ÑAÏI SOÁ TOÅ HÔÏP

Chöông V

NHÒ THÖÙC NEWTON (phần 2)

Daïng 2:

ÑAÏO HAØM HAI VEÁ CUÛA KHAI TRIEÅN NEWTON ÑEÅ

CHÖÙNG MINH MOÄT ÑAÚNG THÖÙC

– Vieát khai trieån Newton cuûa (ax + b)n.

– Ñaïo haøm 2 veá moät soá laàn thích hôïp .

– Choïn giaù trò x sao cho thay vaøo ta ñöôïc ñaúng thöùc phaûi chöùng minh.

Chuù yù :

• Khi caàn chöùng minh ñaúng thöùc chöùa k k

nC ta ñaïo haøm hai veá trong khai trieån (a

+ x)n..

k

• Khi caàn chöùng minh ñaúng thöùc chöùa k(k – 1)

nC ta ñaïo haøm 2 laàn hai veá cuûa

khai trieån (a + x)n.

Baøi 136. Chöùng minh :

a)

... nC

n 1 n2 −

+

+

+ +

=

C 2C 3C3 2 n n

1 n

n n

n 1 −

b)

..

( 1)

nC

0

n n

2 C 2C 3C . − + n

1 n

3 n

n 1 −

n 3 −

n 1 −

− + − =

c)

( 1)

nC

n

.

n 1 −−

2 2 C 2 C 3.2 C ... n

1 n

3 n

n n

− + − + =

Giaûi

Ta coù nhò thöùc

2

n

n 1 −

(a + x)n =

.

x

... C x

1 C a C a x C a n

0 n n

2 n 2 n

n n

Ñaïo haøm 2 veá ta ñöôïc :

n 1

2

n 1 −

a

x 3C a

x

... nC x

n(a + x)n-1 = C −

+ + + +

1 n

2 n 2 2C a n

3 n 3 n

n n

+ + + +

a) Vôùi a = 1, x = 1, ta ñöôïc :

n 1 −

C 2C 3C ... nC

n2

1 n

3 n

2 n

n n

+ + + + =

b) Vôùi a = 1, x = –1, ta ñöôïc :

n 1 −

( 1)

nC

0

C 2C 3C ... +

1 n

3 n

2 n

n n

− + − − =

c) Vôùi a = 2, x = –1, ta ñöôïc :

n

n 1 −

n 3 −

n 1 −

n 1 −

.

( 1)

nC

n

2 2 C 2 C 3.2 C ... n

1 n

3 n

n =

− + − − +

Baøi 137. Cho (x – 2)100 = a0 + a1x + a2x2 + … + a100x100 . Tính :

a) a97

b) S = a0 + a1 + … + a100

c) M = a1 + 2a2 + 3a3 + … + 100a100

Ñaïi hoïc Haøng haûi 1998

Giaûi

Ta coù :

(x – 2)100 = (2 – x)100

100

99

k

k

... C x

100 C 2 .x ... C 2 − + +

( x) −

0 = C 2 100

1 100

k 100

100 100 100

− + +

a) ÖÙng vôùi k = 97 ta ñöôïc a97.

97

3

97

Vaäy

( 1)−

a97 =

100C 2

=

= –8.

− × × = – 1 293 600 100 ! 3!97! 8 100 99 98 × 6

b) Ñaët f(x) = (x – 2)100 = a0 + a1x + a2x2 + … + a100x100

Choïn x = 1 ta ñöôïc

S = a0 + a1 + a2 + … + a100 = (–1)100 = 1.

c) Ta coù :

′ f (x) = a1 + 2a2x + 3a3x2 + … + 100a100x99

Maët khaùc f(x) = (x – 2)100

′ f (x) = 100(x – 2)99 ⇒

Vaäy 100(x – 2)99 = a1 + 2a2x + 3a3x2 + … + 100a100x99

Choïn x = 1 ta ñöôïc

M = a1 + 2a2 + … + 100a100 = 100(–1)99 = –100.

