intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Kỹ năng phân loại và phương pháp giải chi tiết bài tập trắc nghiệm Vật lý 12 (Trọng tâm): Phần 2

Chia sẻ: Liên Minh | Ngày: | Loại File: PDF | Số trang:0

207
lượt xem
44
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Nối tiếp nội dung phần 1 tài liệu Phân loại và phương pháp giải chi tiết bài tập trắc nghiệm Vật lý 12, phần 2 giới thiệu tới người đọc các nội dung: Dao động và sóng điện từ, dòng điện xoay chiều, sóng ánh sáng, lượng tử ánh sáng,... Mời các bạn cùng tham khảo nội dung chi tiết.

Chủ đề:
Lưu

Nội dung Text: Kỹ năng phân loại và phương pháp giải chi tiết bài tập trắc nghiệm Vật lý 12 (Trọng tâm): Phần 2

  1. • N a n g lufong t i J c t h d i c i i a c u p n c a m ; ChiTtfng IV. DAO DQNG VA SONG D I | N Tlf W L = - hi' = -L 2 2 If, sin'(cot + ip ) B,. w«,.= i L I - l L ^ , ; = i ' W L = WoLsin^(cot + cp) P H A N I: T O M T A T L I T H U Y E T • Nang l u p n g d i e n tii cua m a c h dao dpng: W = Wc + W , = ^ =^CUl = ^hll = hhng so-. Van de 1: D A O D O N G D I E N T L / Vay: Trong qua trinh dao dong cua mach, nang lugng dien triCang va nang lUgng tit trildng luon luon chuyen hoa cho nhau. nhitng, tdng nang 1. Dao dOng di$n tC( trong mach LC liigng dien tii la khong ddi. a) Mach dao dong N h a n x e t : Nang lifpng d i e n trUdng cua t u dien Wc va n a n g Itfcfng t i f M a c h d a o d o n g L C g o m t u d i e n C d a diTcfc B T - , . . t i c h d i e n , n o i vdi c u p n d a y c6 d o t U c a m L A trucmg cua cupn cam W L bien t h i e n tuan hoan v6i chu k y — , t a n so 2f, t a n so thanh mot mach kin. D i p n tror R c u a c u o n 2 day k h o n g dang ke. L goc 2 CO . Doi vdi nang liWng dien tii W l a mot h k n g so khong thay doi. 4. Dao dOng di$n tC/ t^t d i n b) Moi quail he giUa q, i, u trong mach LC Trong c a c mach dao dpng thuc luon cd t i e u hao n a n g lupng ( d o R c h ^ n g * q = qocos(u)t + cp) han). V i vay, dao dpng se dCrng l a i sau k h i t i e u hao h e ' t n a n g lupng. H i e n * V d i lo = qo-w tiipng n a y g p i l a dao dpng dien tii tit d a n . Gia t r i R cang I d n t h i sU t ^ t dan cang n h a n h . * UAB = , — = — cos((ot + q)) 5. Dao d6ng di$n tCf duy tri, h§ tU dao d6ng 'c c Muon CO dao dpng dien tif khong t ^ t dan t a c 6 the duy t r i bhng each cung c a p D a t Uo = ^ UAB = Uocos(o)t + (p). them nang lupng cho mach de bo vao phan nang lupng tieu hao trong moi chu Vay: Dien tich, hieu di^n thi' trin hoi ban tu di^n va cUang do dong dien ky. K h i viec cung c a p nang lupng tii p i n cho khung dao dpng L C dugrc duy t r i o n d i n h t h i d a o dpng trong k h u n g L C dupc duy t r i o n d i n h v d i t a n so rieng Wo trong mach bien thien dieu hba vai ciing tan so goc Im = , chu ky c i i a mach. Ta gpi day l a h e t U d a o dpng. In 6. Dao dong di^n tCl caang bQc. Su cpng hudng T = = 2Tt^/LC yd tan so f = (0 271 VLC" a) Dao dong dien tii cUang bilc K h i t a m a c mach d a o dpng L C n o i t i e p v d i nguon dien ngoai c d hieu N h a n x e t : Cirdng do dong dien t r o n g mach n h a n h p h a - s o v d i dien dien t h e bien t h i e n theo t h d i gian u - Uo.cosw.t ch^ng han t h i dong t i c h va hi§u dien t h e giijra h a i b a n cifc cua t u d i e n , h i f u di?n t h e cung dien t r o n g mach L C se k h o n g t h e d a o dpng theo t a n so g o c riehgco,, m a pha dien t i c h cua t u dien. p h a i bie'ii t h i e n theo t a n so goc w. Qua t r i n h n a y dupc gpi l a d a o dpng dien tii cUdng buTc. 3, Nang lUOng di^n tQ trong mgch dao d^ng LC • b) Sii cong hudng • N a n g lifpng tufc thcfi ciia t u d i e n : H i e n tifpng bien dp c i i a dao dpng d i | n t r o n g k h u n g d a t g i d t r i C L T C dai Wc = - C u ' = - C cos2((ot + (p) 2 2 khi (I) = cOp. Litu y: Khi mach dao dong c6 R Ian thi dinh cong hiiang thdp (bien do Dat w,oc = lcu^ = i c 4 = 2C ^ nhd) va ngiigc Igi. t f n g dung: D o n g t r o n g c a c mach Ipc, mach chpn song, mach khuech dai... Wc = Woccos^((ot + (p)
