũng làm tăng mức dòng bảo hòa ngược vì dòng bão hoà ngược biến thiên theo nồng độ các hạt tải điện thiểu số, tức là thay đổi theo ni2 , mà ni2 là một hàm của nhiệt độ. Đối với diode bằng bán dẫn Gemanium, dòng bão hòa ngược IS (còn gọi là dòng rò hay dòng rỉ) tăng lên gần gấp đôi cứ mỗi khi nhiệt độ tăng lên 100C, ở nhiệt độ 250C sẽ có dòng IS vào khoảng 1µA hay 2µA và có dòng rò vào khoảng 100µA = 0,1mA tại nhiệt độ làm việc 1000C. Với các mức dòng rò IS nhỏ ở vùng ngược, nên có thể xem diode như một chuyển mạch ở trạng thái hở mạch ở vùng phân cực ngược. Thực tế thấy rằng, đối với bán dẫn Silicon, IS sẽ tăng gấp đôi trong khoảng tăng nhiệt độ 5oC ở nhiệt độ từ 25oC. Tuy nhiên, giá trị điển hình của IS ở diode Silicon thấp hơn rất nhiều so với IS của diode bằng bán dẫn Germanium có cùng cấp công suất và mức dòng. Thậm chí, ta cũng có kết quả tương tự khi diode làm việc ở nhiệt độ cao thì dòng IS của các diode bằng bán dẫn Si cũng không thể đạt được các mức dòng rò cao như ở các diode Ge, đây là lý do rất quan trọng khiến cho các diode bằng bán dẫn Si được sử dụng nhiều hơn trong thiết kế chế tạo mạch điện tử. Về cơ bản thì sự tương đương như một mạch hở ở vùng phân cực ngược, khi làm việc tại nhiệt độ bất kỳ là lý do tốt nhất có ở diode Si so với diode Ge. Mức dòng IS tăng theo nhiệt độ, điều này giải thích cho việc các mức điện áp ngưỡng thấp hơn. Ở vùng phân cực ngược, điện áp đánh thủng cũng tùy thuộc vào nhiệt độ, nhưng lưu ý là dòng bão hòa ngược không mong muốn cũng tăng lên. Dòng bảo hòa ngược tăng vào khoảng 7,2%/oC đối với cả diode silicon và germanium. Nói cách khác, IS gần gấp đôi cho mỗi khoảng tăng nhiệt độ là 10oC. Biểu thức của dòng bảo hòa ngược phụ thuộc vào nhiệt độ là, I S (T2 ) = I S (T1 )exp[ki (T2 − T1 )] (2.49) o trong đó: ki = 0,07/ C và T1 và T2 là hai nhiệt độ khác nhau. Biểu thức có thể tính gần đúng bằng cách rút gọn hàm mũ, I S (T2 ) = I 0 (T1 )2(T2 − T1 )/10 (2.50) bởi vì e0 ,7 ≈ 2 . BIÊN SOẠN DQB, B/M ĐTVT-ĐHKT CHƯƠNG 2: TIẾP GIÁP PN & DIODE BÁN DẪN
- CẤU KIỆN ĐIỆN TỬ 31 Khi mức điện áp phân cực thuận trên diode không đổi, thì ID cũng sẽ tăng gấp đôi trong khoảng tăng nhiệt độ 10oC ở nhiệt độ từ 25oC. Khi nhiệt độ tăng, điện áp chuyển sang dẫn Vγ sẽ giảm. Ngược lại, khi nhiệt độ giảm sẽ làm tăng về Vγ, như chỉ rõ ở hình 2.19, trong đó Vγ thay đổi tuyến tính theo nhiệt độ tuân theo phương trình sau: (giả sử dòng chảy qua diode được giữ không đổi). Vγ (T1 ) − Vγ (T0 ) = kT (T1 − T0 ) (2.51) trong đó: T0 là nhiệt độ phòng, khoảng 25oC; T1 là nhiệt độ làm việc của diode (oC); Vγ(T0) là sụt áp trên diode tại nhiệt độ phòng (Volt). Đối với diode Si: Vγ(T0) = 0,7V, và diode Ge: Vγ(T0) = 0,2V; Vγ(T1) là sụt áp trên diode ở nhiệt độ làm việc, (Volt); kT là hệ số nhiệt độ (V/oC). Giá trị của kT là khác nhau tùy theo loại diode, đối với diode Ge có kT = - 2,5 mV/oC, diode Si có kT = - 2,0 mV/oC. e) Mô hình mạch tương đương của diode Mạch ở hình 2.20a, tương ứng với mô hình đơn giản của diode silicon ở cả trạng thái làm việc dc thuận và ngược. Đặc tuyến của mô hình gần như đặc tuyến hoạt động của diode ở hình 2.18. Điện trở Rr tương ứng với điện trở phân cực ngược của diode, thường vào khoảng vài megaohm. Điện trở Rf tương ứng với điện trở khối và tiếp xúc