intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Luận văn Thạc sĩ Khoa học máy tính: Công nghệ sinh trắc học và bài toán nhận dạng vân tay

Chia sẻ: _ _ | Ngày: | Loại File: PDF | Số trang:63

60
lượt xem
13
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Đề tài “Công nghệ sinh trắc học và bài toán nhận dạng vân tay” tìm hiểu các giải pháp xác thực thông tin qua nhận dạng dấu vân tay bằng các bài toán nhận dạng ảnh và các thuật toán cơ bản về nhận dạng dấu vân tay. Qua đó xây dựng chương trình thực nghiệm nhận dạng dấu vân tay. Mời các bạn cùng tham khảo!

Chủ đề:
Lưu

Nội dung Text: Luận văn Thạc sĩ Khoa học máy tính: Công nghệ sinh trắc học và bài toán nhận dạng vân tay

  1. ĐẠI HỌC THÁI NGUYÊN TR¦êNG §¹I HäC C¤NG NGHÖ TH¤NG TIN Vµ TRUYÒN TH¤NG --------------------- NGUYỄN ANH TÚ CÔNG NGHỆ SINH TRẮC HỌC VÀ BÀI TOÁN NHẬN DẠNG VÂN TAY LUẬN VĂN THẠC SĨ KHOA HỌC MÁY TÍNH THÁI NGUYÊN - 2019 Số hóa bởi Trung tâm Học liệu và Công nghệ thông tin – ĐHTN http://lrc.tnu.edu.vn
  2. ĐẠI HỌC THÁI NGUYÊN TR¦êNG §¹I HäC C¤NG NGHÖ TH¤NG TIN Vµ TRUYÒN TH¤NG --------------------- NGUYỄN ANH TÚ CÔNG NGHỆ SINH TRẮC HỌC VÀ BÀI TOÁN NHẬN DẠNG VÂN TAY Chuyên ngành: Khoa học máy tính Mã số: 8 48 01 01 LUẬN VĂN THẠC SĨ KHOA HỌC MÁY TÍNH Người hướng dẫn khoa học: TS. Vũ Vinh Quang THÁI NGUYÊN - 2019 Số hóa bởi Trung tâm Học liệu và Công nghệ thông tin – ĐHTN http://lrc.tnu.edu.vn
  3. i MỤC LỤC MỤC LỤC ................................................................................................................... i LỜI CAM ĐOAN .................................................................................................... iii LỜI CẢM ƠN ........................................................................................................... iv DANH MỤC CÁC KÝ HIỆU, CÁC CHỮ VIẾT TẮT.......................................... v DANH MỤC CÁC HÌNH ........................................................................................ vi LỜI MỞ ĐẦU ............................................................................................................ 1 Chương 1: TỔNG QUAN VỀ SINH TRẮC HỌC VÀ BÀI TOÁN NHẬN DẠNG VÂN TAY ............................................................................................. 3 1.1. Tổng quan về Sinh trắc học và Bài toán nhận dạng vân tay ................................ 3 1.2. Tình hình ứng dụng nhận dạng vân tay tại Việt Nam .......................................... 6 1.3. Mô hình bài toán nhận dạng vân tay .................................................................... 7 1.3.1. Mô hình hệ thống FINDER ............................................................................... 7 1.3.2 Mô hình hệ thống AFIS (Automated Fingerprint Identification System).......... 9 1.4. Thu nhận và lưu trữ ảnh vân tay ........................................................................ 10 1.4.1. Thu nhận ảnh vân tay ...................................................................................... 10 1.4.2. Lưu trữ ảnh và các thông tin đặc trưng của vân tay ........................................ 12 1.5. Tiền xử lý ảnh vân tay ........................................................................................ 13 1.6. Các đặc trưng của vân tay và vấn đề trích chọn đặc trưng ................................ 14 1.7. Vấn đề đối sánh ảnh ........................................................................................... 18 Chương 2: CƠ SỞ KHOA HỌC CỦA BÀI TOÁN NHẬN DẠNG VÂN TAY ...... 20 2.1. Phương pháp tăng cường ảnh ............................................................................. 