  2. Van de 2: D I E N TL/ T R U C l N G Vain de 4: T R U Y E N T H O N G B A N G S O N G D I E N TL/ 1. Dien trUdng bi^n thiSn tCl trUdng bidn thiSn 1 Nguyen tSc truyen thOng bSng s6ng dign tQ a) TU tritang bien thien: PQii mot tiT trircfng bien t h i e n theo thcfi gian thi So( do k h o i c i i a thong phat thanh v a thu thanh no s i n h ra mot d i e n trUdng xoay, tiJc l a dudng sufc ciia d i e n trUdng n a y khep k i n va bao boc xung q u a n h duomg siJc tir. ^' 6 b) Dien truang bien thien: K h i mot dien t r i / d n g b i e n t h i e n theo t h d i gian t h i no s i n h ra mot tij' triTcfng xoay. Dudng sufc t i ^ ciia tCr trir6ng nay khep k i n va bao boc xung quanh du&ng sure dien triTcfng. 7 8 9 [ 2. Dien tC/ trUdng • M o i bien t h i e n theo t h d i gian ciia t\i trUdng deu s i n h r a tr ong khong 1. May p h a t dao dong cao t a n 6. A n t e n t h u . gian xung quanh m o t d i e n truorng xoay bien t h i e n theo t h d i gian, va 2. Bien dien. 7. Chon song. nguoc l a i . Dao dpng cao t a n . 8. Tach song. K e t l u a n : D i e n trUdng b i e n t h i e n va tCr trUcfng bien t h i e n cung t o n t a i 4. Khuyech dai cao t a n . 9. Khuyech d a i a m t a n trong k h o n g gian. Chung c6 the chuyen hoa I a n nhau tr ong mot truang 5. A n t e n p h a t . 10. Loa . t h o n g n h a t duoc goi l a d i e n tCf trUdng. 2. SU truyen s6ng dien tQ quanh Tr^i Dit • TCr trUdng bien t h i e n c a n g n h a n h t h i cUcfng do dien trUcJng xoay c a n g Idn - K h i t r u y e n song d i e n t\i t r o n g t h o n g t i n quanh T r a i DS't phu thuoc vao va n g U O c l a i cac yeu to n h u : Budc song, dieu k i e n m o i trUcfng t r e n m a t dat va t i n h chat ciia bau k h i quyen. V^ande 3; S O N G D I E N TL/ * Song dai va song trung; 1. S6ng di§n tQ 1^ gi? - Song nay b i p h a n xa d t a n g d i e n l i va c6 k h a nSng di vong quanh T r a i Song dien t\i l a sU Ian t r u y e n cua d i e n ti^ t r i f d n g t r o n g k h o n g gian Dat qua nhieu I a n p h a n xa giUa t a n g dien l i va m a t dat. NgU6i t a d i i n g 2. Oac d i l m , tinh ch^t cua s6ng di§n ta song nay t r o n g t r u y e n t h a n h va t r u y e n h i n h t r e n m a t dat. - Truyen duoc trong moi trUdng vat chat va trong ca chan khong vci budc song: - Song d a i i t b i nUdc hap t h u n e n d i i n g de t h o n g t i n dudi nUdc. * S o n g n g S n : p h a n xa d t a n g dien l i , p h a n xa t r e n m a t dat n h i e u I a n , do ^ = J (c = 3.10 m/s); f: T a n so ciia song d i e n tCr (Hz). do t r u y e n dupc xa t r e n m a t dat. - Song dien tii l a song ngang. T r o n g qua t r i n h t r u y e n song t a i mot diein * S o n g c i / c n g S n : Song nay cd nSng lupng I d n n h a t , va k h o n g b i t a n g bat k y t r e n phuong t r u y e n , vectd E , vector B luon vuong g6c nhau va dien l i p h a n xa va hap t h u nen t r u y e n t h a n g . Song nay dUprc iJng dung vuong goc v d i phuong t r u y e n song. de t h o n g t i n t r o n g cU l i v a i chuc k m hoac t r u y e n t h o n g qua ve tinh (thong t i n vu t r u ) . - Song dien tiT cung t u a n theo c a c d i n h luat p h a n x a , khiic x a va cung co the giao thoa v d i nhau. - Qua t r i n h t r u y e n song dien tir t r o n g k h o n g gian mang theo nSng luong. TRAC NGHIEM LI THUYET '^^u 1. Su bien t h i e n ciia dong d i e n i t r o n g mot mach dao dpng l$ch pha nhU j | the nao so v d i sU b i e n t h i e n ciia dien t i c h q ciia m o t ban tu dien A. i Cling pha v d i q B. i lech pha n v d i q C. i sdm pha — so v d i q D. i t r e pha — so v d i q. 2 2
  3. 1 Cau 2. Mot mach dao dong LC c6 dion trcf thuan bhng khong. K h i trong mac}^ 9. Gpi (I): Giao thoa song di#n tCr. CO d a o dong dien til tiX d o vdi bieu thiJc dien tich tren hkn tu dien ): Cong hu'dng dao dong dien tit. • q = quCos(cut + cp) t h i g i a t r i c u c d a i c u a c i T d n g d o d o n g d i e n t r o n g m a c h la (III) : Phan xa song dien tir. (IV) : Khiic xa song dien tii. A. (0 .Qo B. ^ C. ^ D. CO. q o . Mach chon song trong may thu song v6 tuyen dien hoat dong dira tren hien tuong V2 Qo A. ( I ) B. (II) C. ( I l l ) D. (IV). C a u 3. Chu k i dao dong rieng cua dao dong dien tii t i i do trong mach dao don,, QSiU 10. Mot mach dao dong dien til LC g6m cuon day thuan cam c6 dp t u cam LC (c6 dien trd thuan khong ddng ke) la L khong doi va tu dien c6 dien dung C thay doi duoc. Biet dien t r d cua day 1 2n „ „ 1 dSn la khong dang ke va trong mach c6 dao dong dien tit rieng. K h i dien A. T = 2 H V L C B. T = C. T = D. T = •j2nhC ^^'^'-'^ V'LC V L C • ^ ^ f c dung CO gia t r i Ci thi chu k i dao dong rieng ciia mach la Tj. K h i dien dung C a u 4. Tan so dao dong cua dien tH tu do ciia mach LC c6 di|n t r d thuan WBr'c