Baøi 138. Cho f(x) = (1 + x)n vôùi n

2.

a) Tính

//f (1)

b) Chöùng minh

+

+ +

=

2 2.1.C 3.2.C + n

3 n

4 n

n n

Ñaïi hoïc An ninh 1998

. 4.3.C ... n(n 1)C n(n 1)2n 2− −

Giaûi

a) T

′ f (x)

a co ù : f(x ) = (1 + x)n

= n(1 + x)n – 1

// (x

n – 2

f ) = n(n – 1)(1 + x)

//f (1) = n(n – 1)2n – 2 .

Vaäy

)

b Do khai trieån nhò

4

3

2

thöùc Newt on

nx

0C C+ 1 n

n

4 n

3 n

2 n

n n

3

n 1

x C x C x C x ... C f(x) = (1 + x)n = + + + + +

2 3x C

1 n

2 n

n n

3 n

4 n

2

n 2

′ f (x) = n(1 + x)n - 1 = C 2xC+ + + 4x C ... nx C− + + ⇒

3 n

2 n

4 n

n n

′′ f (x) = n(n – 1)(1 + x )n - 2 = n(n 1)x C− 2C 6xC 12x C ... + + + + − ⇒

Choïn x = 1 ta ñöôïc

n – 2 =

4 2C 6C 12C ... n(n 1)C n

3 n

2 n

n n

n(n – 1)2 . + + + + −

Baøi 139

. Chöùng minh

n 1 −

n 4 −

n 3 − .2 C

n 1 n3 − .

n 1 −+ 2 C 2 C 3

1 n

2 n

3 n

4 4.2 C ... nC n

n n

Ñaïi hoïc Kinh teá Quoác daân 2000

+ + + + =

Giaûi

n

0

2

3

n

n 1 −

n 2 −

n 3 −

Ta coù :

nC 2 +

1 C 2 n

2 n

3 n

n n

x C 2 x ... C x (2 + x)n = + x C 2 + + +

n 1 −

n 2 −

n 3 −

n 1 −

ha c Ñaïo øm 2 veá ta ñöôï

2 3x C 2

1 C 2 n

2 n

3 n

n n

2xC 2 ... nx C n(2 + x)n – 1 = + + + +

n 1 −

n 3 −

n 1 − 2 C 2 C 3C 2

Choï n x = 1 ta ñö ôïc

1 n

3 n

2 n

n n

n 1 −

n 2 −

n 3 −

n 1 −

... nC . n3n – 1 = + + + +

Baøi 140. Chöùng minh

+

+

+ +

=

1 C 3 n

2 2C 3 n

3 3C 3 n

n n

Ñaïi hoïc Luaät 2001

. ... nC n4

Giaûi

n

0

2

3

n

n 1 −

n 2 −

n 3 −

Ta coù :

+

+ +

nC 3 + 1

2 n

3 n

n n

(3 + x)n = x C 3 x ... C x x C 3 + C 3 n

n 1 −

n 2 −

n 3 −

n 1 −

n – 1 =

Ñaïo øm 2 veá ta ñöôïc ha

2 3x C 3

+

+

+ +

1 C 3 n

2 n

3 n

n n

2xC 3 ... nC x n(3 + x)

n 1 −

n 2 −

n 3 −

h C oïn x = 1

1 =

+

+

+ +

1 C 3 n

2 2C 3 n

3 3C 3 n

n n

n

n4n – ... n C . ⇒

Baøi 141. Tính A =

n 1 nC−

+ + −

+

n

2 n

3 n

1 n

4 n

Ñaïi hoïc Baùch khoa Haø Noäi 1999

C 2C 3C 4C ... ( 1)

Giaûi

2

3

n

Ta coù :

