Báo cáo thí nghiệm Lý thuyết điều khiển tự động 1

Chia sẻ: Tạ Duy Lâm | Ngày: | Loại File: DOC | Số trang:23

0
358
lượt xem
127
download

Báo cáo thí nghiệm Lý thuyết điều khiển tự động 1

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo bài viết 'báo cáo thí nghiệm lý thuyết điều khiển tự động 1', kỹ thuật - công nghệ, điện - điện tử phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Báo cáo thí nghiệm Lý thuyết điều khiển tự động 1

  1. III.1.a. w=tf(20,[1 0]) Transfer function: 20 -- s >> ltiview({'step','impulse','bode','nyquist'},w) 30 21 20.5 20 20 10 19.5 0 19 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 40 10 Phase (deg) Magnitude (dB) 20 5 0 0 -89 -90 -5 -91 -10 0 1 -1 -0.5 0 0.5 10 10
  2. III.1.b. >> w=tf([20 0],[0.1 1]) Transfer function: 20 s --------- 0.1 s + 1 >> ltiview({'step','impulse','bode','nyquist'},w) 200 0 150 -500 100 -1000 50 -1500 0 -2000 0 0.2 0.4 0.6 0 0.2 0.4 0.6 50 100 Phase (deg) Magnitude (dB) 0 50 -50 0 90 45 -50 0 -100 0 2 -50 0 50 100 150 200 10 10
  3. III.1.c TH1 w=tf(20,[50 1]) Transfer function: 20 -------- 50 s + 1 >> ltiview({'step','impulse','bode','nyquist'},w) 20 0.4 15 0.3 10 0.2 5 0.1 0 0 0 100 200 300 0 100 200 300 50 10 Phase (deg) Magnitude (dB) 0 5 -50 0 0 -45 -5 -90 -10 -3 -2 -1 0 -5 0 5 10 15 20 10 10 10 10
  4. TH2 w=tf(20,[100 1]) Transfer function: 20 --------- 100 s + 1 >> ltiview({'step','impulse','bode','nyquist'},w) 20 0.2 15 0.15 10 0.1 5 0.05 0 0 0 200 400 600 0 200 400 600 50 10 Phase (deg) Magnitude (dB) 0 5 -50 0 0 -45 -5 -90 -10 -4 -2 0 -5 0 5 10 15 20 10 10 10
  5. III.2. >> G1=tf([1 1],conv([1 3],[1 5])) Transfer function: s+1 -------------- s^2 + 8 s + 15 >> G2=tf([1 0],[1 2 8]) Transfer function: s ------------- s^2 + 2 s + 8 >> G3=tf(1,[1 0]) Transfer function: 1 - s >> H1=tf(1,[1 2]) Transfer function: 1 ----- s+2 >> G13=G1+G3 Transfer function: 2 s^2 + 9 s + 15 ------------------ s^3 + 8 s^2 + 15 s >> G21=feedback(G2,H1) Transfer function: s^2 + 2 s ----------------------- s^3 + 4 s^2 + 13 s + 16 >> G=G13*G21 Transfer function: 2 s^4 + 13 s^3 + 33 s^2 + 30 s ------------------------------------------------- s^6 + 12 s^5 + 60 s^4 + 180 s^3 + 323 s^2 + 240 s
  6. >> Gk=feedback(G,1) Transfer function: 2 s^4 + 13 s^3 + 33 s^2 + 30 s ------------------------------------------------- s^6 + 12 s^5 + 62 s^4 + 193 s^3 + 356 s^2 + 270 s >> ltiview({'step','impulse'},Gk) 0.2 0.15 0.1 0.05 0 0 1 2 3 4 5 6 7 8 9 0.3 0.2 0.1 0 -0.1 0 1 2 3 4 5 6 7 8 9
  7. >> Gh=G*1 Transfer function: 2 s^4 + 13 s^3 + 33 s^2 + 30 s ------------------------------------------------- s^6 + 12 s^5 + 60 s^4 + 180 s^3 + 323 s^2 + 240 s >> ltiview({'bode','nyquist'},Gk)\ 0 Phase (deg) Magnitude (dB) -50 -100 0 -90 -180 -1 0 1 2 10 10 10 10 0.2 0 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
  8. III.3.a. >> G1=tf(8,[1 2]) Transfer function: 8 ----- s+2 >> G2=tf(1,conv([0.5 1],[1 1])) Transfer function: 1 ------------------- 0.5 s^2 + 1.5 s + 1 >> H=tf(1,[0.005 1]) Transfer function: 1 ----------- 0.005 s + 1 >> G=feedback(G1*G2,H) Transfer function: 0.04 s + 8 ------------------------------------------------ 0.0025 s^4 + 0.5125 s^3 + 2.52 s^2 + 4.01 s + 10
  9. >> Gk=feedback(G,1) Transfer function: 0.04 s + 8 ------------------------------------------------ 0.0025 s^4 + 0.5125 s^3 + 2.52 s^2 + 4.05 s + 18 >> ltiview({'step','impulse'},Gk) 1 0.8 0.6 0.4 0.2 0 0 10 20 30 40 50 60 70 80 90 100 2 1 0 -1 0 10 20 30 40 50 60 70 80 90 100