của diode, thường nhỏ hơn 50Ω. Khi được phân cực thuận, diode lý tưởng là một ngắn mạch, hay điện trở bằng 0. Điện trở mạch của diode thực tế khi phân cực thuận được mô hình hóa ở hình 2.20a, là điện trở đầu cực của diode lý tưởng được ngắn mạch, hay: Rr Rf ≈ Rf Ở trạng thái phân cực ngược, diode lý tưởng có điện trở lớn vô cùng (mạch hở) còn điện trở mạch của mô hình thực tế là Rr. Diode lý tưởng là một phần của mô hình ở hình 2.20a, phân cực thuận khi điện áp đầu cực vượt quá 0,7V. Các mô hình mạch ac phức tạp hơn do hoạt động của diode phụ thuộc vào tần số. Mô hình ac đơn giản cho diode phân cực ngược như ở hình 2.20b. Tụ CJ tương ứng với điện dung của tiếp giáp, xuất hiện do vùng nghèo như một tụ điện. Hình 2.20c, là mạch tương đương của diode phân cực thuận. Mô hình bao gồm hai tụ điện là tụ khuyếch tán CD và tụ tiếp giáp CJ. Điện dung khuyếch tán liên quan đến sự di chuyển của các hạt tải điện dẫn đến trạng thái có thể so với sự lưu trữ điện tích. Do vậy, hệ quả của sự khuyếch tán bao gồm các ảnh hưởng của điện dung. Điện dung khuyếch tán CD sẽ gần bằng 0 khi diode phân cực ngược. Điện trở động là rd. Ở dãi tần số thấp các ảnh hưởng của điện dung là nhỏ và chỉ có Rf là phần tử đáng kể nhất. f) Phân tích mạch diode Từ các nội dung trên, ta đã có thông tin cơ bản cần thiết để phân tích các mạch có diode. Giả sử cho một mạch gồm các cấu kiện tuyến tính thụ động, các nguồn cung cấp và các diode, cần phải tính mức dòng và áp liên quan. Bài toán cũng có thể giải quyết ở phòng thí nghiệm điện tử, chọn các cấu kiện thích hợp và nối dây cho mạch, đo các mức dòng và áp bằng các đồng hồ đo / hoặc máy hiện sóng. Dĩ nhiên là các điều kiện của phòng thí nghiệm phải đáp ứng phù hợp các điều kiện của bài toán đã cho. Trong thực tế, có thể có các quy trình đo chính xác các đại lượng mà BIÊN SOẠN DQB, B/M ĐTVT-ĐHKT CHƯƠNG 2: TIẾP GIÁP PN & DIODE BÁN DẪN
- CẤU KIỆN ĐIỆN TỬ 32 không phải ngắt mạch để có kết quả đúng so với tính toán lý thuyết, khi chưa có sự rõ ràng về mô hình đúng của các cấu kiện, tức là giả sử các mô hình ở phần trước không mô tả được bản chất vật lý của các cấu kiện một cách thích hợp. Trong trường hợp như vậy, sẽ không lời giải để cho kết quả đúng. Thực ra mục đích xuyên suốt trong nghiên cứu là cho khả năng dự đoán và giải thích nguyên lý hoạt động thực tế. Nếu không muốn mất nhiều thời gian, và tình trạng chưa biết rõ ràng của giải pháp cứng (mạch thực nghiệm), thì có thể dựa vào phân tích thuần túy bằng cách sử dụng các phương trình cho từng phần tử (chẳng hạn như định luật Ohm và phương trình diode). Hoặc có thể dựa vào các mô hình diode ở phần trên thay cho các diode và sau đó thực hiện việc phân tích mạch thông thường. Các phân tích như vậy cần phải có các gần đúng vì tự các mô hình là các xấp xĩ. Ngoài ra, cũng có thể không đưa vào tính toán nhiều điều kiện vật lý khác như biến thiên về nhiệt độ và sai số của các cấu kiện. Ngoài các phương pháp phân tích mạch trên, các chương trình mô phỏng bằng máy tính đã trở nên phổ biến trên các PC. Khả năng và tốc độ của PC thường sử dụng mô phỏng dùng cho việc phân tích mạch đúng hơn là thiết kế mạch, nghĩa là thường kiểm chứng hiệu suất của mạch mà trong đó có các cấu kiện điện tử khác nhau đã được chọn sẳn. Các chương