n 1) C x

0 n

n n

3 n

( (1 – x )n = − x C x − ... + + − + 2 1 C C x C n n

2

n 1 −

ña ñöôïc Laáy ïo haøm hai veá ta

n ( 1) nC x

2 C 2xC 3x C n

1 n

3 n

n n

... –n(1 – x)n – 1 = − + − + + −

n x ta coù : Choï = 1

n ( 1) nC

2 n

3 n

n n

C 3C ... + + − − 0 = − 1 C 2+ n

1 n

3 n

2 n

n n

⇒ A = nC C 2C 3C ... + + + − n 1 − ) ( 1 − = 0

Baøi 142. Ch

n

öùn g mi nh vôùi n ∈ N vaø n > 2

+ +

+

nnC ) <

2 (C 2C 3C ... + n

1 n

3 n

n! (*) 1 n

Giaûi

n

2 x C

+

+

+

0 n

1 xC n

2 n

n n

Ta coù : (1 + x)n = C ... x C+

n 1

1 =

ña eá ta ñöôïc : Laáy ïo haøm theo x hai v

+ +

+

1 n

2 n

n n

C 2xC ... nx C− n(1 + x)n –

n x Choï = 1 ta ñöôïc

+

1 n

n n

2 n

nC 2n – 1 = n C 2C + ... +

n 1 )−

(n.2 2n – 1 < n! (**) Vaäy (*) ⇔ < n! ⇔ 1 n

Keát quaû (**) seõ ñöôïc chöùng minh baèng qui naïp

u = 22 < 3! = 6 (**) ñ ùng khi n = 3. Thaät vaäy 4

k – 1

û ! > 2k – 1 G ö (**) ñuùng khi n = k vôùi k > 3 nghóa laø ta ñaõ coù : k iaû s

k – 1

Vaäy (k + 1)k! > (k + 1)2

k do k > 3 neân k + 1 > 4 )

⇔ (k + 1)! > 2 . 2

= 2 (

n – 1

Do ñoù (**) ñuùng khi n = k + 1.

Keát luaän : 2 < n! ñuùng vôùi ∀ n ∈ N vaø n > 2.

Baøi 143.

2

Chöùng minh

a)

+ +

+

=

n n

2 n

3 n

n 2 −

1.2C 2.3C ... (n 1)nC − n(n 1)2n− −

b)

+ + −

= 0

n n

2 n

3 n

n 1 −

n 2 −

n 2 −

1.2C 2.3C ... ( 1) (n 1)nC −

c)

n 4 − 3.4.2 C ...

+

+ +

=

2 n

3 n

n n

4 n

n

4

n 1 −

n 2 −

n(n 1)3 2 C 3.2 C + (n 1)nC −

d)

n 2 − 2 C 3.2 C 3.4.2

+

− + −

=

− .

3 n

n n

4 n

2 n

C ... ( 1) n(n 1) (n 1)nC −

Giaûi

2

n

n

n 1 −

Ta coù nhò thöùc

+

+

+

+

2 n 2 n

nC x

1 C a C a x C a n

0 n n

. (a + x)n = x ...

n

2

n – 2

Ñaïo haøm 2 veá 2 laàn , ta ñöôïc :

+

+ +

2 n 2 n

3 n 3 n

n n

n(n – 1)(a + x) = 1.2C a 2.3C a x ... (n 1)nC x

Vôùi a = 1, x = 1, ta ñöôïc :

a)

n 2 −

+ +

+

=

n n

2 n

3 n

1.2C 2.3C ... (n 1)nC − n(n 1)2 −

Vôùi a = 1, x = – 1, ta ñöôïc :

b)

n 2 −

+ + −

= 0

2 n

3 n

n n

1.2C 2.3C ... ( 1) (n 1)nC −

c) Vôùi a = 2, x = 1, ta ñöôïc :

n 2 −

n 2 −

n 3 −

+ +

+

=

3 n

n n

2 n

n 4 −

n 2 −

n 1 −

n 2 −

1.2.2 C 2.3.2 C ... (n 1)nC − n(n 1)3 −

+ +

+

+

=

3 2 C 3.2 C 3.4.2 C ... n

2 n

4 n

n n

⇔ (n 1)nC − n(n 1)3 −

d) Vôùi a = 2, x = –1, ta ñöôïc :

n 4 −

n 2 −

n 2 −

n 3 − 1.2.2 C 2.3.2 C 3.4.2 C ...

− + −

+

=

3 n

2 n

4 n

n n

n 1 −

n 2 −

n 4 −

n 2 −

( 1) n( n (n 1)nC − − 1)

− + −

+

=

− .

2 2 C 3 n

3 n

4 n

n n

⇔ .2 C 3.4.2 C ... ( 1) n(n 1) (n 1)nC −

B i 144. Chöùng minh :

a)

n 1 (6−

+

+ +

=

+

1 4C ... n

n n

0 n

3C 2 n) . (n 3)C +

b)

n ( 1) (n

+ + −

+

= . 0

1 n

n n

0 n

3C 4C ... 3)C

Giaûi

2

n

n 1 − a C a x C a

+

+

+ +

0 nC n

2 n 2 n

1 n

n n

x ... C x Ta coù nhò thöùc (a + x)n =

0 n

3

5

n 1 4 C a x

ñöôïc : Nhaân 2 veá vôùi x3, ta

n 3 + .