  4. B. Big'n t h i e n dieu hoa theo t h 6 i gian v d i chu k i T C. Song d i $ n til cQng b i p h d n xa va khuc xa k h i gSp m a t phSn cdch giCa h a i T m o i truomg C. B i e n t h i e n t u a n hoan vdi chu k i — D. Song dien t i f t r u y e n dupc t r o n g rhi, long, k h i va ke ca chan k h o n g . D. K l i o n g b i e n t h i e n dieu hoa theo t h d i gian. fiu 23. K h i n d i vi song d i e n tCf, p h a t bieu nao dudi day k h o n g diing? C a u 16. T r o n g mot mach dao dong LC gom cupn day t h u a n cam c6 dp t\J cam L A. S6ng d i e n tCr cung b i p h a n xa v a khiic xa k h i gap m a t p h a n each giCa h a i k h o n g doi va t u dien c6 d i e n dung C t h a y doi dupc. Chpn cau d i i n g m o i trUdng A. Chu k i dao dong r i e n g cua mach k h o n g doi k h i dien dung C cua t u dioi, B. Song dien til c h i t r u y e n dUpe t r o n g m o i triTcfng v a t cha't d a n h o i m a thay doi k h o n g t r u y e n dUpe t r o n g chan k h o n g B. Chu k i dao dong r i e n g cua mach g i a m k h i tSng d i $ n dung C cua t u dien C. Song dien tCr la song ngang. C. T a n so dao dong r i e n g cua mach tSng k h i tSng dien dung C cua t u dien D. Song dien tii Ian t r u y e n t r o n g chan k h o n g v d i v a n toe e = 3. lO^m/s. D. T a n so dao dong r i e n g ciia mach tSng gap doi k h i dien dung C cua tn C a u 24. Song d i e n til va song eP hoc k h o n g cd ehung t i n h ehat nao sau day? dien g i a m gia t r i dien dung cua t u dien d i 4 Ian A. Phan xa B. T r u y e n dupe t r o n g chan k h o n g C a u 17. M o t cuon day t h u a n cam (cam t h u a n ) c6 dp tU cam L m ^ c n o i t i e p vdi C. Qiao thoa, n h i l u xa D. M a n g n a n g li/png.' m o t t u dien c6 dien dung C t h a n h m ^ t mach dao dong (con gpi la mach dao C a u 25. Song d i e n tCr d i i n g t r o n g . t h o n g t i n giOa cac t a u n g a m l a l o a i song v6 dong LC). T a n so dao dong d i e n til tiT do cua mach nay phu thupc vao tuyen nao? A. dong dien cUc dai chay t r o n g cupn day ciia mach dao dong A. Song cue n g ^ n B. Song n g ^ n B. dien t i c h cUc d a i cua b a n t u d i e n t r o n g mach dao dong C. Song t r u n g D. Song dai. C. d i ^ n dung C va dp tU cam L ciia mach dao dong C a u 26. Song dien tU dCing t r o n g t h o n g t i n giu-a cac n h a du h a n h vu t r u v a m a t D. hieu dien the cUc d a i giiJa h a i b a n t u dien ciia mach dao dong. dat la l o a i song v6 t u y e n nao? C a u 18. Song dien til A. Song eire n g ^ n B. Song n g ^ n A. Chi Ian t r u y e n t r o n g m o i triTdng r ^ n , long, k h i v d i v f i n toe 3. lOm/s. B. Lk song doc C. Song t r u n g D. Song d a i . C. K h o n g t r u y e n d U P c t r o n g chan k h o n g C a u 27. Chpn eau d u n g D . La song ma t r o n g qua t r i n h t r u y e n song t h i E luon vuong goo v d i B v;i A. T r o n g song dien tCr t h i dao dong ciia dien t r i f d n g va ciia til trWdng t a i m o t ca h a i vectct E , B luon vuong goc v d i phudng t r u y e n song. d i e m l u o n luon ddng pha v d i nhau. C a u 19. K h i p h a t bieu ve song dien tU, p h a t bieu nao diTdi day k h o n g dung? B. E va B luon vuong goc v d i nhau v a t r i i n g v d i phiTong t r u y e n sdng. A. Song cue n g ^ n t r u y e n dupe t r o n g chan k h o n g . C. Cac sdng n g ^ n k h o n g the t r u y e n d i xa t r e n m a t da't. B. Song ngin c6 t a n so' nho h o n t a n so song d a i D. Cac song ngan v6 tuyen khong phan xa tot tren tang dien l i v a t r e n m a t da't. C. Song cue n g a n dupe dCmg t r o n g t h o n g t i n vu t r u C a u 28. Phat bieu nao sau day la dung k h i n o i v a cac l o a i sdng v6 tuyen? D. Song d a i dupc d i i n g de t h o n g t i n dudi nude A. Song d a i ehii yeu dupe d i i n g de t h o n g t i n dudi nuTdc. C a u 20. Phat bieu n^o sau day dung k h i n d i ve song d i ^ n tCr? , B. Song t r u n g c6 the t r u y e n dupe ra't xa vao ban ngay. A. Song dien tCf m a n g nftng lupng. B. Song d i e n tCr ehi t r u y e n dupc t r o n g chat k h i I C. Song n g a n cd n a n g lu'png nho h p n song t r u n g v a sdng d a i . C. Song d i e n tii k h o n g t r u y e n d i f p c t r o n g chat r d n D. Sdng cue n g ^ n b i t a n g d i e n l i v a m a t da't p h a n xa. D. Song d i e n tiT k h o n g t r u y e n di/pe t r o n g chan k h o n g C a u 29. Chpn p h a t bieu dung C a u 21. Song dien tii A. Sdng d a i cd n a n g lirpng t h a p i t b i niTdc ha'p t h u . A. L a song dpc B. Sdng t r u n g p h a n xa dupe t r e n t a n g dien l i v a o ban dem n e n ehung t r u y e n ' B. vera c6 song ngang, vCra c6 song dpc dupe xa. C. Chi phan xa ma k h o n g khiie xa k h i gap mat phan each giijfa h a i m 6 i triTdng C. Sdng cue n g ^ n k h o a n g bo p h a n xa hoae ha'p t h u t r e n t a n g d i ? n l i . D. M a n g nSng lupng. D. T a t ca deu dung. C a u 22. K h i n d i ve song d i ^ n ti^, p h d t bieu nao sau day sai? A. Song d i e n tii l a song dpc B. Song d i e n tir Ian t r u y e n t r o n g chan k h o n g v d i v a n toe e = 3. lO^m/s.