  10. >> Gh=G*1 Transfer function: 0.04 s + 8 ------------------------------------------------ 0.0025 s^4 + 0.5125 s^3 + 2.52 s^2 + 4.01 s + 10 >> ltiview({'bode','nyquist'},Gh) 200 Phase (deg) Magnitude (dB) 0 -200 0 -180 -360 -1 0 1 2 3 10 10 10 10 10 4 2 0 -2 -4 -1.5 -1 -0.5 0 0.5 1
  11. III.3.b. >> G1=tf(20,[1 2]) Transfer function: 20 ----- s+2 >> G2=tf(1,conv([0.5 1],[1 1])) Transfer function: 1 ------------------- 0.5 s^2 + 1.5 s + 1 >> H=tf(1,[0.005 1]) Transfer function: 1 ----------- 0.005 s + 1 >> G=feedback(G1*G2,H) Transfer function: 0.1 s + 20 ------------------------------------------------ 0.0025 s^4 + 0.5125 s^3 + 2.52 s^2 + 4.01 s + 22
  12. >> Gk=feedback(G,1) Transfer function: 0.1 s + 20 ------------------------------------------------ 0.0025 s^4 + 0.5125 s^3 + 2.52 s^2 + 4.11 s + 42 >> ltiview({'step','impulse'},Gk) 5 0 -5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 20 10 0 -10 -20 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
  13. >> Gh=G*1 Transfer function: 0.1 s + 20 ------------------------------------------------ 0.0025 s^4 + 0.5125 s^3 + 2.52 s^2 + 4.01 s + 22 >> ltiview({'bode','nyquist'},Gh) 200 Phase (deg) Magnitude (dB) 0 -200 -180 -270 -360 -450 -1 0 1 2 3 10 10 10 10 10 20 10 0 -10 -20 -4 -2 0 2 4 6 8 10 12 14
  14. III.3.c >> G1=tf(17.564411,[1 2]) Transfer function: 17.56 ----- s+2 >> G2=tf(1,conv([0.5 1],[1 1])) Transfer function: 1 ------------------- 0.5 s^2 + 1.5 s + 1 >> H=tf(1,[0.005 1]) Transfer function: 1 ----------- 0.005 s + 1 >> G=feedback(G1*G2,H) Transfer function: 0.08782 s + 17.56 --------------------------------------------------- 0.0025 s^4 + 0.5125 s^3 + 2.52 s^2 + 4.01 s + 19.56
  15. >> Gk=feedback(G,1) Transfer function: 0.08782 s + 17.56 ---------------------------------------------------- 0.0025 s^4 + 0.5125 s^3 + 2.52 s^2 + 4.098 s + 37.13 >> ltiview({'step','impulse'},Gk) 4 2 0 -2 -4 0 1 2 3 4 5 6 20 10 0 -10 -20 0 1 2 3 4 5 6
  16. >> Gh=G*1 Transfer function: 0.08782 s + 17.56 --------------------------------------------------- 0.0025 s^4 + 0.5125 s^3 + 2.52 s^2 + 4.01 s + 19.56 >> ltiview({'bode','nyquist'},Gh) 200 Phase (deg) Magnitude (dB) 0 -200 -180 -270 -360 -450 -1 0 1 2 3 10 10 10 10 10 8 x 10 2 1 0 -1 -2 -2 -1 0 1 2 3 4 5 6 7 x 10
  17. III.4. >> num=[2] num = 2 >> den=[0.04 0.54 1.5 3] den = 0.0400 0.5400 1.5000 3.0000 >> [A,B,C,D]=tf2ss(num,den) A = -13.5000 -37.5000 -75.0000 1.0000 0 0 0 1.0000 0 B= 1 0 0 C= 0 0 50 D= 0 >> step(A,B,C,D) Step Response 0.8 0.7 0.6 0.5 Amplitude 0.4 0.3 0.2 0.1 0 0 0.5 1 1.5 2 2.5 3 3.5 4 Time (sec)
  18. >> impulse(A,B,C,D) Impulse Response 1.2 1 0.8 0.6 Amplitude 0.4 0.2 0 -0.2 0 0.5 1 1.5 2 2.5 3 3.5 4 Time (sec) >> nyquist(A,B,C,D) Nyquist Diagram 1 0.8 0.6 0.4 0.2 Imaginary Axis 0 -0.2 -0.4 -0.6 -0.8 -1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 Real Axis
  19. >> bode(A,B,C,D) Bode Diagram 0 Magnitude (dB) -50 -100 -150 0 -90 Phase (deg) -180 -270 -1 0 1 2 3 10 10 10 10 10 Frequency (rad/sec)
  20. III.1.d >> w=tf(20,[100 0 1]) Transfer function: 20 ----------- 100 s^2 + 1 >> step(w) >> hold on >> w=tf(20,[100 5 1]) Transfer function: 20 ----------------- 100 s^2 + 5 s + 1 >> step(w) >> w=tf(20,[100 10 1]) Transfer function: 20 ------------------ 100 s^2 + 10 s + 1 Step Response 40 >> step(w) >> w=tf(20,[100 15 1]) 35 Transfer function: 30 20 ------------------ 25 100 s^2 + 15 s + 1 Amplitude 20 >> step(w) 15 >> w=tf(20,[100 20 1]) 10 Transfer function: 20 ------------------ 5 100 s^2 + 20 s + 1 0 0 50 100 150 200 250 >> step(w) Time (sec) >> hold off

CÓ THỂ BẠN MUỐN DOWNLOAD

Đồng bộ tài khoản