+

+

+ +

nC a x

n n

1 n

2 n 2 C a n

x ... C x x3(a + x)n =

2

n 2 +

n 1 3 a x

Ñaïo haøm 2 veá, ta ñöôïc :

+

+

0 n 3C a x n

1 4C − n

n n

(n 3)C x . 3x2(a + x)n + nx3(a + x)n – 1 = ... + +

a = 1, x = 1, ta ñöôïc :

a) Vôùi

n

n 1 −

n 1 −

+

+ +

+

=

+

=

0 n

1 4C ... n

n n

3C (n 3)C 3.2 n2 2 . (6 n) +

a = , x = –1, ta ñöôïc :

b) Vôùi

1

n ) (n 3)C +

= . 0

1 n

0 n

n n

3C 4C ... ( 1 + + −

-- ------------- --------------------------

Daïng

3:

TÍCH PH

AÂN HAI VEÁ CUÛA NHÒ THÖÙC NEWT

ON ÑEÅ

CHÖÙNG MINH MO

ÄT ÑAÚNG THÖÙC

+ Vieát khai trieån Newton cuûa (ax + b)n.

+ Laáy tích phaân xaùc ñònh hai veá thöôøng laø treân caùc ñoaïn : [0, 1], [0, 2] hay [1, 2]

c ñaúng thöùc caàn chöùng minh. ta seõ ñöôï

Chuù yù :

k

• Caàn chöùng minh ñaúng thöùc ch

nC k 1 +

öùa ta laáy tích phaân vôùi caän thích hôïp hai veá

trong khai trieån cuûa (a + x)n.

k

• Caàn chöùn minh ña g th g

nC ta laáy tích phaân vôùi caän thích hôïp

+

ún öùc chöùa 1 k m 1

+ g khai trieån cu xm(a + x)n.

hai veá tron ûa

Baøi 145. Cho n

1

2

3 n

x (1 x ) dx

N vaø n 2.

a) Tính I =

+

0

C

C

C

...

+

+

+

+

=

b) Chöùng minh :

0 n

1 C n

2 n

n n

1 3

1 6

1 9

3(

n 1 + − 2 1 3(n 1) +

1 n 1) +

Ñaïi hoïc Môû 1999

.

Giaûi

1

1

3

2 x (

3 n 1 x ) dx

3 n (1 x ) d(x

a) Ta coù : I =

+

+

+ 1)

0

0∫

1 3

1

n 12 +

=

.

.

I =

⎡ ⎣

⎤− 1 ⎦

1 (1 x+ 3

1 3(n 1) +

n 1+

3 n 1 ) + ⎤ ⎥ ⎦

0

3

6

n

3n

=

b Ta coù : (1 + x3)n = )

... C

+

+

+ +

1 C C x C x n

2 n

0 n

nx

2

8

5

3

n

n 2 +

x2(1

+ x3)n =

x C x C x C ... x +

+ +

+

1 n

2 n

0 n

nC

Laáy tích phaân töø 0 ñeán 1 hai veá ta ñöôïc :

1

3

6

9

3n 3 +

I

=

C

C ...

+

+

+ +

0 n

1 C n

2 n

x 3

x 6

x 9

⎡ ⎢ ⎣

⎤ x ⎥+ 3n 3 ⎦

0

C

C ...

C

=

+

+

+ +

Vaäy :

0 n

1 C n

2 n

n n

1 3

1 6

1 9

+ −n 1 1 2 3(n 1) +

1 3n 3 +

Baøi 146.

