Đề tài " Bertini theorems over finite fields "
49
lượt xem 7
download
lượt xem 7
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
Let X be a smooth quasiprojective subscheme of Pn of dimension m ≥ 0 over Fq . Then there exist homogeneous polynomials f over Fq for which the intersection of X and the hypersurface f = 0 is smooth. In fact, the set of such f has a positive density, equal to ζX (m + 1)−1 , where ζX (s) = ZX (q −s ) is the zeta function of X. An analogue for regular quasiprojective schemes over Z is proved, assuming the abc conjecture and another conjecture. 1. Introduction The classical Bertini theorems say that if a subscheme...
Chủ đề:
Bình luận(0) Đăng nhập để gửi bình luận!
CÓ THỂ BẠN MUỐN DOWNLOAD