trình mô phỏng cũng có thể dùng để thiết kế bằng cách sử dụng kỹ thuật lặp, chẳng hạn như nếu ta muốn chọn một trị số điện trở, ta có thể phân tích mạch theo các trị số khác nhau và chọn một trị số để nhận được các thông số thiết kế. Đường tải của diode: Do diode là cấu kiện phi tuyến, cần phải thay đổi kỹ thuật phân tích mạch thông thường. Không thể viết các phương trình một cách đơn giản và giải theo các biến, vì các phương trình chỉ có thể áp dụng trong phạm vi vùng làm việc cụ thể. Một mạch thường bao gồm cả hai điện áp nguồn dc và nguồn thay đổi theo thời gian. Nếu ta thiết lập nguồn biến thiên theo thời gian bằng 0, thì năng lượng chỉ được cung cấp đến mạch từ nguồn điện áp dc. Loại bỏ nguồn biến thiên theo thời gian ra khỏi mạch, sẽ xác định được điện áp và dòng của diode được gọi là điểm làm việc tĩnh (điểm - Q). Hình 2.21a, là mạch gồm một diode, tụ, nguồn cung cấp và 2 điện trở. Nếu chọn dòng chảy qua diode và điện áp diode là đại lượng cần tìm của mạch, thì cần phải có hai phương trình độc lập có các đại lượng cần tính đó để có lời giải duy nhất cho điểm làm việc. Một trong hai phương trình được suy ra từ mạch nối với diode. Phương trình thứ hai là quan hệ dòng – áp thực tế của diode. Hai phương trình cần phải được giải đồng thời, tức là có thể thực hiện bằng đồ thị. Nếu xét trạng thái dc đầu tiên, thì nguồn điện áp sẽ trở nên đơn giản là VS, và tụ sẽ là mạch hở BIÊN SOẠN DQB, B/M ĐTVT-ĐHKT CHƯƠNG 2: TIẾP GIÁP PN & DIODE BÁN DẪN
- CẤU KIỆN ĐIỆN TỬ 33 (tức là trở kháng của tụ là vô cùng tại tần số bằng 0). Vậy phương trình cho mạch dc có thể lập được là: VS = VD + VR1 = VD + I D R1 (2.52) VD = VS − I D R1 hay: (2.53) Đây là phương trình thứ nhất trong hai phương trình đồng thời có điện áp và dòng của diode. Ta cần phải kết hợp phương trình (2.53) với đặc tuyến của diode để xác định điểm làm việc. Đồ thị của phương trình như ở hình 2.21b, gọi là “đường tải dc”. Đặc tuyến của diode cũng được thể hiện trên cùng một trục tọa độ. Giao điểm của hai đặc tuyến là nghiệm chung của hai phương trình nên ký hiệu là “điểm tĩnh – Q” [Q – quiescent] trên hình vẽ. Đây là điểm mà tại đó mạch sẽ làm việc với tín hiệu vào biến thiên theo thời gian thiết lập mức 0. Nếu đặt bổ sung tín hiệu biến thiên theo thời gian đến đầu vào dc, thì một trong hai phương trình đồng thời sẽ thay đổi. Nếu cho rằng, tín hiệu vào biến thiên theo thời gian là tín hiệu có tần số đủ cao để cho phép coi tụ điện như một ngắn mạch, thì sẽ cho phương trình mới như sau: vs = vd + id ( R1 RL ) (2.54) vd = vs −i d ( R1 RL ) (2.55) Ta đang chỉ xét các thành phần biến thiên theo thời gian của các tham số khác nhau (lưu ý việc sử dụng các ký tự viết thường cho các biến số). Vậy các giá trị của tham số toàn bộ sẽ là: vD = vd + VDQ iD = id + I DQ và phương trình (1.37) sẽ trở thành: vD − VDQ = −( R1 RL )(iD − I DQ ) + vs Phương trình cuối cùng có tên gọi là “đường tải ac” ở hình 2.21b. Do phương trình liên qua chỉ với các đại lượng biến thiên theo thời gian nên không biết điểm cắt trục tọa độ. Tuy nhiên, đường tải ac cần phải đi qua điểm – Q, vì tại các thời điểm khi phần tín hiệu vào biến thiên theo thời gian đi qua điểm 0, hai trạng thái làm việc (dc và ac) cần phải đồng nhất. Vậy đường tải ac xác định được là duy nhất. Ví