  5. P H A N II:B A I T A P T R A C N G H I E M BAI T A P M A U + BAI T A P L U Y E N T A P B a i 1. Mach dao dong gom t u dien c6 dien dung 400 p F va m o t cuon cam c6 I . D a o d p n g d i ^ n txJf do tir cam 0,04 H . T i n h chu k y dao dong r i e n g v ^ t a n so r i e n g ciia mach * D i e n t i c h tuTc t h d i q - qocos(a)t + cp) dao dong. * Dong d i e n tufc t h d i i = Iocos((ot + 9+ ^ ) v
  6. Tom tat HU&ng dan gidi IJai 8. Mach dao dong LC ciia mot mdy thu v6 tuyen gom ( u u n d ; i v i l u i a u . L = 400 mH CU cam CO L = 1 mH, tu dien c6 dien dung C = 4 PF. Tim b U c J c song ma mach = 400.10'^H Ta c6: = W, thu duoc. ' . C = nF = 4.10"'' F 4.10" . Vo = 400V ^ I o = Uo - =400 I„ = 0,04(A) VL 400.10" Tom tdt Hiidng ddn gidi Tim lo = ? . L = 1 mH Chu ky dao dong rieng ciia mach B a i 5. Mach dao dong LC c6 dien dung C = 200 pF. Hieu dien the cUc dai hai = I.IO"'' H T = 2%sIhC = 27rv'lO '.4.10 a. 3,97.lO"'' (s) ban cifc cua tu la 200 V. Tim nang lucfng dien tCf cua mach. . C = 4 pF Budc song ma mach thu duoc la ^ 4.10"'^ F >t = c.T = 3.10^3,97.10^^ - I » 119,l(m) Tom tat Hitcfng ddn gidi Tim 1 = ? • C = 200 pF Ta CO - 200.10-^^ (F) CU^ W = 4.10-''(J) Bai 9. Cho mach dien nhuf hinh ve • Uo = 200 V (1) (2) Tim W = ? K \ B a i 6. Mach dao dong L C c6 L = 0,02 H va tu dien c6 dien dung C. Biet cu C L sau khoang thdi gian la 10"® (s) t h i nang lu'Ong tii trirdng b^ng nSng luong — : c os dien trifdng. Tim dien dung C ciia tu dien. Tom tat Hii&ng ddn gidi C := 200 nF, L = 2 mH, 'g-.. 2 V . L = 0,02 H Ta c6: Khoang t h d i g i a n giiJa h a i Ian l i e n t i e p ma nSng lu'Ong t i i trUomg b a n g nftng lu'Ong dien Tai thdi diem t = 0, khoa K chuyen tif v i t r i (1) sang (2). Lap bieu thiJc • - = 10"*' (s) bieu dien sir phu thupc cua: 4 T Tim C = ? tru'6ng l a —. a) dien tich tren tu dien C vao thdri gian t. b) dong dien qua mach vao thdi gian t. nen: - = 10"" (s) -> T = 4.10"'' (s) 4 rj,2 (4.10^6^2 Tom tdt HUdng ddn gidi ma T = 2;: N/LC ^ C = C«2,02.10-"(F) • C = 200 nF a) Bieu thii-c bieu dien sii phu thuoc cua di?n tich 47i'L 4.3,1410,02 = 200.10"' F tren tu dien C vao thdi gian t. B a i 7. Mach dao dong gom cuon day c6 di?n trd r, he so i\i cam 32 mH va • L = 2 mH q = qo.cos(cot + (p) mot tu C = 0,2 |.iF. De duy t r i mot hieu dien the cu'c dai la 4 V tren tu = 2.10"^ H 1 1 CO = = 5.10^ rad/s dien t h i ta phai cung cap cho mach mot cong suat trung binh la 50 ^iW. . . ^ = 2 V = Uo VLC ^2.10^200.10"' Tim dien t r d cuon day? a) Lap q (t) * qo = C.Uo = 200.10"^2 = 4.10"^ (C) b) Lap i (t) * (p = ? Do t = 0 khoa K chuyen tCr (1) (2) nen Tom tdt Hiidng ddn gidi . L = 32 mH Cirdng do dong dien cifc dai ^ q = qo nen ta c6: = 32.10"^ H q - qocos(a)t + cp) ^ qp = qocos(5.10''.0 + (p) o coscp = 1 (p = 0 • C = 0,2 laF Vay: q = 4.10"'.cos(5.10't)(C) = 0,2.10-** F b) Bieu thiJc bieu dien sir phu thuoc ciia dong dien qua mach v^o thcfi gian t. . Uo = 4 V i = q'(t) - I4.10-'cos(5.10''t)l' . P = 50 p,W = SO.IO'^W _ 0,01 ^ i ^ -4.10"^5.10'^sin(5.10''t)
  7. BAI T A P T R A C N G H I E M Cau 11. Mach dao dong c6 tu C dUgre tich dien q = 2.10"^sinl007tt(C). Bieu thiJc cUdng do dong dien qua mach la A. i = 10.10" sinlOOTtt ( A ) B. i = 2007t.l0 "sinlOOTtt (A) C a u 1. Mach dao dong gom L = ( m H ) , tu C = ( F ) . T a n so goc cua mach la 71 n C i = 20071.10 ".sini 1007rt + - (A) D. i = 40071.10 •'sinl007it ( A ) A. 200 rad/s B. 300 rad/s C. 444 rad/s D . 500 rad/s V 2j C a u 12. M a c h dao dong L C c6 dong dien i = 40071.10'".sin(1007it + 7 i ) ( A ) . D i e n C a u 2. M a c h dao dong L C c6 C = 2 0 0 ( n F ) . T a n so dao dong ciia mach tich ciia t u bien ddi theo t h d i gian c6 dang 500Hz. Do tu cam ciia cuon cam t r o n g m a c h dao dpng l a A . q = 2.10"^sin lOTit - (C) B.q =4.10-'-'.sin lOOTtt + - (C) 2 A. 0,507 H B. 0,607 H C. 0,707 H D. 0,807 H C. q = 47t.l0"^sin 1007lt + - (C) D. q = 87i.lO"'sin(1007tt) (C) 2 C a u 3. M a c h dao dong L C c6 L = 0,04(H), t a n so dao dong r i e n g ciia m a c h dao C a u 13. Cho dong d i e n qua m a c h c6 dang i = 2.10 l c o s a ) t ( A ) . D i e n t i c h cifc d a i ciia t u la 4000(nC). Chu k y dao dong cua mach la dong la 60Hz. D i e n dung ciia t u la A. 1 2 , 5 6 . 