20 2.1.1. Đặt vấn đề ....................................................................................................... 20 2.1.2. Tăng cường ảnh bằng phương pháp lọc Gabor ............................................... 20 2.2 Phương pháp rút trích đặc trưng ......................................................................... 28 2.2.1. Rút trích các đặc trưng từ ảnh đã được nhị phân hóa ..................................... 29 2.2.2. Rút trích các đặc trưng trực tiếp từ ảnh xám ................................................... 32 2.3 Phương pháp đối sánh vân tay ............................................................................ 33 2.3.1 Đặt vấn đề ........................................................................................................ 33 2.3.2 Đối sánh dựa vào độ tương quan ..................................................................... 35 Số hóa bởi Trung tâm Học liệu và Công nghệ thông tin – ĐHTN http://lrc.tnu.edu.vn
  4. ii 2.3.3 Đối sánh dựa vào đặc trưng ............................................................................. 36 2.3.4 Đối sánh đặc trưng cục bộ và toàn cục ............................................................ 39 2.3.5 Đối sánh dựa vào đặc tính vân ......................................................................... 40 Chương 3: XÂY DỰNG HỆ THỐNG NHẬN DẠNG VÂN TAY ...................... 43 3.1. Tính hướng vân tay cục bộ. ................................................................................ 43 3.2. Chuẩn hóa ảnh. ................................................................................................... 45 3.3. Tăng cường ảnh .................................................................................................. 46 3.4 Tách ngưỡng tự động. ......................................................................................... 47 3.5 Thuật toán tìm xương. ......................................................................................... 48 3.6 Thuật toán tìm kiếm chi tiết. ............................................................................... 50 3.7 Thuật toán Hough ................................................................................................ 51 3.8 Thuật toán đối sánh vân tay ................................................................................ 51 KẾT LUẬN .............................................................................................................. 53 TÀI LIỆU THAM KHẢO ...................................................................................... 54 PHỤ LỤC Số hóa bởi Trung tâm Học liệu và Công nghệ thông tin – ĐHTN http://lrc.tnu.edu.vn
  5. iii LỜI CAM ĐOAN Tôi xin cam đoan đề tài: “Công nghệ sinh trắc học và bài toán nhận dạng vân tay” là công trình nghiên cứu khoa học của cá nhân. Các kết quả nghiên cứu và các kết luận trong luận văn là trung thực, khách quan và phù hợp với thực tiễn của Việt Nam. Các số liệu sử dụng phân tích trong luận văn có nguồn gốc rõ ràng, đã được công bố theo đúng quy định. Trong quá trình thực hiện luận văn tôi có tham khảo các tài liệu liên quan nhằm khẳng định thêm sự tin cậy và tính cấp thiết của đề tài. Việc tham khảo các nguồn tài liệu đã được thực hiện trích dẫn và ghi nguồn tài liệu tham khảo đúng quy định. Thái Nguyên, ngày tháng năm 2019 Học viên Nguyễn Anh Tú Số hóa bởi Trung tâm Học liệu và Công nghệ thông tin – ĐHTN http://lrc.tnu.edu.vn