dụ 2.2: Cho mạch như ở hình 2.22, và điện áp nguồn là: vs = 1,1 + 0,1sin1000t (V) Hãy tính mức dòng chảy qua diode iD. Biết rằng, nVT = 40mV; Vγ = 0,7V. Lặp lại phép tính bằng cách sử dụng chương trình mô phỏng trên máy tính. Giải: Áp dụng KVL để có phương trình dc, ta có: V − Vγ VS = Vγ + I D RL , suy ra: I D = S = 4mA RL Mức dòng này sẽ thiết lập điểm làm việc của diode. Ta cần phải xác định điện trở động (sử dụng ký hiệu Rf thay cho rd do bỏ qua điện trở tiếp xúc giữa bán dẫn và điện cực kim loại), để có thể xác lập điện trở của tiếp giáp được phân cực thuận đối với tín hiệu ac, ta có: nV Rf = T = 10Ω ID Lúc này ta có thể thay thế diode bằng một điện trở 10Ω với điều kiện là diode sẽ duy trì phân cực thuận trong chu kỳ vào của tín hiệu ac. Áp dụng trở lại KVL, ta có: vS vs = Rf id + RLid ; id = = 0,91sin 1000t mA Rf + RL Dòng chảy qua diode sẽ là: iD = (4 + 0,91sin1000t ) mA . Vì iD luôn luôn dương, diode sẽ luôn luôn được phân cực thuận. Nếu biên độ của dòng ac trở nên lớn hơn so với giá trị dc của dòng iD, thì iD sẽ không phải luôn luôn dương, và giả thiết là diode được phân cực thuận là không chính xác. Do vậy, lời giải cần phải được sửa đổi, trong đó khi biên độ dòng ac theo chiều âm trở nên lớn hơn so với giá trị dc, BIÊN SOẠN DQB, B/M ĐTVT-ĐHKT CHƯƠNG 2: TIẾP GIÁP PN & DIODE BÁN DẪN
- CẤU KIỆN ĐIỆN TỬ 34 thì diode sẽ trở nên bị phân cực ngược và dòng sẽ ngưng. g) Khả năng xử lý công suất Các diode được đánh giá tùy theo khả năng xử lý công suất. Các thông số được quy định theo cấu trúc vật lý của diode (tức là, kích thước của tiếp giáp, kiểu vỏ, và kích thước của diode). Các chỉ tiêu kỹ thuật do hãng sản xuất cung cấp, dùng để xác định khả năng về công suất của diode trong khoảng nhiệt độ cho trước. Một số diode như các diode công suất đánh giá theo khả năng tải dòng của diode. Mức công suất tức thời tiêu tán bởi diode xác định bằng biểu thức ở phương trình (2.56), pD = vDiD (2.56) Khi các diode dẫn dòng tương đối lớn, thì diode cần phải được lắp đặt sao cho nhiệt tạo ra trong diode có thể tiêu tán ra khỏi diode. Để tiêu tán nhiệt năng phát ra từ bên trong diode, thì phải lắp cánh tản nhiệt cho các diode. h ) Điện dung của diode Mạch tương đương của diode gồm có một tụ nhỏ. Điện dung của tụ tùy thuộc vào biên độ và cực tính của điện áp đặt vào diode cũng như các đặc tính của tiếp giáp hình thành trong suốt quá trình chế tạo. Trong mô hình đơn giản của tiếp giáp diode thể hiện ở hình 2.23, vùng tại tiếp giáp đã được rút hết cả điện tử và lỗ trống. Ở phía p của tiếp giáp có nồng độ lỗ trống cao, còn ở phía n có nồng độ điện tử cao. Sự khuyếch tán của các điện tử và lỗ trống xảy ra lân cận tiếp giáp tạo ra dòng khuyếch tán ban đầu. Khi các lỗ trống khuyếch tán qua tiếp giáp vào vùng n, các lỗ trống nhanh chóng kết hợp với các điện tử đa số có trong vùng n và triệt tiêu. Tương tự như vậy, các điện tử khuyếch tán ngang qua tiếp giáp, tái hợp và biến mất, tức là tạo ra vùng nghèo (còn gọi là vùng điện tích không gian) lân cận tiếp giáp, vì rất ít các điện tử và lỗ trống. Khi đặt điện áp phân cực ngược ngang qua tiếp giáp, vùng nghèo sẽ mở rộng, tức là làm tăng kích thước của vùng nghèo. Vùng nghèo đóng vai trò như vùng cách điện, do đó diode phân cực ngược hoạt động giống