1 0 ' s B. 24,5.10^ s B.2.10"^ s D.4.10"' s A . 1,76.10" F B. 2 0 . 1 0 ' F C. SO.IO^'^ F D. 1,54.10'F C a u 14. M a c h dao dong c6 n&ng li/prng dien tii ciia mach la 2 ( m J ) , dien t i c h C a u 4. M a c h dao dong L C c6 L = 2 0 0 0 ( n H ) , C = 3000(pF). Chu k y dao dono cue d a i ciia t u dien la 1 2 ( n C ) . D i e n dung ciia t u la r i e n g ciia mach la A. 3 , 6 . 1 0 " F B. 2.10" F C. 4.10"'C D . 8.10"" C A. 1 0 ' s B. 10"' s C. 1 , 4 . 1 0 ' s D . 1,53.10"'s C a u 15. M a c h dao dong L C c6 dien dung C = 6 ( p F ) , hieu dien t h e cure d a i d 2 C a u 5. M a c h dao dong L C c6 L = 5 0 0 0 ( n H ) , chu k y dao dong r i e n g ciia mach hi 2.10"^(s). D i e n dung ciia t u la ban t u la 2 0 0 ( V ) . N a n g lifong dien tir cua mach l a A. 0,02 F B. 0,03 F C. 0,04 F D . 0,05 F A. 0,12 M J B . 0,24 M J C . 0,36 D. 0,48 ^lJ C a u 6. Cirdng do dong d i e n t r o n g mach dao dong l a : i = I „ s i n 2 0 0 0 t ( A ) . T u dien C a u 16. M a c h dao dpng L C c6 L = 2 0 0 { m H ) , C = 4 0 0 ( n F ) , hieu d i $ n the ciTc C = 5|.iF . Do tiT cam cupn day 1^ dai giuTa 2 b a n t u la 3 0 0 ( V ) . T i m eUdng dp dong dien eUc d a i qua m a c h A. 0,02 H B. 0,03 H C. 0,05 H D. 0,04 H A.*0,42A B.»0,5A C.aO,65A D.«0,8A C a u 7. M a c h dao dong ciia m p t m a y t h u v6 tuyen c6 L = 5(f.iH) va C = l , 6 ( n F ) C a u 17. Mach dao dong L C c6 L = 500(|.iH), hieu dien the cUc d a i giCfa 2 ban t u la M a y CO the t h u du'oc song v6 t u y e n c6 bu'dc song la U„ = lOO(V), cirdng dp dong dien ciTc dai I„ = 2 ( A ) . Dien dung cua t u dien la A. 150 m B. 100 m C. 168,5 m D . 190 m A. 0,2 m F B . 0,2.10'"' F C. 4 nF D . 8 nF C a u 8. M a c h dao dong ciia m o t m a y t h u v6 tuyen g o m L = 8(|.iH) va t u dien C a u 18. Mach dao dpng L C c6 dien tich cUc dai h a i ban tu la q,, = 3 ( n C ) , dien dung bien t h i e n tCr 20(pF) den 4 5 0 ( p F ) . H o i m a y c6 t h e b a t duofc cac song vo C = 2(|iF). T i m nSng lu'png dien tnrdng ciia t u dien va nang lUcfng tir trircJng cua tuyen dien t r o n g day song nao? cupn cam k h i nang lirpmg dien trUcfng bang 3 Ian nang lUcfng tiT trircfng. A. 200 m < >L < 500 m B. 700 m < < 900 m A. 1.6875.10"''J; 2,65.10"" J 6 . 1 , 5 . 1 0 " " J ; 5,625.10"'"J C. 753,6 m < ?i < 3574,6 m D . 23,8 m < ^ .< 113,04 m . ,, C. 1,6875.10 " J ; 5,625.10 ' ' J D . 1,5.10"''J; 1,6875.10""J C a u 9. Song dien tii c6 biTdc song 100 (m) t h i t a n so la A. 3 M H z B. 4 M H z C. 3,5 M H z D. 20 M H z BAI TAP LUYEN TAP C a u 10. M a c h dao dong L C l i tucfng c6 L k h o n g d d i . K h i t u d i e n c6 d i e n dung Ci t h i t a n so m a c h la i^ = 5 0 ( M H z ) . K h i thay t u C^ b ^ n g t h i t a n so i 1. M a c h dao dpng cua m o t m a y t h u v6 tuyen c6 L = 3 2 ( n H ) . H o i de b ^ t m a c h la l O O ( M H z ) . N e u diing C, n d i t i e p t h i t a n so' ciia mach la dupe song 120(m) t h i t u c6 d i e n dung bao nhieu? Bap so: 0,126 n F A. 100 M H z B. 50 M H z C. 120 M H z D. 111,8 M H z
  8. B a i 2. T r o n g m a c h dao d p n g c u a m o t m d y t h u v 6 t u y e n c6 d i # n d u n g b i e n doj i 12. M a c h dao d o n g L C co L = 4 m H vk C = 1 nF. L u c circrng dp d 6 n g d i $ n q u a tCr 5 6 ( p F ) den 667(pF). M u o n b a t diTtfc s o n g t i r 4 0 ( m ) den 2 6 0 0 ( m ) t h i dg m a c h l a 2 m A t h i d i e n t i c h ciia t u d i $ n l a 4 n C . T i m d i e n t i c h ciTc d a i ciia t u D a p so: 5 , 6 5 6 . 1 0 ' * C t u c a m t r o n g gidri b a n n^o? p a i 13- M a c h d a o d p n g L C co C = 2 ) . i F . N g i T d i t a t h a y r & n g cur s a u t h d i g i a n D d p so: 8,04|iH < L < 2 , 8 5 m H B a i 3. M a c h d a o d o n g c u a m o t m d y t h u v6 t u y e n d i e n c6 d p t i r c a m b i e n t h i e ^ 10"^ s t h i n a n g l i f d n g tCr t r U c d i g cua c u p n c a m l a i d a t g i a t r i cifc d a i . T i m h # so t i r c a m c i i a c u p n d a y tir 0,5(MH) d e n l O ( n H ) , t u d i e n b i e n t h i e n tH 1 0 { p F ) d e n 5 0 0 ( p F ) . M a c h c6 D a p so: 5.07.lO"*' H t h e b a t dMc song trong day song n^o? B a i 14. M a c h dao d p n g g o m m o t t u d i e n co d i e n d u n g C = 4 n F v d L = 4 m H . D a p so: 4 , 2 m