  6. iv LỜI CẢM ƠN Trong quá trình nghiên cứu và thực hiện luận văn, tôi đã nhận được sự hướng dẫn tận tình của TS. Vũ Vinh Quang và những ý kiến quý báu về chuyên môn của thầy đã giúp tôi hoàn thành luận văn này. Đến nay, tôi đã hoàn thành luận văn thạc sĩ với đề tài “Công nghệ sinh trắc học và bài toán nhận dạng vân tay”, chuyên ngành Khoa học máy tính. Tôi cũng xin trân trọng cảm ơn các Lãnh đạo và đồng nghiệp trong Khoa Ngoại ngữ - Đại học Thái Nguyên nơi tôi công tác và làm việc cũng như gia đình bạn bè và người thân đã quan tâm, ủng hộ, tạo điều kiện thuận lợi nhất giúp đỡ tôi trong quá trình thực hiện luận văn. Do trình độ, kinh nghiệm nghiên cứu còn hạn chế cũng như thời gian nghiên cứu ngắn nên luận văn khó tránh khỏi những thiếu sót, tôi rất mong nhận được những ý kiến đóng góp của quý thầy cô và bạn đọc. Để luận văn này có thể hoàn chỉnh hơn nữa. Xin trân trọng cảm ơn! Thái Nguyên, ngày tháng năm 2019 Học viên Nguyễn Anh Tú Số hóa bởi Trung tâm Học liệu và Công nghệ thông tin – ĐHTN http://lrc.tnu.edu.vn
  7. v DANH MỤC CÁC KÝ HIỆU, CÁC CHỮ VIẾT TẮT STT Tên viết tắt Chú giải 1 RC Ridge Count 2 TRC Total Ridge Count 3 PI Pattern Intensity 4 ATM Automated Teller Machine 5 AFIS Automated FingerPrint Identification System 6 CNSTH Công nghệ sinh trắc học 7 NDVT Nhận dạng vân tay 8 DVT Dấu vân tay 9 VT Vân tay 10 NPH Nhị phân hóa Số hóa bởi Trung tâm Học liệu và Công nghệ thông tin – ĐHTN http://lrc.tnu.edu.vn
  8. vi DANH MỤC CÁC HÌNH Hình 1.1: Vân tay trên đèn của người Palettin (400 A. D) ............................... 4 Hình 1.2: Con dấu thương mại của Berwick (1809) ......................................... 4 Hình 1.3: Chữ kí bằng vân tay của người ......................................................... 5 Trung Quốc khi mua bán (1839) ....................................................................... 5 Hình 1.4: Mô hình hệ thống FINDER............................................................... 8 Hình 1.5: Các ảnh vân tay thu được ................................................................ 11 Hình 1.6: Các điểm đơn .................................................................................. 15 Hình 1.7a: Các điểm đặc trưng cục bộ ............................................................ 16 Hình 1.7b: Các điểm đặc trưng cục bộ............................................................ 17 Hình 2.1: Các bước lọc Gabor ........................................................................ 21 Hình 2.2: Minh họa kết quả chuẩn hóa ảnh; (a) ảnh gốc, (b) ảnh đã được chuẩn hóa ........................................................................................ 21 Hình 2.3: a, Ước lượng hướng ảnh mà chưa làm mượt; b, Ước lượng hướng ảnh đã được làm mượt .................................................................... 23 Hình 2.4: Cửa sổ hướng và X- signature ........................................................ 26 Hình 2.5: Biểu diễn đồ họa của bộ lọc Gabor xác định bởi tham số  = 90, f = 1/5, x = y = 3................................................................................ 27 Hình 2.6: Một biểu diễn đồ họa trong một nhóm 24 bộ lọc Gabor (n0 = 8, n1 = 5) với x = y =4. ............................................................. 28 Hình 2.7: Các bước rút trích đặc trưng từ ảnh đã được nhị phân hóa ............ 29 Hình 2.8: Kết quả của việc Nhị phân hóa và Làm mỏng của ảnh đã được tăng cường ....................................................................................... 30 Hình 2.9: a, Một phần điểm vân tay; b,Điểm kết thúc; c, Điểm rẽ nhánh ...... 30 Hình 2.10: Lỗ và đứt gãy nhỏ trong ảnh vân tay đã được Nhị phân hóa và làm mỏng......................................................................................... 31 Số hóa bởi Trung tâm Học liệu và Công nghệ thông tin – ĐHTN http://lrc.tnu.edu.vn