như một tụ điện có điện dung thay đổi nghịch đảo với căn bậc hai của mức sụt áp ngang vật liệu bán dẫn. Điện dung tương đương của các diode tần số cao nhỏ hơn 5pF, và có thể trở thành điện dung lớn khoảng 500pF ở các diode dòng lớn (tần số thấp). Các thông số của nhà sản xuất cần phải được lưu ý để xác định mức điện dung cho trước theo điều kiện làm việc đã cho. 2.5 MẠCH NGUỒN CHỈNH LƯU Ứng dụng cơ bản trước tiên của diode là chỉnh lưu. Chỉnh lưu (hay nắn) là quá trình chuyển tín hiệu xoay chiều (ac) thành một chiều (dc). Chỉnh lưu được phân loại thành chỉnh lưu bán kỳ hoặc chỉnh lưu toàn kỳ. a) Chỉnh lưu bán kỳ Do một diode lý tưởng có thể duy trì dòng điện chảy chỉ theo một chiều, nên diode có thể dùng để chuyển đổi tín hiệu ac thành tín hiệu dc. Hình 2.24, là mạch chỉnh lưu bán kỳ đơn giản. Khi điện áp vào dương, diode được phân cực thuận nên có thể được thay bằng một ngắn mạch (giả sử diode là lý tưởng). Khi điện áp vào âm, diode được phân cực ngược nên có thể thay bằng một mạch hở. Vậy, khi diode được phân cực BIÊN SOẠN DQB, B/M ĐTVT-ĐHKT CHƯƠNG 2: TIẾP GIÁP PN & DIODE BÁN DẪN
- CẤU KIỆN ĐIỆN TỬ 35 thuận, điện áp ra trên điện trở tải có thể xác định từ quan hệ mạch phân áp. Mặt khác, ở trạng thái phân cực ngược, dòng điện bằng 0 nên điện áp ra cũng bằng 0. Hình 2.24, thể hiện ví dụ của dạng sóng ra khi cho dạng sóng vào sin có biên độ khoảng 100V, Rs = 10Ω, và RL = 90Ω. Mức điện áp trung bình của hàm tuần hoàn được tính theo tích phân của hàm số trong một chu kỳ của hàm tuần hoàn, tức là bằng số hạng thứ nhất trong khai triển chuổi Fourier của hàm số. Lưu ý rằng, khi tín hiệu vào sin có trị trung bình bằng 0, thì dạng sóng ra có trị trung bình là, 1 T/2 2 πt 90 Voavg = ∫ 90sin dt = T T π 0 Mạch chỉnh lưu bán kỳ có thể dùng để tạo ra tín hiệu ra dc gần như không đổi nếu dạng sóng ra ở hình 2.24, được lọc (xem mục 2.5c). Lưu ý mạch chỉnh lưu bán kỳ có hiệu suất rất thấp. Trong suốt nữa bán kỳ của mỗi chu kỳ tín hiệu vào bị cắt bỏ hoàn toàn khỏi tín hiệu ra. Nếu có thể truyền năng lượng vào đến đầu ra trong suốt bán kỳ đó cần phải tăng mức công suất ra. b) Chỉnh lưu toàn kỳ Mạch chỉnh lưu toàn kỳ sẽ chuyển đổi năng lượng vào đến đầu ra trong cả hai bán kỳ của tín hiệu vào và sẽ làm cho mức dòng trung bình tăng lên trong một chu kỳ. Có thể sử dụng biến áp trong mạch chỉnh lưu bán kỳ để có được cả hai cực tính âm và dương. Mạch tương đương và dạng sóng ra như ở hình 2.25. Mạch chỉnh lưu bán kỳ sẽ tạo ra mức dòng trung bình gấp đôi mức dòng trung bình của mạch chỉnh lưu bán kỳ (tự kiểm chứng phát biểu này). Chỉnh lưu toàn kỳ có thể không sử dụng biến áp, chẳng hạn như mạch chỉnh lưu cầu ở hình 2.26, cũng thực hiện việc chỉnh lưu toàn kỳ. Khi điện áp nguồn có bán kỳ dương, các diode 1 và 4 sẽ dẫn còn các diode 2 và 3 là hở mạch. Khi điện áp nguồn chuyển sang bán kỳ âm, xảy ra trạng thái ngược lại nên các diode 2 và 3 dẫn, như chỉ rõ ở hình 2.26b. Xét mạch ở hình 2.26a, sẽ cho thấy có thể ngắn mạch thực tế của mạch BIÊN SOẠN DQB, B/M ĐTVT-ĐHKT CHƯƠNG 2: TIẾP GIÁP PN & DIODE BÁN DẪN