  9. C a u 7. C h o n A . U 23. Chpn B . T r o n g m a c h d a o d p n g L C c6 d i e n t r d t h u a n b ^ n g k h o n g t h i n&ng lUOng S o n g d i e n tCr t r u y e n dupe t r o n g m o i t r u d n g v a t c h a t d a n h o i v a k e ca t r o n g trirdng t a p t r u n g d cupn c a m v a b i e n t h i e n t u a n h o a n v d i chu k i b k n g chan khong chu k i r i e n g ciia m a c h ^ g u 24. C h p n B . C a u 8. C h p n B . T r u y e n dupe t r o n g c h a n khong D u n g se l a tijT t r i T d n g b i e n t h i e n t h e o t h 6 i g i a n s i n h r a d i e n t r U d n g x o a y Q^u 25. C h p n D . C a u 9. C h p n B . Song dai M a c h c h p n s o n g t r o n g m a y t h u s o n g v 6 t u y e n d i e n b o a t d p n g dufa t r e n h i e , Q^u 26. C h p n A . t u p n g c p n g h u d n g dao d p n g d i e n tii S o n g cue ngan C a u 10. C h p n D . CaU 27. C h p n A . Do - > T = 27T>/EC - > K h i C t a n g 16 I a n t h i T t S n g 4 I a n . T r o n g s o n g d i e n tiT t h i d a o d p n g e u a E v a q u a B t a i m o t d i e m l u o n d o n g C a u 11. C h p n B . pha v d i n h a u . D u n g se l a d i e n t r i r c r n g x o d y l a d i e n t r U d n g c6 d i f d n g sure 1^ nhCTng dudng C a u 28. C h p n A . cong k i n . Song d a i dupe d u n g de t h o n g t i n d u d i nude, C a u 12. C h p n D . u 29. C h p n D . Nang l u p n g d i e n t r i T d n g v a n S n g l u p n g tis t r u d n g b i e n t h i e n t h e o t h d i g i a n , n S n g l u p n g d i e n tii l a m o t h a n g so k h o n g d d i . DAP A N BAI TAP TRAC N G H I E M C H l / a N G IV C a u 13. C h p n C. Nang l u p n g d i e n tuT k h o n g d o i t h e o thcri g i a n . C a u 14. C h p n A . • C a u 1 . CD = -^L^ « 444 rad/s N a n g l u p n g d i e n tCr k h o n g d o i t h e o t h d i g i a n . C h p n C. C a u I S . C h p n C. Nang l i r p n g d i e n t r u d n g t r o n g t u d i e n c i i a m o t m a c h dao dpng bien thien C S u 2. f = ~ => L 0,507 ( H ) T 27tvLC t u a n hoan v d i chu k i — . Chpn A . 2 C a u 16. C h p n D . C a u 3. f = ~ z=> C 1,76.10"^ ( F ) Do f = ; = - > T a n so d a o d o n g r i e n g c i i a m a c h t a n g g a p doi k h i die:; 27tVLC 27iVLC Chpn A . d u n g C c u a t u d i e n g i a m g i a t r i d i e n d u n g c i i a t u d i f n di 4 I a n C a u 4. T = 27t ^/LC = 1,53.10"'' (s) C a u 17. C h p n C. Chpn D . Do f = 1 = T a n so d a o d o n g r i e n g c i i a m a c h p h u t h u o c v a o L , C. Cftu 5. T = 271 X / L C ^ C = 0,02 ( F ) 27rVLC Chpn A. C a u 18. C h p n D . S o n g d i e n t i r l a s o n g m a t r o n g q u a t r i n h t r u y e n s o n g t h i E l u o n v u o n g gc^ v d i E v a ca h a i vectcr E , B l u o n v u o n g gdc v d i p h u o n g t r u y e n s o n g . C h p n C. C a u 19. C h p n B . D i i n g l a s o n g n g d n c6 t a n so I d n hern t a n so s o n g d a i d o Xti 1§ n g h i c h v d i 1 C f i u 7. X = c . T = 3 . 1 0 ^ 2 7 t ^ / L C = 168,5 ( m ) Q C h p n C. t h o n g q u a c o n g thiJc ^ - j • N e n k h i X n h o - > f I d n . Cfiu8. c . T , = e.27iVLC7 = 23,8 m C a u 20. C h p n A . S o n g d i e n tii m a n g n a n g l u p n g . X; = C . T 2 = c.2n T L C ^ = 113,04 m C a u 21. C h p n D . I Chpn D . S o n g d i e n tCr m a n g n a n g l u p n g C a u 22. C h p n A . •fiu 9. X = ^ ^ f = ^ . = 3.10" H z ^ f = 3 M H z Chpn A. D u n g p h a i l a s o n g d i e n tii l a s o n g n g a n g .