  9. vii Hình 2.11: Các cấu trúc vân lỗi phổ biến được điều chỉnh lại thành các cấu trúc vân đúng................................................................................... 31 Hình 2.12: Các đường vân (ridge) và các rãnh (ravine) trên bề mặt vân tay.. 32 Hình 2.13: Điểm cực đại (ic, jc) tương ứng với (is, js)................................... 33 Hình 2.14: Các đặc tính của cấu trúc cục bộ được dùng bởi Jiang và Yau (2000). .................................................................................... 40 Hình 2.15: Sơ đồ nhận dạng vân tay dùng kỹ thuật FingerCode .................... 42 Hình 3.1: Hướng vân tay cục bộ ..................................................................... 44 Hình 3.2: Ảnh đã chuẩn hóa............................................................................ 45 Hình 3.3: Vân tay sau khi tăng cường............................................................. 46 Hình 3.4: Vân tay sau khi tách ngưỡng tự động ............................................. 47 Hình 3.5: Xương của ảnh vân tay ................................................................... 50 Hình 3.6: Các điểm đặc biệt của vân tay......................................................... 51 Hình 3.7: Ảnh 2 vân tay cần so khớp .............................................................. 52 Số hóa bởi Trung tâm Học liệu và Công nghệ thông tin – ĐHTN http://lrc.tnu.edu.vn
  10. 1 LỜI MỞ ĐẦU Ngày nay, CNSTH được ứng dụng trong nhiều lĩnh vực khác nhau và phát triển rộng rãi trên toàn thế giới. Nó đã và đang thu được những thành tựu to lớn, những ứng dụng thực tiễn ngày càng khẳng định vai trò không thể thiếu trong cuộc cách mạng công nghiệp 4.0, được áp dụng nhiều trong khoa học kỹ thuật cũng như trong đời sống thường ngày. Một bộ phận của CNSTH là Khoa học xử lý ảnh, trong đó có Khoa học NDVT đã được nghiên cứu từ lâu đời và hiện nay được áp dụng rất nhiều trong các mảng lĩnh vực xã hội. Đồng thời việc phát triển của các thiết bị phần cứng cả về phương diện thu nhận, hiển thị, tốc độ xử lý đã mở ra nhiều hướng mới cho công nghệ nhận dạng nói chung và nhận dạng ảnh vân tay nói riêng. Nó có thể giải quyết các bài toán như giám sát tự động, bảo mật dữ liệu, xác thực cá nhân phục vụ trong các cơ quan, ngân hàng … CNSTH được áp dụng phổ biến và lâu đời nhất là công nghệ nhận dạng vân tay. Dấu vân tay là một đặc điểm quan để phân biệt giữa người này và người khác. Công nghệ này đã mang lại nhiều thành quả lớn lao về mặt khoa học công nghệ nói chung và đời sống con người nói riêng. Hiện nay, vân tay là một trong những công nghệ mang tính bảo mật tốt nhất và thông dụng nhất. Nhiều sản phẩm công nghệ đã ứng dụng vân tay để bảo vệ thông tin, tài sản, dữ liệu như: Máy vi tính, Điện thoại, két sắt, khóa cửa, máy chấm công, … Các nước phát triển đã bắt đầu triển khai ứng dụng công nghệ NDVT vào chứng minh, hộ chiếu điện tử. Xuất phát từ những lý do trên, để góp phần vào công cuộc xây dựng và bảo vệ Tổ quốc trong tình hình mới cũng như góp phần vào sự phát triển ứng dụng công nghệ thông tin tại các cơ quan, xí nghiệp. Nhằm đảm bảo trong quá trình quản lý nhân sự, an toàn bảo mật dữ liệu thông tin nhân sự em đã mạnh dạn nghiên cứu đề tài : “Công nghệ sinh trắc học và bài toán nhận dạng vân tay” để tìm hiểu các giải pháp xác thực thông tin qua nhận dạng dấu vân Số hóa bởi Trung tâm Học liệu và Công nghệ thông tin – ĐHTN http://lrc.tnu.edu.vn
  11. 2 tay bằng các bài toán nhận dạng ảnh và các thuật toán cơ bản về nhận dạng DVT. Qua đó xây dựng chương trình thực nghiệm nhận dạng dấu vân tay. Nội dung chính của đề tài được nghiên cứu tìm hiểu qua 3 chương: Chương 1:Tổng quan về Sinh trắc học và bài toán nhận dạng vân tay. Chương 2: Cơ sở khoa học của bài toán nhận dạng vân tay Chương 3: Xây dựng hệ thống nhận dạng vân tay Được sự giúp đỡ của thầy Vũ Vinh Quang, tôi đã được nhận và thực hiện đề tài “ Công nghệ sinh trắc học và bài toán nhận dạng vân tay”. Do kiến thức còn nhiều hạn chế nên không tránh khỏi sai sót. Đề tài này mới chỉ tập trung vào tìm hiểu CNSTH và tìm hiểu nghiên cứu nhận dạng DVT qua các thuật toán, còn nhiều vấn đề cần giải quyết để hoàn thiện đề tài này. Tôi xin chân thành cảm ơn thầy Vũ Vinh Quang đã hướng dẫn thực hiện đề tài và tôi cũng mong muốn nhận được những ý kiến đóng góp của các thầy cô, bạn bè và đồng nghiệp để đề tài này hoàn chỉnh hơn nữa. Số hóa bởi Trung tâm Học liệu và Công nghệ thông tin – ĐHTN http://lrc.tnu.edu.vn
  12. 3 Chương 1 TỔNG QUAN VỀ SINH TRẮC HỌC VÀ BÀI TOÁN NHẬN DẠNG VÂN TAY Nội dung chính của chương 1 trình bày các khái niệm về sinh trắc học và tổng quan về bài toán NDVT, mô hình của bài toán nhận dạng và các kĩ thuật cơ bản của mô hình. Các kiến thức cơ bản được tham khảo trong các tài liệu [2-11]. 1.1. Tổng quan về Sinh trắc học và Bài toán nhận dạng vân tay CNSTH là công nghệ sử dụng những thuộc tính vật lý, đặc điểm sinh học riêng của mỗi cá nhân như vân tay, mống mắt, khuôn mặt ... để nhận diện. Đây được coi là công cụ xác thực nhân thân hữu hiệu nhất mà người ta sử dụng phổ biến vẫn là NDVT bởi đặc tính ổn định và độc nhất của nó. Cho đến nay NDVT vẫn được xem là một trong những phương pháp sinh trắc tin cậy nhất. Mỗi người có một đặc điểm sinh học duy nhất. Dữ liệu sinh học của từng cá nhân với đặc điểm khuôn mặt, ảnh chụp võng mạc, giọng nói sẽ được kết hợp với nhau bằng phần mềm để tạo ra mật khẩu dành cho những giao dịch điện tử, phương thức đó là “công nghệ sinh trắc đa nhân tố”. Sự phát triển của công nghệ đã thay đổi từ việc lăn tay trên mực và lưu trữ trên giấy sang quét trên máy và lưu trữ kỹ thuật số. Việc sử dụng DVT và vân chân để nhận dạng đã được người Ấn Độ phát hiện từ thế kỷ XIV. Trung Quốc Cổ đại, các thương nhân sử dụng dấu ấn của ngón tay cái trong việc giao dịch. Đến thế kỷ XVI khoa học kỹ thuật hiện đại phát triển, vân tay được các nhà khoa học trên toàn thế giới nghiên cứu nhiều hơn và đưa ra các luận thuyết, các chương trình mô tả. Từ đó nhận dạng DVT mới được phát triển nhanh chóng. Năm 1684, Tiến sĩ Nehemiah Grew (1641- 1712) giới thiệu Finger Prints, Palms and Soles đến Hội Hoàng gia. Năm 1788, J.C Mayer đã mô tả chi tiết thông tin giải phẫu của vân tay để đặc tính Số hóa bởi Trung tâm Học liệu và Công nghệ thông tin – ĐHTN http://lrc.tnu.edu.vn
  13. 4 hóa, nhận dạng các đặc tính vân tay. Và ông cũng là người đầu tiên đưa ra thuyết cơ bản về phân tích vân tay và giả thuyết rằng DVT là duy nhất. Năm 1809, Thomas Bewick bắt đầu sử dụng vân tay của mình như là biểu tượng đăng kí thương mại – đã tạo ra một cột mốc quan trọng trong nghiên cứu khoa học về NDVT. Năm 1823, Tiến sĩ Jan Purkinje phân loại những chủng trên các vân tay thành 9 loại: arch, tented arch, ulna loop, radial loop, peacock’s eye/compound, spiral whorl, elliptical whorl, circular whorl, and double loop/composite. Năm 1880, Henry Faulds đưa ra lý luận về số lượng vân tay RC (Ridge Count) để đánh giá mức độ phụ thuộc của vân tay vào gen di truyền. Năm 1868 nhà bác học Roberts chỉ ra rằng mỗi ngón tay có một môi trường phát triển vi mô khác nhau. Năm 1968 nhà bác học Holt đã chứng minh được rằng có thể dự đoán tương đối chính xác tổng số lượng vân tay TRC (Total Ridge Count) và mức độ phụ thuộc của chúng vào gen di truyền của mỗi người. Vào thế kỉ XIX, Richard Edward Henry của Scotland Yard (cơ quan an ninh của Anh) đã phát triển phương pháp phân loại và nhận dạng DVT. Phương pháp này được Francis Galton (1822 - 1911) cải tiến vào năm 1892, ông là người đầu tiên phát hiện vai trò của vân tay trong lĩnh vực di truyền và sự khác biệt vân tay ở những chủng tộc khác nhau. Hình 1.1: Vân tay trên đèn của người Palettin Hình 1.2: Con dấu thương mại (400 A. D) của Berwick (1809) Ông đã đơn giản hoá việc phân loại vân tay và chia vân tay thành 3 loại lớn: Vân sóng (không có tam giác điểm), vân móc (có 1 tam giác điểm), vân xoáy (có 2 tam giác điểm). Số hóa bởi Trung tâm Học liệu và Công nghệ thông tin – ĐHTN http://lrc.tnu.edu.vn