- CẤU KIỆN ĐIỆN TỬ 36 chỉnh lưu cầu, nếu một đầu của nguồn được nối đất, cả hai đầu cực của điện trở tải có thể được nối đất, sẽ tạo ra vòng đất, làm ngắn mạch hiệu dụng một trong các diode. Do đó, cần phải bổ sung một biến áp cho mạch để cách ly hai mức đất tách biệt nhau. Trong trường hợp này biến áp không cần phải có điểm giữa như biến áp của mạch chỉnh lưu toàn kỳ ở hình 2.25. Cũng lưu ý rằng, do có hai diode dẫn nối tiếp, sụt áp của diode là 2Vγ. c) Mạch lọc Các mạch chỉnh lưu sẽ cho điện áp dc dạng xung (đập mạch) ở đầu ra. Các xung ra gọi là gợn sóng ra, độ gợn có thể giảm đáng kể bằng cách lọc tín hiệu ra của mạch chỉnh lưu. Kiểu lọc thông dụng nhất là sử dụng tụ điện một chiều. Hình 2.27a, là mạch chỉnh lưu toàn kỳ có thêm một tụ mắc song song với điện trở tải. Dạng sóng của điện áp ra đã bị thay đổi như ở hình 2.28. Trong ứng dụng thực tế, các diode cần phải mắc ngược lại và đặt gần với mức thế đất như mạch ở hình 2.27b, tức là tạo cho anode có thế đất, nên các diode có thể được gắn với tấm nối đất, bằng cách đó cho phép tiêu tán nhiệt năng đối với các mạch chỉnh lưu công suất lớn. Tụ điện sẽ nạp đến mức điện áp cao nhất (Vmax) khi các mức đỉnh của tín hiệu vào tại giá trị âm và dương nhất. Khi điện áp vào giảm thấp hơn giá trị đỉnh, tụ điện không thể xã qua cả hai diode. Do vậy, tụ xã qua RL, tức là xuất hiện sự suy giảm theo hàm mũ cho bởi phương trình: v (t ) = Vmax e − t/τ = Vmax e − t/RL C (2.57) BIÊN SOẠN DQB, B/M ĐTVT-ĐHKT CHƯƠNG 2: TIẾP GIÁP PN & DIODE BÁN DẪN
- CẤU KIỆN ĐIỆN TỬ 37 Việc thiết kế mạch lọc bao gồm chọn trị số cho tụ C. Chẳng hạn, cho tín hiệu vào là sóng sin có biên độ 311V và mức điện áp ra thấp nhất có thể nhận ở mạch ứng dụng cho trước là 300V, suy ra: 300 = 311e −T ' /RLC trong đó, T’ là khoảng thời gian xã như đã chỉ ở hình 2.28. Ta có thể tính C theo T’ và RL như sau: T' T' 300 = 311e −T ' /RLC hay: ln1,037 = , và suy ra: C = 28,28 RLC RL Công thức này khó dùng để thiết kế mạch lọc, vì T’ phụ thuộc vào hằng số thời gian RLC, do đó C chưa biết. Lấy gần đúng khi để ý là: T’ < T . Đối với tín hiệu vào có tần số 50Hz, thì tần số cơ bản của tín hiệu ra là 100Hz. Do vậy, 1 1 T= = = 10 ms f 100 Ta có thể tính trị số của tụ lọc cần cho một tải cụ thể bằng cách sử dụng đường thẳng gần đúng như thể hiện ở hình 2.29. Tính C theo đường thẳng gần đúng. Độ dốc thứ nhất của hàm mũ ở phương trình (2.57) là: -V m1 = max RLC đó là độ dốc của đường thẳng A ở hình vẽ. Độ dốc của đường thẳng B ở hình 2.29, là: V m2 = max T /2 - ∆V RLC∆V t1 = = Suy ra: m1 Vmax Sử dụng các tam giác đồng dạng, ta có: T T TV t1 = + t2 = + min 2 2 2Vmax R C∆V T (2 − ∆V/Vmax ) t1 = L = và: Vmax 2 thay T = 1/fP, trong đó fP số lượng xung trong một giây (gấp hai lần tần số ban đầu), ta có: 1⎛ ∆V ⎞ 1 ⎛ ∆V ⎞ ∆V ⎜2 − ⎜ V ⎟ = f ⎜1 − 2V ⎟ = (2.58) RLC ⎟ ⎜ ⎟ Vmax 2 f P ⎝ max ⎠ P⎝ max ⎠ Trong phần lớn các thiết kế mạch lọc, đều đòi hỏi độ gợn cần phải nhỏ hơn nhiều so với biên độ dc, nên: ∆V
- CẤU KIỆN ĐIỆN TỬ 38 Vmax C= (2.59) ∆Vf P RL Công thức (2.59) là kết quả tính của bài toán thiết kế chỉ đúng nếu đường thẳng không thấp hơn Vmin, đặc tuyến theo hàm mũ sẽ vẫn giữ trên giá trị Vmin. Sử dụng phương trình (2.59) để tính tụ cho ví dụ đã cho ở trên, với giả thiết tín hiệu vào là sóng sin 50Hz, biên độ 311V và để có điện áp ra có thể nhận được thấp nhất là 300V, vậy ta có Vmax = 311V, ∆V = 11V, và tần số của tín hiệu ra ở mạch nắn toàn kỳ là fP = 100Hz, đối với mạch nắn bán kỳ fP = 