intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Nghiên cứu tính chất phi cổ điển của trạng thái nén hai mode

Chia sẻ: _ _ | Ngày: | Loại File: PDF | Số trang:7

24
lượt xem
2
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bải viết nghiên cứu tính chất phi cổ điển của trạng thái nén hai mode. Qua nghiên cứu, chúng tôi thấy rằng trạng thái nén hai mode thể hiện tính chất nén tổng nhưng không thể hiện tính chất nén hiệu.

Chủ đề:
Lưu

Nội dung Text: Nghiên cứu tính chất phi cổ điển của trạng thái nén hai mode

  1. NGHIÊN CỨU TÍNH CHẤT PHI CỔ ĐIỂN CỦA TRẠNG THÁI NÉN HAI MODE ĐẶNG THỊ KIM ANH - NGUYỄN THỊ TY Khoa Vật lý Tóm tắt: Trong bài báo này, chúng tôi nghiên cứu tính chất phi cổ điển của trạng thái nén hai mode. Qua nghiên cứu, chúng tôi thấy rằng trạng thái nén hai mode thể hiện tính chất nén tổng nhưng không thể hiện tính chất nén hiệu. Trạng thái này thỏa mãn tiêu chuẩn đan rối của Hillery - Zubairy và tính chất đan rối thể hiện hoàn toàn. Qua khảo sát tính antibunching chúng tôi nhận thấy rằng độ mạnh, yếu phụ thuộc vào biên độ kết hợp r. Ngoài ra, chúng tôi chứng minh được trạng thái nén hai mode vi phạm bất đẳng thức Cauchy- Schwarz. Những kết quả trên cho thấy trạng thái nén hai mode là trạng thái phi cổ điển điển hình. 1. GIỚI THIỆU Ngày nay, cùng với sự phát triển mạnh mẽ của khoa học và công nghệ, vấn đề làm thế nào để truyền tín hiệu đi xa nhưng vẫn đảm bảo tính lọc lựa cao và giảm được thăng giáng đến mức thấp nhất là vấn đề cấp thiết cho các nhà vật lý lý thuyết cũng như thực nghiệm. Sự xuất hiện tạp âm và thăng giáng lượng tử đã làm cho tín hiệu bị nhiễu và giảm chất lượng truyền tin. Vì lý do này mà các nhà khoa học đã tìm các phương pháp tạo ra các trạng thái vật lý mà ở đó các thăng giáng lượng tử được hạn chế đến mức tối đa có thể và sau đó áp dụng vào thực nghiệm để chế tạo các dụng cụ quang học đảm bảo tính lọc lựa và chính xác cao. Nghiên cứu các tính chất của trạng thái nén hai mode là vấn đề nóng và mang tính thời sự, là bước đệm trong quá trình nghiên cứu. Các tính chất phi cổ điển bậc thấp đã được nghiên cứu tuy nhiên các tính chất bậc cao vẫn chưa được khảo sát. Vì vậy, trong bài báo này, chúng tôi đã tiến hành nghiên cứu tính chất nén tổng, nén hiệu, tính chất rối, tính chất antibuching và sự vi phạm bất đẳng thức Cauchy- Schwarz. Trạng thái nén hai mode được Gantsog and Tanas [1] đưa ra như sau X |ξiab = (cosh r)−1 [− exp (ıθ) tanh r]n |n, niab , (1) trong đó r là biên độ kết hợp và |n, niab là các trạng thái Fock tương ứng với hai mode của trường điện từ là a và b. Kỷ yếu Hội nghị Khoa học Sinh viên năm học 2014-2015 Trường Đại học Sư phạm Huế, tháng 12/2014: tr. 37-43