Chöùng minh

=

k n C +∑ n k 1

n 12 + − 1 n 1 +

k 0=

Ñaïi hoïc Giao thoâng Vaän taûi 2000

Giaûi

2

n

Ta coù : (1 + x)n =

... C x

+

+

+ +

1 C C x C x n

2 n

0 n

n n

1

1

n

2

n

(1 x) dx

... C x

dx

=

Vaäy

+

+

+

+ +

1 C C x C x n

2 n

0 n

n n

)

(

0

0

1

1

2

3

n 1 +

n 1 +

1 C x C + n

0 n

2 n

n n

0

0

(1 = C ... C + + + x 2 x 3 x) + n 1 + x n 1 + ⎡ ⎢ ⎣ ⎤ ⎥ ⎦ ⎤ ⎥ ⎦ ⎡ ⎢ ⎣

+

+

+ +

0 n

1 C n

2 n

n n

n 12 + − 1 n 1 +

n

= C C ... C ⇔ 1 2 1 3 1 + n 1

k C +∑ n k 1

n 12 + − 1 + n 1

k 0 =

2

3

n 1 +

=

2 1 2 1 2

Baøi 147. Tính :

+

+

+ + ...

0 n

1 C n

n1 C n

2 n

− 2

− 3

− + n 1

Tuyeån sinh Ñaïi hoïc khoái B 2003

. C C

Giaûi

2

3

n

+ C C x C x C x

+

+

+ +

2 n

3 n

n n

0 n

1 n

2

2

2

3

n

... C x

n dx =

dx

x)+

+

+

+

+ +

Ta coù : (1 + x)n = ... C x

1 C C x C x n

2 n

0 n

3 C x n

n n

Vaäy

)

(

1

1

(1∫

2

2

2

3

4

+ n 1

+ n 1

+

+

+ +

1 + C x C n

0 n

2 n

3 n

n n

+ (1 x) + n 1

⎡ ⎢ ⎣

⎤ ⎥ ⎦

⎡ ⎢ ⎣

⎤ x ⎥+ n 1 ⎦

1

1

+ n 1

+ n 1

2

2

2

= C C ... C x 2 x 3 x 4

2

3

+ n 1

+

+

+ + ...

2 0 C [x] 1 n

1 ⎡ C x ⎣ n

⎤ ⎦

2 ⎡ C x ⎣ n

⎤ ⎦

n ⎡ C x ⎣ n

⎤ ⎦

1

1

1

+

+

2

3

+ n 1

+ n 1

+ n 1

2 = 3 − n 1 n 1 1 3 1 2 1 + n 1

+

+

+ +

0C n

1 C n

2 n

n n

− 2

− 3

− 1 + n 1

− 2 n 1+

2 1 2 2 3 1 = C ... C

Baøi 148.

nn

Chöùng minh :

3

+ n 1 2 C

+

+ +

=

n n

0 n

2 1 2 .C n

2 2 .C ... n

− ( 1) + n 1

− + ( 1) + n 1

Ñaïi hoïc Giao thoâng Vaän taûi 1996

1 2C 1 2 1 3

Giaûi

2

n

n ( 1) C x

+

+ + −

1 C n

2 n

n n

2

2

n

2

d

...

n ( 1) C

x =

dx

(1 x)−

+

+ + −

Ta coù : (1 – x)n x C x ... = C0 n

1 C C x C x n

2 n

0 n

n n

Vaäy

)nx

(

0

0

2

2

3

n

+ n 1

+ n 1

+

+ +

0 C x n

2 1 x C n

2 n

n n

− (1 x) + n 1

− ( 1) x + n 1

⎡ −⎢ ⎣

⎤ ⎥ ⎦

⎤ ⎥ ⎦

⎡ ⎢ ⎣

0

0

2

3

n

+ n 1

+ n 1

= C ... C 1 2 x 3

− ( 1)

+

+ +

0 n

1 C n

2 n

n C n

− + n 1

− ( 1) 2 + n 1

n

2

3

n

+ n 1

1 = 2C C ... 2 2 2 3

+

+ +

0 n

1 C n

2 n

n n

− ( 1) 2 + n 1

+ − 1 ( 1) n 1+

= 2C C ... C 2 2 2 3

Baøi 149. Chöùng minh :

n

n

− n 1

a)

+ −

+ +

=

0 − ( 1) C ( 1) n

1 n

n n

− ( n

n

C ... C 1 2 1 + n 1 1) + 1

b)

+ + −

=

0 n

1 n

n n

. C C ... ( 1) C 1 2 1 + n 1 1 + n 1

Giaûi

2

n

− 1

Ta coù nhò t höùc

n =

na

+

+

+ +

0 n 1 C a C n n

2 n 2 n

n n

1

1

n

n

− n 1

(a x) dx

C a C a x ... C x dx

+

+ +

+

(a + x) x C a x ... C x .