50Hz, Vậy, từ phương trình (2.59), (s ⋅ Ω −1 ). Vmax 311V 0,283 C= = = ∆Vf P RL 11V × 100Hz × RL RL Mức gợn sóng không tuân theo dạng tiêu chuẩn bất kỳ nào (ví dụ như dạng sin hoặc răng cưa), nên cần phải có một số cách đặc trưng riêng về độ lớn của dạng sóng. Điện áp gợn Vr (rms) sẽ được tính theo: V − Vmin Vr (rms) = max (2.60) 23 Lưu ý rằng, sử dụng 3 ở mẫu số đúng hơn so với 2 vì với chỉ số 2 dùng để tính trị số hiệu dụng của sóng sin bằng biên độ chia cho 2 . Đối với sóng tam giác, trị số hiệu dụng bằng biên độ chia cho 3 . Các chỉ số đó sẽ được kiểm chứng bằng cách lấy căn bậc hai của trị số trung bình bình phương của dạng sóng trong một chu kỳ. Dạng sóng của gợn gần với dạng sóng răng cưa hơn so với sóng sin. Trị số trung bình của điện áp gợn được cho là điểm giữa của dạng sóng (xấp xỉ). Hệ số gợn sẽ được định nghĩa là: V (rms) He so gon = r Vdc d) Mạch nhân đôi điện áp Hình 2.30, là mạch tạo ra mức điện áp bằng khoảng hai lần mức điện áp ra đỉnh lớn nhất (khi không tải), gọi là mạch nhân đôi điện áp. Lưu ý rằng mạch giống như mạch chỉnh lưu cầu toàn kỳ ở hình 2.26a, nếu không có hai diode đã được thay bằng hai tụ. Khi điện áp vào có cực tính như hình vẽ, sẽ có hai thành phần dòng chảy qua diode D1. Một dòng thành phần chảy qua C2 nên tụ sẽ nạp lên mức Vmax. Một dòng thành phần khác thông qua điện trở tải và C1. Nếu C1 đã được nạp lên mức Vmax trong chu kỳ trước, thì tụ sẽ có mức nguồn điện áp hiệu dụng khác Vmax mắc nối tiếp với điện áp ra của biến áp, nên tải sẽ có mức điện áp là gấp hai lần mức điện áp lớn nhất. Các tụ cũng có vai trò làm giảm mức điện áp gợn tại đầu ra. 2.6 DIODE ỔN ÁP (ZENER) Diode zener là cấu kiện bán dẫn được thực hiện pha tạp để tạo thành đặc tuyến điện áp đánh thủng hay điện áp thác lũ rất dốc. Nếu điện áp ngược vượt quá điện áp đánh thủng, thường diode không bị phá hũy với điều kiện dòng chảy qua diode không được vượt quá giá trị lớn nhất đã được quy định trước và diode không bị quá nhiệt. Khi hạt tải điện tạo ra do nhiệt (thành phần dòng ngược bảo hòa) làm giảm được rào thế tiếp giáp (xem mục 2.2) và nhận năng lượng do điện thế ngoài đặt vào, hạt tải điện sẽ va chạm với các ion trong mạng tinh thể và truyền mức năng lượng đáng kể để phá vỡ mối liên kết đồng hóa trị. Ngoài hạt tải điện ban đầu, các cặp hạt tải điện điện tử - lỗ trống cũng được tạo ra. Cặp hạt tải mới có thể nhận mức năng lượng lớn từ điện trường đặt vào để va chạm với ion tinh thể khác và tạo ra ngay cặp điện tử - lỗ trống khác. Tác động liên tục như vậy sẽ bẻ gãy các mối liên kết đồng hóa trị, nên gọi là quá trình đánh thủng thác lũ. Có hai cơ chế phá vỡ các mối liên kết đồng hòa trị. Sử dụng điện trường mạnh tại tiếp giáp có BIÊN SOẠN DQB, B/M ĐTVT-ĐHKT CHƯƠNG 2: TIẾP GIÁP PN & DIODE BÁN DẪN
- CẤU KIỆN ĐIỆN TỬ 39 thể trực tiếp làm cho mối liên kết bị gãy. Nếu điện trường đặt vào một lực lớn vào điện tử trong mối liên kết, thì điện tử có thể bị bứt khỏi mối liên kết đồng hóa trị, nên tạo ra một số lượng cặp điện tử - lỗ trống hợp thành theo cấp số nhân. Cơ chế đánh thủng như vậy được gọi là đánh thủng zener. Trị số điện áp đánh thủng zener được điều chỉnh bằng lượng pha tạp của diode. Diode được pha tạp đậm đặc sẽ có điện áp đánh thủng zener thấp, ngược lại diode được pha tạp