  2. 38 ĐẶNG THỊ KIM ANH - NGUYỄN THỊ TY 2. TÍNH CHẤT NÉN TỔNG Chúng tôi sử dụng quá trình nén tổng được đưa ra bởi Hillery [2] vào năm 1989 để khảo sát tính chất nén tổng hai mode. Toán tử nén tổng trong trường hợp này được định nghĩa như sau 1  iφ †ˆ†  Vˆφ = e aˆ b + e−iφ a ˆˆb , (2) 2 trong đó a ˆ tương ứng là toán tử sinh và toán tử hủy của mode thứ nhất, ˆb† và ˆb là ˆ† và a toán tử sinh và toán tử hủy của mode thứ hai. Một trạng thái thỏa mãn điều kiện sau thì có tính chất nén tổng  2 1 D E ∆Vˆφ < ˆa + N N ˆb + 1 , (3) 4  2 D E D E 2 với mọi giá trị của φ, trong đó ∆Vˆφ = Vˆ 2 − Vˆφ , Nφ ˆa (N ˆb ) lần lượt là toán tử số hạt của mode a và mode b. Thông qua điều kiện này để xem xét tính chất nén tổng của trạng thái nén hai mode. Để dễ dàng cho việc khảo sát chúng tôi đưa ra tham số nén tổng hai mode S, D E D E2 1 D E S = Vˆφ2 − Vˆφ − Nˆa + Nˆb + 1 , (4) 4 trong đó một trạng thái thể hiện tính chất nén tổng hai mode nếu S< 0 và mức độ thể ˆ†ˆb† + e−iφ a hiện càng mạnh nếu S càng âm. Khi đó, với Vˆφ = 21 eiφ a ˆˆb ta có   1 iφ †ˆ† 2  −iφ ˆ 2 †ˆ† ˆ 1 nD iφ †ˆ† E D −iφ ˆEo2 S= e a ˆ b + e a ˆb + 2ˆ aba ˆb − e aˆ b + e a ˆb . (5) 4 4 Sử dụng trạng thái nén hai mode ở biểu thức (1) và lấy trung bình trạng thái này để tính biểu thức (5) ta được ∞ 1 2 X cos 2(φ − θ) (x2n+2 (n + 1)(n + 2) + x2n−2 n(n − 1) + 2x2n n2    S= 1−x 4 n=0 (∞ )2 (6) 1 2 2  X  2n+1 2n−1  − 1−x cos(φ − θ) x (n + 1) + x n) , 4 n=0 trong đó x = tanh r (với −1 < x < 1, x ∈ R). Dựa vào tham số nén tổng S đã được đưa ra ở biểu thức (6) chúng tôi khảo sát và thu được kết quả về sự phụ thuộc của mức độ nén tổng hai mode theo biên độ kết hợp r Hình vẽ cho thấy khi θ = π2 , 3(π) 2 thì tính nén tổng thể hiện rõ ràng nhất và tăng khi r tăng. Vậy trạng thái nén hai mode có tính chất nén tổng.
  3. NGHIÊN CỨU TÍNH CHẤT PHI CỔ ĐIỂN CỦA TRẠNG THÁI NÉN... 39 π Hình 1: Sự phụ thuộc của S vào r và θ = 2 với φ = 0. 3. TÍNH CHẤT NÉN HIỆU Tương tự như trường hợp nén tổng hai mode, theo Hillery [2] toán tử nén hiệu được định nghĩa như sau ˆ φ = 1 eiφ a   W ˆˆb† + e−iφ a ˆ†ˆb . (7) 2 Một trạng thái được gọi là nén hiệu nếu thỏa mãn ˆ φ < 1 |hNa − Nb i| ,  2 ∆W (8) 4  2 D E D E2 với mọi giá trị của φ, trong đó ∆W ˆφ = W ˆ2 − W ˆφ , N ˆ a (N ˆb ) lần lượt là toán tử số φ hạt của mode a và mode b. Đây chính là điều kiện để chúng tôi đi khảo sát tính chất nén hiệu hai mode của trạng thái nén hai mode trong bài báo này. Để dễ dàng cho việc khảo sát chúng tôi đưa vào tham số nén hiệu hai mode D ˆφ −1 N D E D E2 D E D= W ˆ2 − W ˆa − N ˆb , (9) φ 4 trong đó một trạng thái bất kỳ nếu D < 0 thì có tính chất nén hiệu hai mode  và mức độ ˆ 1 thể hiện càng mạnh nếu D càng âm. Khi đó, với Wφ = 2 e a iφ ˆ† ˆb + e a−iφ † ˆ ˆ b ta được   1  iφ ˆ† 2  −iφ †ˆ2 D= e aˆb + e a ˆ b +a ˆˆb† a ˆ†ˆb + aˆ†ˆbˆ aˆb† 4 1 nD iφ ˆ† E D −iφ †ˆEo2 1 D ˆ E ˆb |. − e aˆb + e a ˆ b − | Na − N (10) 4 4 Bằng cách lấy trung bình trạng thái nén hai mode chúng tôi thu được tham số nén hiệu hai mode như sau ∞ 1 X D = (1 − x2 ) x2n n + n2 ,  (11) 2 n=0
