
BỘ GIÁO DỤC VÀ ĐÀO TẠO
ĐẠI HỌC ĐÀ NẴNG
ĐOÀN VĂN AN
ÁP DỤNG KHÁI QUÁT HOÁ, ĐẶC BIỆT HOÁ,
TƢƠNG TỰ HOÁ TRONG VIỆC
GIẢI TOÁN SƠ CẤP
Chuyên ngành: Phƣơng pháp toán sơ cấp
Mã số: 60. 46. 01.13
TÓM TẮT LUẬN VĂN THẠC SĨ KHOA HỌC
Đà Nẵng – Năm 2016

Công trình được hoàn thành tại
ĐẠI HỌC ĐÀ NẴNG
Người hướng dẫn khoa học: TS. PHAN ĐỨC TUẤN
Phản biện 1: TS. Lê Hải Trung
Phản biện 2: TS. Hoàng Quang Tuyến
Luận văn đã được bảo vệ trước Hội đồng chấm Luận
văn tốt nghiệp thạc sĩ Khoa học họp tại Đại học Đà Nẵng vào
ngày 13 tháng 8 năm 2016.
Có thể tìm hiểu luận văn tại:
- Trung tâm Thông tin – Học liệu, Đại học Đà Nẵng.
- Thư viện trường Đại học Sư phạm, Đại học Đà Nẵng

1
MỞ ĐẦU
1. Lý do chọn đề tài
Giải toán sơ cấp ở bậc học phổ thông là một hoạt động quan
trọng. Chúng ta biết rằng không phải bài toán nào cũng có thể giải
được một cách dễ dàng. Khi gặp một bài toán mà giải trực tiếp nó
gặp nhiều khó khăn thì ta nên xét các trường hợp đặc biệt, các trường
hợp tương tự hay tổng quát của nó vì có thể xét bài toán theo các khía
cạnh đó lại dễ hơn và từ các trường hợp đó ta suy ra cách giải bài
toán ban đầu.
Khái quát hóa, đặc biệt hóa và tương tự hóa, đó là những thao
tác tư duy có vai trò rất quan trọng trong quá trình dạy học toán ở
trường phổ thông. Khái quát hóa, đặc biệt hóa, tương tự hóa là
phương pháp giúp chúng ta mò mẫm, dự đoán để tìm lời giải của bài
toán, mở rộng, đào sâu, hệ thống hoá kiến thức và góp phần quan
trọng trong việc hình thành những phẩm chất trí tuệ cho học sinh.Tuy
nhiên, khái quát hoá, đặc biệt hoá và tương tự hóa hiện nay chưa
được rèn luyện đúng mức trong dạy học ở trường phổ thông.
Việc áp dụng trong lượng giác; trong hình học; chứng minh đẳng
thức và bất đẳng thức; ... vào việc giải toán sơ cấp ngày càng phát triển,
tạo hứng thú cho các em trong quá trình học toán, vận dụng toán vào
cuộc sống, tạo hứng thú đối với những học sinh yêu thích toán học, đam
mê sự sáng tạo, tìm tòi cho môn toán.
2. Mục đích nghiên cứu
- Nghiên cứu vai trò của khái quát hoá, đặc biệt hoá và tương
tự trong dạy học toán và dạy học trong lượng giác, trong hình học
chứng minh bất đẳng thức.
- Đề xuất một số biện pháp nhằm rèn luyện khái quát hoá, đặc

2
biệt hoá và tương tự cho học sinh vào giải toán trong lượng giác;
trong hình học; chứng minh đẳng thức và bất đẳng thức; một số dạng
toán khác hay gặp trong bậc phổ phổ thông.
3. Đối tƣợng và phạm vi nghiên cứu
3.1. Đối tƣợng nghiên cứu
Việc áp dụng khái quát hoá, đặc biệt hoá, tương tự hoá để giải
bài toán sơ cấp ở phổ thông.
- Một số bài toán về đẳng thức và bất đẳng thức.(Đại số)
- Một số bài toán về lượng giác.
- Một số bài toán về hình học.
- Một số bài toán thường gặp trong chương trình phổ thông.
Trong mỗi phần sẽ đưa vào các ví dụ và bài tập áp dụng cụ thể.
3.2. Phạm vi nghiên cứu
Tìm hiểu khả năng khái quát hoá, đặc biệt hoá, tương tự của
học sinh phổ thông thông qua các bài toán trong lượng giác; trong
hình học; chứng minh đẳng thức và bất đẳng thức; một vài dạng toán
hay gặp ở bậc phổ thông.
4. Phƣơng pháp nghiên cứu
Nghiên cứu tổng hợp từ sách, báo, tài liệu có đề cập đến khái
quát hoá, đặc biệt hoá, tương tự hóa, lý luận dạy học, sách giáo khoa,
sách tham khảo, sách giáo viên, tạp chí giáo dục, ...
5. Đóng góp của đề tài
ây dựng, hệ thống đề xuất một số biện pháp nhằm áp dụng
khái quát hoá, đặc biệt hoá và tương tự hóa cho học sinh phổ thông
chứng minh về một số dạng toán về đẳng thức và bất đẳng thức,
lượng giác và hình học, một số dạng toán thường gặp ở bậc phổ
thông.

3
6. Cấu trúc luận văn
Luận văn gồm phần mở đầu, kết luận, hai chương và danh mục
tài liệu tham khảo.
Chương 1. Khái quát hoá, đặc biệt hoá, tương tự hoá.
Chương 2. Áp dụng khái quát hoá, đặc biệt hoá, tương tự hoá
trong việc giải toán sơ cấp vào chứng minh đẳng thức và bất đẳng
thức, lượng giác, hình học và các dạng thường gặp khác bậc phổ thông.
CHƢƠNG 1
KHÁI QUÁT HOÁ, ĐẶC BIỆT HOÁ, TƢƠNG TỰ HOÁ
1.1. CÁC KHÁI NIỆM
1.1.1. Khái quát hóa
Theo G. Pôlya, “Khái quát hóa là chuyển từ việc nghiên cứu
một tập hợp đối tượng đã cho đến việc nghiên cứu một tập lớn hơn,
bao gồm cả tập hợp ban đầu”
3,tr.21
.
Trong “Phương pháp dạy học môn Toán”, các tác giả Nguyễn
Bá Kim, Vũ Dương Thụy đã nêu rõ: “Khái quát hóa là chuyển từ một
tập hợp đối tượng sang một tập hợp lớn hơn chứa tập hợp ban đầu
bằng cách nêu bật một số trong các đặc điểm chung của các phần tử
của tập hợp xuất phát”
7,tr.31
.
Chẳng hạn, chúng ta khái quát hóa, khi chuyển từ việc nghiên
cứu tam giác sang về nghiên cứu tứ giác, rồi đa giác bất kỳ với số cạnh
bất kỳ. Từ hệ thức lượng trong tam giác vuông sang việc nghiên cứu
hệ thức lượng trong tam giác thường. Chúng ta có thể chuyển việc
nghiên cứu bất đẳng thức cho hai số sang bất đẳng cho n số tùy ý, ...
1.1.2. Đặc biệt hóa
1.1.3. Tƣơng tự hóa.