loãng có điện áp đánh thủng zener cao. Mặc dù như mô tả ở trên có hai cơ chế đánh thủng, nhưng thông thường có giao thoa. Tại các mức điện áp cao hơn khoảng 10V, chủ yếu là cơ chế đánh thủng thác. Do hiệu ứng zener (thác lũ) xảy ra tại điểm có thể xác định trước, nên diode có thể sử dụng như một bộ chuẩn điện áp. Mức điện áp ngược mà tại đó xuất hiện đánh thủng thác lũ được gọi là mức điện áp zener. Đặc tuyến của diode zener điển hình thể hiện ở hình 2.31. Ký hiệu mạch của diode zener khác với ký hiệu mạch của diode thông thường, và được thể hiện trong cùng hình vẽ. Mức dòng ngược lớn nhất, IZmax mà diode zener có thể chịu được tùy thuộc vào cách chế tạo và cấu trúc của diode. Giả sử rằng, mức dòng zener nhỏ nhất mà tại đó đặc tuyến vẫn giữ tại VZ (gần điểm khuỷu của đặc tuyến) là 0,1IZmax. Mức công suất của diode zener có thể chịu đựng (VZIZmax) là một yếu tố giới hạn trong việc thiết kế nguồn cung cấp. a) Mạch ổn định bằng diode zener Diode zener có thể sử dụng làm bộ ổn định điện áp như mạch ở hình 2.32. Mạch cho thấy sự thay đổi dòng tải tương ứng với sự thay đổi của điện trở tải. Mạch được thiết kế để diode làm việc ở vùng đánh thủng, nên gần như một nguồn điện áp lý tưởng. Trong các ứng dụng thực tế, điện áp nguồn vS thay đổi và dòng tải cũng thay đổi. Nhiệm vụ thiết kế là chọn trị số của Ri để cho phép diode duy trì mức điện áp ra gần như không đổi, ngay cả khi điện áp nguồn vào thay đổi, cũng như dòng tải thay đổi. Thực hiện phân tích mạch hình 2.36, để xác định đúng trị số của Ri. Phương trình nút của mạch BIÊN SOẠN DQB, B/M ĐTVT-ĐHKT CHƯƠNG 2: TIẾP GIÁP PN & DIODE BÁN DẪN
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Sách hướng dẫn học tập Hóa học đại cương - ThS. Từ Anh Phong
105 p | 3787 | 1165
-
Cấu trúc phân tử Phương pháp phổ nghiệm nghiên cứu - Phân tích hóa lý
153 p | 806 | 312
-
Đề cương ôn tập Linh kiện điện tử
11 p | 777 | 103
-
Giáo trinh : Phân tích cấu trúc hợp chất hữu cơ part 2
10 p | 190 | 68
-
Bài giảng Hóa hữu cơ 1 - Hệ Dược
37 p | 229 | 50
-
giáo án công nghệ 12
67 p | 139 | 30
-
Bài giảng Trắc nghiệm cảm ứng điện từ và điện từ trường biến thiên - Lê Quang Nguyên
11 p | 246 | 26
-
Bài giảng Hiệu ứng điện tử (hiệu ứng cấu trúc)
23 p | 149 | 16
-
Bài giảng Điện học - Benjamin Crowell
150 p | 91 | 14
-
Giáo trình Kỹ thuật điện - Đại học Thủy sản Nha Trang
111 p | 55 | 12
-
Thăm dò khả năng sử dụng chất thải điện tử (CRT) trong công nghệ sản xuất Frit và men cho đồ gốm sứ
5 p | 99 | 11
-
HoGiáo án điện tử hóa học:Hóa học vô cơ chương trình CDSP
0 p | 89 | 8
-
Ảnh hưởng của cấu trúc chitin đến sự phân bố mật độ điện tử trên nguyên tử nito, khả năng hấp phụ tạo phức của chitin và hoạt tính xúc tác của xúc kim loại chitin trong phản ứng oxi hóa Na2S bằng oxi phân tử
4 p | 83 | 5
-
Sóng điện từ bề mặt trong cấu trúc đa lớp mỏng sắp xếp có chu kỳ
10 p | 25 | 3
-
Bài giảng Hóa đại cương: Chương 2 - Huỳnh Kỳ Phương Hạ
57 p | 32 | 3
-
Tính toán cấu kiện thanh thành mỏng chịu uốn bằng lý thuyết Vlasov, áp dụng cho xà gồ tiết diện chữ C cán nguội
9 p | 9 | 3
-
Nghiên cứu tính chất điện tử của cấu trúc dị thể graphen-Al2O3
7 p | 78 | 2
-
Sự tự nén của carbon onions dưới tác dụng của chùm điện tử
8 p | 32 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn