
Đ KI M TRA 1 TI TỀ Ể Ế
I. TR C NGHI MẮ Ệ :
1. Tìm m nh đ sai trong các m nh đ sau:ệ ề ệ ề
a. Ba vecto đ ng ph ng n u giá c a chúng cùng song song v i 1mpồ ẳ ế ủ ớ
b. Vì
AB
=
AC2
-
AD2
ta suy ra 3 vect ơ
AB
,
AC
,
AD
đ ng ph ng ồ ẳ
c. Vì vect ơ
AB
0=+++ DACDBC
nên 4 đi m A, B, C, D cùng thu c m tể ộ ộ
mp
d. Vì
AB
=
AC
-3
AD
nên 4 đi m A, B, C, D cùng thu c m t mpể ộ ộ
2. Cho tam giác ABC đ u c nh a. ta có ề ạ
AB
AC
b ng ằ
a. a2b.
2
2
a
2
3
2
a
d.
2
2
2
a
3. Trong các m nh đ sau tìm m nh đ saiệ ề ệ ề
a.
ca
cb
ba ⊥⇒
⊥
//
b.
ba
b
a
//
)(
)( ⇒
⊥
⊥
α
α
c.
ca
cb
ba ⊥⇒
⊥
⊥
d. hai đ ng th ng vuông góc v i nhau có th c t nhau ho c chéo nhau ườ ẳ ớ ể ắ ặ
4. Cho hai đt phân bi t và m t ph ng ệ ặ ẳ
α
. Tìm m nh đ đúng ệ ề
a. n u a // (ế
α
) và b
)(
α
⊥
thì a
b
⊥
b. n u a // (ế
α
) và b
a
⊥
thì b
)(
α
⊥
c. n u a // (ế
α
) và b
)//(
α
thì a
b//
d. n u a ế
)(
α
⊥
và b
a
⊥
thì b
)//(
α
5. Tìm m nh đ đúng trong các m nh đ sau ệ ề ệ ề
a. m t dt c t 2 dt c t nhau cho tr c thì c 3 dt đó cùng n m trong m t mpộ ắ ắ ướ ả ằ ộ
b. Đt a n mtrong mpằ
)(
α
và đt a vuông góc mp(
β
) thì mp
)(
α
vuông góc mp(
β
)
c. mp
)(
α
vuông góc mp (
β
) và dt a n m trong mpằ
)(
α
thì dt a vuông góc mp(
β
)
d. dt a n m trong mpằ
)(
α
và đt a ssong mp
)(
β
thì mp
)(
α
ssong mp
)(
β
6.Ch n m nh đ đúng trong các m nh đ sauọ ệ ề ệ ề
a.Hai mp phân bi t cùng vuông góc v i m t ph ngth 3 thì ssong v i nhauệ ớ ặ ẳ ứ ớ
b.Hai mp cùng vuông góc v i 1đt thì ssong v i nhauớ ớ
c.Hai mp phân bi t cùng vuônggóc v i 1đt thì ssong v i nhauệ ớ ớ
d.M t mp vuông góc v i 2 mp thì 2 mp đó ssong v i nhauộ ớ ớ
7.Ch n m nh đ đúng trong các m nh đ sauọ ệ ề ệ ề
a.Đt vuông góc v i 2 đt chéo nhau cho tr c là đ ng vuông góc chung c a 2ớ ướ ườ ủ
đt đó
b. đt vuông góc và c t 2 đt chéo nhau cho tr c là đ ng vuông góc chung c aắ ướ ườ ủ
2 đt đó
c.đ ng vuông góc chung c a 2 dt chéo nhau luôn năm trong mp vuông gócườ ủ
v i đt a và ch a đt b ớ ứ
d. c b và c đ u đúngả ề
8. Tìm m nh đ saiệ ề

a.Kho ng cách gi a 2 dt chéo nhau là đo n ng n nh t trong các đo n th ngả ữ ạ ắ ấ ạ ẳ
n i 2 đi m b t kì n m trên 2 dt đó ố ể ấ ằ
b. kho ng cách gi a 2 đt chéo nhau b ng kho ng cách gi a 1 trong 2 đt đó vàả ữ ằ ả ữ
mp ssong v i nó ch a đt còn l i ớ ứ ạ
c. kho ng cách gi a 2 đt chéo nhau b ng kho ng cách gi a 2 mp ssong l nả ữ ằ ả ữ ầ
l t ch a 2 đt đó ượ ứ
d. hai đt không c t nhau thì ssong v i nhau ắ ớ
II. T LU N:Ự Ậ
Cho hình chóp đ u SABCD có c nh đáy b ng a. g i O là tâm c a đáy vàề ạ ằ ọ ủ
2
6
aSO =
. G i E, F l n l t là trung đi m c a BC và AD ọ ầ ượ ể ủ
a. ch ng minh (SEF) vuông góc (SBC)ứ
b. tính kho ng cách t O đ n (SBC)ả ừ ế
Ngu n maths.vnồ