  10. D A P A N B A I T A P L U Y E N T A P C H l / a N G rV C a u 10. Klai C, n t Ca t h i - = — +— (*) ma f = ^ ^ = — ^ t i le n g h i c h vL, = = 8,04.10 ' H = 8,04 n H (3.10*)^(27t)'C, Cau 11. q = 2.10^'*sin(100Ttt) (C) . X., = C.T2 = 3.10^2317L2C2 i = q'(t) = 2.10~^1007i.cosl007it i = 2 . 1 0 " V o s . l 0 0 7 t t (A) - > L2 = 2,85.10-' H = 2,85 m H hay i = 2.10-^7isin(1007it + ^ ) (A) Vay 8,04 n H < L < 2,85 m H Chon C. Bai3. • = c . T i = 3.10^27t7^C7 = 4,2 m C a u 12. i = 4 0 0 7 T . 1 0 " ^ s i n ( 1 0 0 7 T t + (A) Nhdn xet: i n h a n h p h a hcfn q m o t goc ^ n e n • A., = C.T2 = 3.10^27t7^c7 = 133,2 m Vay 4,2 m < A. 133,2 m v , i q „ . i i = i22!Ll2:l = 4.io« (C) B a i 4. • Wc = WL Vay q = 4.10-^sin(1007tt + - ) (C) CU^ L T2 2 ^ lo = 2.10-'' (A) • I = (A) V2 V2 • T = 2 7 1 . - ^ = 12,56.10-' (s) Cong suat can cung cap l a Chon A . 2 '0,0517? P = r . I ^ = 1. « 1,33.10-' W « 1,33 m W C a u 14. W = C = 3,6.10-* (F) 2C Chon A. B a i 5. K h i C i // C2 t h i C = C i + C2 ( * ) C a u 15. W = °- = 0,12.10-'^ J = 0,12 ma T - 2Tt N / L C = 47rlLC (T^ t i le t h u a n v d i C ) Chpn A. PTT2 T fn (*) -> = T f + T| = 3 ' + 4 ' = 25 ^ T = 5 (s) C a u 16. W™«, = W , . _ ^ = ^ ^lo = \Jn^ = 0,42 (A) B a i 6. De cho L = L j + L2 ( * ) 2 2 ^L Chon A . ma T = 271 V L C ^ = 47I2LC (T^ t i le t h u a n v d i L ) C a u 17. = WL^^^ '-:^ =t^ ^ C = ^ = 0,2.10'^ F = 0,2 ^iF 2 2 (*) _> ^ T f + T| = 100 T = 10 s Chon B . C a u 18. W = Wc + W,, (*) B a i 7. T 271. qo « 1,27.10-" ( C ) ^0 ma Wc = 3W,., W = ^ LI B a i 8. W . = W, -°- = 4 . 1 0 - ' ( J ) (*) -52- = 3 W L + W L ^ W L = 5,625.10" J 2C B a i 9. W = Wc + W L -> W,.^_^ = W L + W L ^ ^ = 2 W L - > W L = 8.10-^* (J) = Wc Suy r a Wc = 3 W L = 1,6875. IQ-^' J ^ Chon C. 2
  11. Bai 10. W = Wc + W L a i 15. Cu' Li' 4.10^4' 2.10-''(2.10-')' _> W = + = +• a) . ^1 = c.T, - 3.10«.27I7L:C7 = 3 . 1 0 « . 2 . 3 , 1 4 V 4 . 1 0 •'.20.10'^ = 5 3 2 , 8 7 (m) 2 2 2 2 ^ W = 3,2.10-' + 4 . 1 0 - ' ' = 3,2004.10-** J . ^2 = C.T2 - 3 . 1 0 ^ 2 7 T 7 L C 7 = 3 . 1 0 ^ . 2 . 3 , 1 4 ^ 4 . 1 0 ^ 1 4 0 . 1 0 " ' ' = 1409,8 m B a i 1 1 . T h d i gian ke tit luc dien t i c h cua t u dien c6 gia t r i cUc d a i cho den k h i Vay 532,87 m < A < 1409,8 m T d i e n t i c h ciia t u dien b i n g 0 la 4|.is -> — = 4(.ts T = 16 |.ts = 16.10-*^ (s) b) Do d^ cho C = Co + kcp C„= 20(pF) T = 27IN/LC C = -V- = 1,62.10"^ (F) , nen t a c6: fC, =C„+k(pj " ^ 20 = C „ + k . O 1 " pF C 2 = Cg + kcpj 140 = Co + k.60j k = 2 do Bai 12. • w = = 5.10^ rad/s ^/LC K h i goc xoay ciia t u C^ l a 3 0 " t h i gia t r i cua t u C^ l a C = Co + kcp C = 20 + 2.30 ^ C = 8 0 pF • q» = q ' + 4 ^ qo = 5 , 6 5 6 . i o - ' ( O w Budc song ma mach bat duoc luc nay Bai 13. Sau t h d i gian lO-'^ s t h i nSng lifdng tCr t r u d n g cua cuon cam l a i dat gia = c.T = 3 . 1 0 ' . 2 7 t N / L C = 3 . 1 0 ' . 2 . 3 , 1 4 V 4 . 1 0 ' . 8 0 . 1 0 " " = 1 0 6 5 , 7 5 (m) . .dai ^ t r i. cue -2 = 10-' (s) ^ T = 2.10-' (s) B a i 16. Ta c6: C , = 8 0 p F , cp, = 0 ° C2 = 1 9 0 p F , (p2 - 1 8 0 " Tim L = ? T = 271 N / L C L = - 5,07.lO"** H Ma C = Co + kcp B a i 14. Nhan xet: t = 0 t h i i = lo = 20.10-^ (A) C,, = 1 0 p F C i = C„ + kcp-, [10 = C„ + k.O Bieu thiJc cUdng do dong dien c6 dang: nen t a c6 he •. pF i = Io.cos((ot + cpi) C2=C„+kcp2 [ l 9 0 = Co + k . l 8 0 k= 1 dp * lo = 20.10-'*A Gia t r i cua C^ k h i cp = 120° la = 25.10' rad/s C = Co + kcp = 10 + 1.120 = 130 P F * cfip - ? i = lo.cos(a)t + (pi) (*) Mat khdc: = c.T = 3 . 1 0 ^ 2 7 t ^ / L C ma t = 0 t h i i = IQ 140' ^ L = 4,24.10"' ( H ) (*) -> I„ = I„cos(25.10\ + (Pi)
