
1
INTRODUCTION
In some areas, we expect machinery to be able to simulate behavior,
reasoning ability like human and give human reliable suggestions in the
decision-making process. A prominent feature of human is the ability to reason
on the basis of knowledge formed from life and expressed in natural language.
Because the language characteristic is fuzzy, the first problem that needs to be
solved is how to mathematically formalize the problems of linguistic semantic
and handle semantic language that human often uses in daily life.
In response to those requirements, in 1965, Lotfi A. Zadeh was the first
person to lay the foundation for fuzzy set theory. Based on fuzzy set theory,
Fuzzy Rule Based System (FRBS) has been developed and become one of the
tools of simulating reasoning method and making decisions of human in the
most closely manner. FRBS has been successfully applied in solving practical
problems such as control problem, classification problem, regression problem,
language extraction problem, etc...
When building FRBSs, we need to achieve two goals: accuracy and
interpretability. The thesis will focus on the study of interpretability.
In [1]1 Gacto finds that there are currently two main approaches to
interpretability. The first approach is based on complexity and the second
approach is based on semantics. Another approach proposed by Mencar et. al. in
[2]2, called similar measure function-based approach to assess the
interpretability of semantics-based fuzzy rules. The interpretability of fuzzy
rules is measured by the similarity between knowledge represented by fuzzy set
expression and linguistic expression in natural language.
In 2017, a new approach to the interpretability of fuzzy system is Real-
world-semantics-based approach – RWS-approach, has been first-time proposed
and initially surveyed in [3]3. This approach is based on real-world semantics of
words and relations between semantics of fuzzy system components and
corresponding component structures in the real world.
Derived from the recognition that fuzzy set expressions, especially fuzzy
rules of fuzzy systems have no relationship based on methodology with real
world semantics and, therefore, there are no formal basis to study the nature of
interpretability, his thesis chooses the real-world-semantics-based approach
proposed in [3] to study the interpretability of fuzzy systems.
1 M.J. Gacto, R. Alcalá, F. Herrera (2011), Interpretability of Linguistic Fuzzy Rule-Based
Systems: An Overview of Interpretability Measures. Inform. Sci., 181:20 pp. 4340–4360.
2 C. Mencar, C. Castiello, R. Cannone, A.M. Fanelli (2011), Interpretability assessment of fuzzy
knowledge bases: a cointension based approach, Int. J. Approx. Reason. 52 pp. 501–518.
3 Cat Ho Nguyen, Jose M. Alonso (2017), “Looking for a real-world-semantics-based approach to
the interpretability of fuzzy systems”. FUZZ-IEEE 2017 Technical Program Committee and
Technical Chairs, Italy, July 9-12.