  14. 5 Năm 1926 Tiến sĩ Harold Cummins được xem là cha đẻ của ngành nghiên cứu khoa học DVT đưa ra lí luận chỉ số cường độ vân tay PI (Pattern Intensity). Giá trị RC (Ridge Count), số lượng tam giác điểm, hình dạng vân tay, vị trí hình dạng vân tay ở những ngón tay khác nhau có liên quan đến tiềm năng và trí tuệ của con người. Ông nghiên cứu ra rằng DVT được hình thành đồng thời với sự hoàn thiện các cấu trúc của não bộ. DVT được khởi tạo ở thai nhi vào giai đọan từ 13 đến 19 tuần tuổi. Vào giai đoạn trước đó, thai nhi không có DVT đồng thời não bộ cũng chỉ trong giai đoạn hình thành. Khi thai nhi được 19 tuần tuổi cũng là lúc các vùng chính của não hình thành bao gồm cả vỏ đại não. Việc sử dụng DVT để nhận dạng được áp dụng rộng rãi trong đời sống của các nước công nghiệp phát triển. DVT không những được sử dụng trong lĩnh vực hình sự mà còn được sử dụng trong việc xác nhận nhân thân của cá nhân khi truy cập mạng hoặc mở khoá. Một số ngân hàng đã bắt đầu thanh toán thẻ ATM sử dụng máy đọc vân tay. Trong y học, dựa trên những bức tranh vân tay đặc trưng, người ta phát hiện ra những bệnh do sai lệch gen. Hình 1.3: Chữ kí bằng vân tay của người Trung Quốc khi mua bán (1839) Đầu thế kỉ 20, cấu trúc của vân tay mới được mô tả một cách khá đầy đủ. Các nguyên lý sinh học của vân tay được tổng kết như sau: - Biểu bì vân có các đặc tính khác nhau trên các vân tay khác nhau (nguyên lý này là cơ sở cho NDVT); Số hóa bởi Trung tâm Học liệu và Công nghệ thông tin – ĐHTN http://lrc.tnu.edu.vn
  15. 6 - Cấu hình vân tay có sự thay đổi trên từng cá nhân, nhưng sự thay đổi nhỏ này vẫn cho phép phân loại một cách có hệ thống các vân tay (nguyên lý này là cơ sở để tiến hành phân loại vân tay); - Các chi tiết và cấu hình của mỗi đường vân là ổn định và không thay đổi. Cũng từ đầu thế kỉ 20, NDVT chính thức được chấp nhận như một phương pháp nhận dạng cá nhân có giá trị và trở thành chuẩn trong pháp luật. Ví dụ, năm 1924 FBI đã thiết lập một cơ sở dữ liệu có 810.000 thẻ vân tay. 1.2. Tình hình ứng dụng nhận dạng vân tay tại Việt Nam Hơn 100 năm qua so sánh DVT vốn được coi là một phương tiện hữu hiệu hỗ trợ cho các nhà điều tra trong quá trình phá án và xét xử. Người ta có thể tìm ra tung tích tội phạm cũng như nạn nhân thông qua DVT ở trên hiện trường. Tuy nhiên phương pháp này vẫn bộc lộ một vài khuyết điểm do tác động của các yếu tố khách quan như môi trường thời tiết, hiện trường sau khi khảo sát,…và các yếu tố chủ quan gây nhiễu. Nếu chỉ đơn thuần dựa vào yếu tố kỹ thuật mà bỏ qua một loạt các biện pháp nghiệp vụ khác, sai số này có thể lên tới 10%. Mặc dù vậy, phương pháp NDVT hiện vẫn còn phổ biến ở nhiều nơi và nhiều quốc gia, tuy nhiên phương pháp NDVT vẫn được sử dụng trong việc điều tra phá án của cơ quan Công an vì thế việc nâng cao sự chính xác khi NDVT là một vấn để thiết yếu. Ngày nay, người ta cũng lợi dụng các đặc điểm riêng biệt của vân tay để xây dựng các hệ thống bảo mật các thông tin riêng tư cho người sở hữu chúng, từ việc dùng các ổ khóa vân tay thay thế cho các ổ khóa thông thường cho đến việc dùng vân tay thay thế mật khẩu đã quá phổ biến trong thời đại công nghệ thông tin. Người ta chỉ cần quét DVT của mình qua các thiết bị chức năng là có thể mở được một cánh cửa, đăng nhập vào hệ thống máy vi tính, qua một phòng bí mật hay các trạm bảo vệ bí mật. Đó là giải pháp an ninh tuyệt đối cho những yêu cầu bảo mật của con người trong nhiều lĩnh vực như: Kiểm soát an ninh trong các cơ quan của Số hóa bởi Trung tâm Học liệu và Công nghệ thông tin – ĐHTN http://lrc.tnu.edu.vn