  4. 40 ĐẶNG THỊ KIM ANH - NGUYỄN THỊ TY trong đó x = tanh r,( với−1 < x < 1, x ∈ R). Kết quả khảo sát tham số nén hiệu D ở biểu thức (11) và biên độ kết hợp r được thể hiên trên hình vẽ 2 Hình 2: Sự phụ thuộc của D vào r. Qua hình vẽ cho thấy rằng D > 0 với mọi giá trị của biên độ kết hợp r. Vì vậy, trạng thái nén hai mode không thể hiện tính chất nén hiệu hai mode. 4. TÍNH ANTIBUNCHING Theo Lee. C. T [3], tiêu chuẩn cho sự tồn tại tính phản kết chùm cho trạng thái hai mode trong trường bức xạ được đưa ra dưới dạng D E D E N ˆ (n−1) + N ˆa(m+1) N ˆa(n−1) Nˆ (m+1) b b Rab (m, n) = D E D E − 1 < 0, (12) (m) ˆa N ˆ (n) (n) ˆa N ˆ (m) N b + N b ˆa = a trong đó N ˆ† a ˆb = ˆb†ˆb lần lượt là toán tử số hạt của mode a và mode b trong trường ˆ, N bức xạ. Xét trường hợp n = m, lấy trung bình của trạng thái nén hai mode ta kết quả sau    2 −1 X∞ m Y Ym X ∞ m Y  Rab (m, m) =  x2k (k − j) (k − j + 2) x2k  (k − j + 1) − 1 ,,   k=0 j=0 j=2 k=0 j=1 (13) trong đó x = tanh r (với −1 < x < 1, x ∈ R). Khảo sát tham số Rab (m, m)) trong các trường hợp cụ thể chúng tôi có được kết quả như sau. Qua hình vẽ chúng tôi nhận thấy rằng tại r = 0 tính antibunching đột ngột tăng mạnh và giảm dần khi r tăng. Với m càng lớn thì tính antibunching càng giảm (với cùng giá trị r) Vậy tính phản kết chùm của trạng thái nén hai mode thể hiện càng mạnh trong khoản r rất nhỏ.
  5. NGHIÊN CỨU TÍNH CHẤT PHI CỔ ĐIỂN CỦA TRẠNG THÁI NÉN... 41 Hình 3: Sự phụ thuộc của Rab (m, m)) vào r với m = 1, 2, 3.(Đường biểu diễn các tham số tương ứng với màu đỏ, màu xanh lam và màu xanh lục.) 5. TÍNH CHẤT ĐAN RỐI Chúng tôi khảo sát tính chất đan rối [4] của trạng thái nén hai mode dựa theo tiêu chuẩn của Hillery - Zubairy được đưa ra như sau h i1 a† )m (ˆ a)n ih(ˆb† )m (ˆb)n i − | h(ˆ a)m (ˆb)n i |, 2 Eab = h(ˆ (14) trong đó a ˆ tương ứng là toán tử sinh và toán tử hủy của mode thứ nhất, ˆb† và ˆb ˆ† và a là toán tử sinh và toán tử hủy của mode thứ hai. Trong đó một trạng thái bất kỳ thể hiện tính chất đan rối nếu Eab < 0. Xét trong trạng thái nén hai mode với với trường hợp n = m ta thu được  
  6. ∞ X m Y
  7. X∞ Ym
  8. 2 2k 2 2k
  9. Eab = (1 − x ) x (k − j + 1) −
  10. (1 − x ) x cos mθ (k − j + 1)
  11. , k=0 j=1
  12. k=0 j=1
  13. (15) , trong đó x = tanh r (với −1 < x < 1, x ∈ R) trạng thái nén hai mode thể hiện tính chất đan rối và Eab không phụ thuộc vào pha nén θ. Khảo sát các trường hợp đồ thị của Eab với m = 1, 2, 3 chúng tôi có một số kết quả như sau Qua khảo sát đồ thị Eab chúng tôi nhận thấy rằng với trạng thái nén hai mode |ξiab thì Eab luôn nhỏ hơn 0 nên |ξiab là một trạng thái rối hoàn toàn.
  14. 42 ĐẶNG THỊ KIM ANH - NGUYỄN THỊ TY Hình 4: Sự phụ thuộc của Eab với m = 1, 2, 3. (Đường biểu diễn các tham số tương ứng với màu xanh lam, màu đỏ và màu tím.) 6. SỰ VI PHẠM BẤT ĐẲNG THỨC CAUCHY-SCHWARZ Bất đẳng thức Cauchy-Schwarz trong trường cổ điện có dạng: h D †2 2 Ei 21 a †2 ˆ a ˆ 2 ˆb ˆb I=
  15. D
  16. †ˆ†ˆ
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2