0 n n

1 n

n n

=

)

(

0

0

1

1

+ n 1

Vaäy : ∫

n 1 2 C a x

+

+ + ...

0 n C a x n

1 n

n C x n

⎞ ⎟ ⎠

⎛ ⎜ ⎝

0

0

+ n 1

+ n 1

= 1 2 (a x) + n 1 + n 1+ 1 + n 1

+ (a 1)

− n 1

+

+ + ...

0 n C a n

1 C a n

n n

− n 1+

a = . C 1 2 1 + n 1

a)

n

+ n 1

− −

− n 1

V ôùi a = –1 , ta ñ öôïc :

n − ( 1) C

+ − ( 1 )

+ +

=

=

0 n

1 n

n n

− ( 1) + n 1

C ... C 1 2 1 + n 1 ( 1) + n 1

)

b Ta coù nhò thöùc

2

n

− n 1

n =

+

+

+ +

0 nC a n

2 n 2 n

1 n

n n

1 −

1 −

n

n

n 1 −

(a x) dx

C a C a x ... C x dx

(a + x) C a x C a x ... C x .

+

+ +

+

0 n n

1 n

n n

= Vaäy

(

)

0

0

1 −

1 −+ n 1

n 1 +

n 1 2 C a x

+

+

+

0 n C a x n

1 n

n C x n

+ (a x) n 1+

⎛ ⎜ ⎝

⎞ ⎟ ⎠

0

0

n 1 +

n 1 +

= ... 1 2 1 + n 1

− (a 1)

n 1 −

n 1 +

+

− + −

0 n C a n

1 C a n

n n

− n 1+

a = . ( 1) ... C ⇔ 1 2 1 + n 1

n 1 +

Vôùi a = 1, ta ñöôïc :

+

− + −

=

0 n

1 n

n n

− 1 + 1 n

n

. C C ... ( 1) C 1 2 1 + n 1

+ + −

=

0 n

1 n

n n

. ⇔ C C ... ( 1) C 1 2 1 + n 1 1 + n 1

1

19

x(1 x) dx

Baøi 150. Tính

0

+

+ + ...

18 19

19 19

0 19

1 C 19

2 19

Ñaïi hoïc Noâng nghieäp Haø Noäi 1999

C C C C Ruùt goïn S = 1 2 1 3 1 4 1 20 1 21

G

iaûi

Ñaët t = 1 – x dt = –dx

Ñoåi caän

x 0 1

0

1

19

19

x(1 x) dx

t 1 0

(1 t)t −

( dt) −

0

1

1

1

20

21

20t

Vaäy I = =

)dt =

19 (t −

t

t

0

1 20

1 21

⎤ ⎥⎦

0

1

2

= I = = ⇔ 1 20 1 21 1 420

Ta coù : •

+

+ +

2 19

18 18 19

− 19 C19

19 19 C x 19

2

3

19

20

(1 – x)19 = C0 x C x ... C x

+

+ +

0 19

1 C 19

2 C x 19

18 19 19

19C x

1

2

3

20

21

1

1 x(

19x) dx

x(1 – x )19 = xC x ... C x ⇒

+

+

0 19

1 C 19

18 19

19 19

0

⎤ ⎥ ⎦

⎡ ⎢ ⎣

0

= C ... C C Vaä y I = x 2 x 3 x 20 x 21

+ + ...

0 19

1 C 19

18 19

19 19

= C C C ⇔ 1 420 1 2 1 3 1 20 1 21

. y S = Vaä 1 420

Baøi 151.

1

a) Tính

2 nx ) dx

x(1−

0

n

C

C

C ...