  16. 7 Chính phủ, trong quân đội, ngân hàng, trung tâm lưu trữ dữ liệu... hoặc để kiểm soát ra vào của nhân viên tại các trung tâm thương mại, các tập đoàn, các đại sứ quán,... Trong lĩnh vực quản lý nhân sự, phương pháp NDVT còn hỗ trợ đắc lực cho việc quản lý và chấm công tại các nhà máy, xí nghiệp, công ty bằng máy các máy chấm công vân tay. Tuy nhiên, phổ biến nhất có lẽ là DVT của chúng ta qua mặt sau của chứng minh thư để xác định một cách nhanh nhất các đặc điểm, hồ sơ của một công dân đã được lưu trong cơ sở dữ liệu. Trên thế giới hiện nay đã xuất hiện nhiều sản phẩm công nghệ cao sử dụng phương pháp NDVT như khóa vân tay, máy chấm công vân tay, máy tính xách tay,... Tuy nhiên đây vẫn là vấn đề còn chưa được nghiên cứu nhiều ở Việt Nam. Ở nước ta, phương pháp này mới chỉ phổ biến ở việc quản lý nhân sự thông qua chứng minh thư nhân dân và phục vụ điều tra phá án. Các sản phẩm công nghệ cao nói trên chúng ta vẫn phải nhập khẩu với giá thành khá cao, do đó chúng vẫn chưa được phổ biến rộng rãi. 1.3. Mô hình bài toán nhận dạng vân tay Hiện nay, khi khoa học vân tay ngày càng phát triển với nhu cầu bảo mật và nhận dạng cá nhân thì nhiều hệ thống tự động nhận dạng ảnh DVT đã được quan tâm nghiên cứu rộng rãi và ứng dụng trợ giúp con người trong việc phân tích DVT. Với những tiến bộ về tính toán và công nghệ, nhất là sự phát triển nhanh chóng của máy tính điện tử, nhiều hệ AFIS đã được công bố hoàn thiện và đưa vào sử dụng. 1.3.1. Mô hình hệ thống FINDER Trong số các mô hình được công bố, mô hình hệ thống nhận dạng DVT tự động do cục điều tra liên bang Mỹ FBI đưa ra vào những năm 70 là một mô hình khá hoàn chỉnh có tên là hệ thống FINDER. Nó có hiệu quả hơn hẳn các hệ thống xử lý DVT kiểu quang học, hoặc theo kiểu ngôn ngữ cú pháp trước đó. Số hóa bởi Trung tâm Học liệu và Công nghệ thông tin – ĐHTN http://lrc.tnu.edu.vn
  17. 8 Hình 1.4: Sơ đồ khối một hệ AFIS Hình 1.4: Mô hình hệ thống FINDER Số hóa bởi Trung tâm Học liệu và Công nghệ thông tin – ĐHTN http://lrc.tnu.edu.vn
  18. 9 1.3.2 Mô hình hệ thống AFIS (Automated Fingerprint Identification System) Sơ đồ khối của hệ AFIS được mô tả ở hình 1.4: Mô tả quá trình của hệ thống: + Thu nhận ảnh: Ảnh vân tay thu nhận online hay offline được đưa vào máy tính nhờ scanner có độ phân giải cao. + Tiền xử lý: Ảnh vân tay được nâng cấp và khôi phục nhằm khắc phục sự xuống cấp của ảnh sau khi thu nhận như các đường vân bị đứt đoạn hay dính chập vào nhau, ảnh bị mờ… do mực hay nhiều nguyên nhân khác. + Trích điểm đặc trưng: Đây là giai đoạn rất quan trọng trong quá trình xử lý. Khi xây dựng cơ sở dữ liệu vân tay, khối này trích ra các điểm đặc trưng của ảnh vân tay, mã hóa chúng và lưu trữ vào cơ sở dữ liệu để phục vụ cho các giai đoạn xử lý sau này, còn trong quá trình nhận dạng một vân tay cho trước, các đặc điểm trích chọn được phục vụ cho việc phân loại và đối sánh. + Phân loại: Các ảnh vân tay được phân loại nhằm tăng tốc độ tìm kiếm trong cơ sở dữ liệu vân tay trong quá trình nhận dạng. + Tìm kiếm: Thông tin về loại của ảnh vân tay được sử dụng để thu hẹp phạm vi tìm kiếm trong cơ sở dữ liệu. + Đối sánh, kiểm tra: Tiến hành trên các ảnh vân tay đã được phân loại. Đây là giai đoạn quyết định xem hai ảnh vân tay có hoàn toàn giống nhau hay không và đưa ra kết quả nhận dạng, tức là ảnh vân tay cần nhận dạng tương ứng với vân tay của cá thể nào đã được lưu trữ trong cơ sở dữ liệu. Số hóa bởi Trung tâm Học liệu và Công nghệ thông tin – ĐHTN http://lrc.tnu.edu.vn
