
Tài liệu hướng dẫn môn Lý thuyết Xác suất và Thống kê
1
CHƯƠNG 1: XÁC SUẤT VÀ CÔNG THỨC TÍNH XÁC SUẤT
1.1 ÔN TẬP VỀ GIẢI TÍCH TỔ HỢP
1.1.1 Một số khái niệm và công thức tính
Hoán vị Tổ hợp Chỉnh hợp Chỉnh hợp lặp
Số cách sắp
xếp ngẫu
nhiên n phần
tử
Số cách chọn ngẫu nhiên k
phần tử từ n phần tử (k
n)
sao cho k phần tử đó
không lặp và không có
phân biệt thứ tự.
Số cách chọn ngẫu
nhiên k phần tử từ n
phần tử (k
n) sao cho
k phần tử đó không lặp
và có phân biệt thứ tự.
Số cách chọn ngẫu
nhiên k phần tử từ n
phần tử sao cho k
phần tử đó có thể
lặp lại và có phân
biệt thứ tự.
n
P n!
)!(!
!
knk
n
Ck
n
)!(
!
kn
n
Ak
n
kk
nnB
Ví dụ 1.1:
1. Cho tập hợp
A 1,2,3,4,5
, từ tập hợp A có thể thành lập được bao nhiêu số tự
nhiên thoả mãn:
a. Có 5 chữ số khác nhau.
b. Có 3 chữ số khác nhau.
c. Có 3 chữ số.
2. Một tổ có 5 học sinh, có bao nhiêu cách phân công 3 học sinh đi lao động.
Giải
1.a 5
P 5! 120
số
1.b
60
!35
!5
3
5
A số
1.c 3 3
5
B 5 125
2.
3
5
5!
C 10
3! 5 3 !
số
1.1.2 Quí tắc cộng: Giả sử một công việc có k trường hợp thực hiện khác nhau đều thỏa
yêu cầu. Trường hợp 1 có n1 cách thực hiện, trường hợp 2 có n2 cách thực hiện,..., trường
hợp k có nk cách thực hiện. Khi đó, số cách thực hiện công việc là:
1 2 k
n n n
Ví dụ 1.2: Một nhóm có 3 nam và 2 nữ, có bao nhiêu cách chọn ra 3 người sao cho có ít
nhất là 2 nam.
Giải: Trường hợp 1: 3 người chọn ra có 2 nam và 1 nữ: 2 1
3 2
C C 3 2 6
cách
Trường hợp 2: 3 người chọn ra có 3 nam 3
3
C 1
cách
Vậy số cách chọn ra 3 người sao cho có ít nhất là 2 nam là: 6 + 1 = 7 cách
1.1.3 Quy tắc nhân: Giả sử một công việc phải trải qua k giai đoạn. Giai đoạn thứ nhất có
n1 cách thực hiện; giai đoạn thứ hai có n2 cách thực hiện;...; giai đoạn thứ k có nk cách thực
hiện. Khi đó, số cách thực hiện công việc là:
1 2 k
n n n
Ví dụ 1.3: Có 12 quyển sách gồm 5 quyển sách Toán, 4 quyển sách Lý, 3 quyển sách Hóa.
Hỏi có bao nhiêu cách để lấy ra mỗi loại 2 quyển sách?
Giải: Số cách lấy ra 2 quyển sách toán:
2
5
5!
C 10
2! 5 2 !
cách.