C

b) Chöùng minh

+

+ +

=

0 n

1 C n

2 n

3 n

n n

1 2

1 4

1 6

1 8

( − 2n

2

1) +

1 2(n 1) +

Ñaïi hoïc Baùch khoa Haø Noäi 1997

Giaûi

1

1

2 n

x(1 x ) dx

a) T co I =

2 (1 x ) d(1 x )

2 n −

0

0

a ù : =

1

2 n 1 +

n 1 +

1 −− 2

⎡ −⎣ 0 1

⎤ ⎦

− 1 (1 x ) + n 1 2

⎡ ⎢ ⎣

⎤ ⎥ ⎦

0

= ⇔ I = − 1 + 2(n 1)

I = . ⇔ 1 2(n 1)+

b) Ta coù :

2

6

2n

4

n ( 1) C x

2 n 1 – x ) =

+ C C x C x C x

+ + −

3 n

n n

1 n

2 n

0 n

3

7

2n 1 +

( ...

n ( 1) C x

+

5 − C x C x

+ + −

0 n

1 C x n

3 n

n n

2 n

1

6

8

2

4

n

1

2n 2 +

x(1

2 n) dx =

x(1 ... – x2)n = xC

x−

+

+

+ C ...

0 n

1 C n

2 n

3 n

n n

0

− ( 1) + 2n 2

⎡ ⎢ ⎣

⎤ ⎥ ⎦

0

n

C C x C Vaäy I = x 6 x 8 x 2 x 4

+

+ +

2 n

3 n

n n

0 C − n

1 C n

− ( 1) + 2n 2

= C C ... C 1 8 1 2 1 4 1 6 1 2(n 1)+

Baøi 152

* .Chöùng minh :

2

n 1 +

(n

n

C

C ...

+

+ +

=

0 n

1 n

1 3

1 4

C n3

n

1 +

2) 2 n 2 − + + (n 1)(n 2)(n 3) + +

+

.

Giaûi

a) Ta coù nhò thöùc

n

n 1 −

n

+

+ +

0 n C a n

1 n

n n

2

n 2 +

2(a + x)n =

C a x ... C x (a + x) =

n 1 3 + C x C a x

+ +

0 na n

1 n

n n

1

1

2

n

2

2

n

+

n 1 3 C a x

... C x

... C x Suy ra : x

x (a x) dx +

+

+ +

0 n C a x n

1 n

n n

= Vaäy

) dx

(

0

0

n 1 −

+

+

+

0 n C a n

1 C a n

n n

= ... C 1 3 1 4 1 + n 3

dt = dx Ñeå tính tích phaân ôû veá traùi, ñaët t = a + x

Ñoåi caän :

x 0 1

t a a + 1

1

a 1 +

2

n

2 n

(t a) t dt

Suy ra :

x (a x) dx +

0

a

a 1 +

n 3 +

n 2 +

2 n 1 +

a 1 +

n 2 +

n 1 +

(t

2at

2 n a t )dt

+

=

+

a

⎛ ⎜ ⎝

⎞ ⎟ ⎠

a

n 2 +

n 2 +

n 1 +

n 1 +

n 3 +

n 3 +

= = t + n 3 2at + n 2 a t + n 1

2 a (a 1)

+

+

+ (a 1)

⎡ ⎣

⎤ ⎦

⎡ ⎣

⎤ ⎦

+

− ++ n 3

+ n 1

2a (a 1) a a a = n 2

n 3 +

n 2 +

n 1 +

1

Vôùi a = 1, ta ñöôïc :

2

n

x (a x) dx +

+

0

− 2 + n 3

− + n 2

− 1 + n 1

1) 2 = 1 2(2 −

+ ⎛ n 1 ⎜ ⎝

2

n

n 1 +

2

= 2 − + + − − n 1 4 n 3 + 4 n 2 + 1 n 1 + 2 n 2 + 1 n 3 + 1 + ⎞ ⎟ ⎠ ⎛ ⎜ ⎝ ⎞ ⎟ ⎠

2 (n 1)(n 2)(n 3) +

+

+

n 2 + + 2)(n 3) + +

(n 1)(n +

2

n 1 +

(n

=

2) 2− n 2 + + (n 1)(n 2)(n 3) + +

+

2

n 1 +

(n

C

C ...

C

=

+

+ +

=

0 n

1 n

n n

1 3

1 4

1 n 3 +

n 2) 2 2 + + (n 1)(n 2)(n 3) +

− +

+

. Suy ra :

PHAÏM

ANG

HOÀNG DANH - NGUYEÃN VAÊN NHAÂN - TRAÀN MINH QU (Trung taâm Boài döôõng vaên hoùa vaø luyeän thi ñaïi hoïc Vónh Vieãn)