  19. 10 Hiện nay có nhiều kỹ thuật đối sánh vân tay, nhưng một cách tổng quát có thể chia thành hai loại chính: + Kỹ thuật dựa trên các điểm đặc trưng: dựa trên các điểm đặc trưng cục bộ (điểm cuối và điểm rẽ nhánh) của 2 ảnh vân tay để đối sánh. + Kỹ thuật dựa trên sự tương quan: là kỹ thuật đối sánh dựa trên cấu trúc tổng thể của đường vân và rãnh của hai ảnh vân tay. Ngoài ra có thể sử dụng phương pháp đối sánh khác, ví dụ như đối sánh bằng bộ lọc băng, đối sánh Hybrid. 1.4. Thu nhận và lưu trữ ảnh vân tay 1.4.1. Thu nhận ảnh vân tay Tùy thuộc vào quá trình xử lý người ta chia làm hai loại thu nhận ảnh vân tay đó là trực tiếp và gián tiếp.  Một ảnh gián tiếp: là ảnh thu được từ các vết mực được thấm trên các đầu ngón tay, sau đó lăn hoặc dán lên tờ giấy trắng, ảnh vân tay được thu số hóa bằng các thiết bị quét ảnh như các thiết bị quét ảnh quang học hay các Camera chất lượng cao. Trong phương pháp này người ta dùng các kiểu như: + Phương pháp lăn: Đầu tiên cho vân tay của người cần lấy mẫu, thấm mực, rồi lăn nhẹ trên tờ giấy trắng để thu được các vết mực, chờ khi mực khô, sau đó dùng một thiết bị máy ảnh hay Camera để sao chụp bức ảnh này. Phương pháp này được sử dụng lâu đời nhất, khoảng 100 năm, diện tích ảnh vân tay thu nhận được rộng vì quá trình lăn, thu được nhiều thông tin trên ảnh, tuy nhiên chất lượng các ảnh vân tay đôi khi không tốt và ảnh thường bị sai lệch do tác dụng khi lăn ngón tay. + Phương pháp ấn: Trong phương pháp này người ta cho các ngón tay thấm mực rồi sau đó ấn nhẹ trên giấy mà không lăn, chờ cho mực khô rồi sao chụp ảnh vân tay bằng máy ảnh hoặc Camera. Rõ ràng phương pháp này diện tích vùng ảnh nhỏ hơn, thông tin ảnh cũng ít hơn, nhưng độ chính xác cao hơn. Số hóa bởi Trung tâm Học liệu và Công nghệ thông tin – ĐHTN http://lrc.tnu.edu.vn
  20. 11 + Phương pháp ảnh vân tay ảo: Đây là một loại đặc biệt của phương pháp thu nhận ảnh vân tay gián tiếp. Các ảnh này thường được thu nhận tại hiện trường. Tại đó khi các đầu ngón tay ấn nhẹ trên các vật dụng ở hiện trường thì mồ hôi, hoặc chất nhờn do các tuyến bài tiết trên biểu bì da sẽ in DVT tại hiện trường. Lúc này người ta sử dụng một loại hóa chất đặc biệt phủ lên vết vân tay đó, làm cho hình ảnh vết vân tay hiện lên, và sử dụng các thiết bị như Camera hay máy ảnh để thu nhận các ảnh này.  Một ảnh trực tiếp: Là quá trình thu nhận ảnh vân tay trực tiếp thông qua các thiết bị cảm nhận mà không cần thông qua các bước trung gian là in ảnh vân tay trên giấy. Hình 1.5: Các ảnh vân tay thu được Đối với quá trình thu nhận ảnh vân tay sống người ta thường dùng cách đặt các ngón tay trực tiếp vào thiết bị cảm ứng để thu nhận ảnh. Công nghệ phổ biến nhất để thu nhận các mẫu ảnh vân tay sống là dựa trên sự phản xạ ánh sáng từ DVT, khi đặt ngón tay và cạnh một tấm gương, các đường vân của ảnh vân tay sẽ tiếp xúc với tấm gương, trong khi các rãnh đường vân thì không tiếp xúc, bên cạnh tấm gương người ta đặt một hệ thống các bóng đèn để phát ra ánh sáng Laser chiếu đến mặt dưới của tấm gương, ánh sáng sẽ phản xạ trở lại và người ta dùng một Camera để thu các ánh sáng phản xạ đó. Kết quả thu được là một ảnh vân tay trong Camera. Các ảnh vân tay, dù trực tiếp hay gián tiếp trong quá trình nhận thì có một số lượng đáng kể (khoảng 10%) có chất lượng kém như bị vết mờ, nhòe hoặc đứt nét do lăn mực và do nhiều nguyên nhân khác. Số hóa bởi Trung tâm Học liệu và Công nghệ thông tin – ĐHTN http://lrc.tnu.edu.vn
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2