  12. Luu y: Dien dp ticc thai va cudng do dong dien tiJCc thai tren mot doan mach giong nhau a chd bien thien dieu hoa cung tdn so, khdc nhau a bien ChiTtfng V. DONG DIEN XOAY CHIEU dp va pha dao dong. 3. D o a n m a c h xoay chidu c h l c6 diSn t r d t i i u l n a) Quan he giUa u va i N e u u = Uo.cos co .t t h i i = I„.cos co .t P H A N I: T O M T A T L I T H U Y E T Ddng dien xoay chieu qua dien trd thuan c6 ciing tdn so va cung pha vdi dien dp d hai dau dien tra thuan. b) Gian do vecta Van de 1: DONG DIEN XOAY CHIEU I u MACH DIEN XOAY CHIEU CHJ CO DIEN TRCJ THUAN, O* ^ •x TU DIEN, CUON CAM c) Dinh luat 6m: lo = ^ h o a c 1= ^ R • R 1. S u i t dien d^ng xoay chi^u . Oogn m a c h chf chQa cui' I a n luat l a c a c b i e n dp v a p h a b a n d a u cua h i e u d i e n t h e h a i d a u d o a n m a c h v a cu'dng dp d o n g d i e n qua m a c h . O • D a i lupfng 9 = cpu - 9i goi l a dp l^ch p h a giOfa u v a i trong mot doan m a c h . ''—I * X * (p > 0: u s d m p h a horn i . J i * 9 < 0: u tre p h a h o n i . * (p :r 0: u c u n g p h a i . ^ u,
  13. c) Dinh ludt 6m: In = 3. Cflng hadng d i § n a) Dinh nghia: H i e n tiTOng cgng hirdng di§n t r o n g d o a n m a c h R L C \k h i | n d) Tdc dung chtnh cua tu dien t u g n g m a c h R L C c6 Z L = Zc h a y co = . - L a m cho di§n dp b i e n t h i e n c h a m p h a so v d i ciTdng do d o n g d i e n . vL.C b) Cdc he qua khi co cong huang dien trong mach RLC - C a n trd dong di^n. 2 1 1 *ZL = Z C C ^ C O L = — CO = 0 0) = - = toC L.C VLC Van 6e2: MACH CO R, L, C MAC NOI TIEP. CONG HUdNG DIEN * T o n g t r d ciia doan m a c h RLC co gia t r i cifc t i e u : Z„,n = 7R^ + ( Z , - Z C ) ' = VR' + 0 = R (do Z L = Zc) 1. C ^ c giS tri tL/c thdi X e t d o a n m a c h R , L, C m ^ c no'i tie'p t h i t a c6: UAB = U R + U L + Uc. cp = 0 => i qua doan mach R, L , C cung pha • G i a suf i = IQ.COS CO .t t h i t a c6: wd'i u h a i dau doan mach. UR = UoRCOscot, U L - UoLCOsCcot + 7i/2), U c = Uoccos((i)t - nl2). * Cudng dp hieu dung qua doan mach R L C dat gid t r i cUc d a i : vdi: UoR = IQR, UQL = IQZL, UQC = IQZC- ^max — - > U = UoRCOSCOt + UoLCOS((Ot+-) + Uoccos(cot --^). Z ~ R • K e t lu^n: H i e u dien t h e u h a i dau doan m a c h l a t d n g h o p ciia b a dao * Cac d i e n ap tuTC thdi giuTa hai giuTa h a i ban t u dien va giOfa h a i dau cuon dong d i e u h o a c u n g t a n s o , n e n t a t i m d a o d o n g t o n g h o p u n ^ y b ^ n g cam CO bien do bang nhau n h i m g ngu'Oc pha nen t r i e t tieu iSn nhau. phiTOng p h d p v e c to quay. C h i n h v i vay d i e n ap giCra h a i dau mach b ^ n g dien dp h a i dau R. 2. Gi^n d6 Fre - nen. Quan h$ giOa cadng d6 ddng di^n diSn a) Gidn do vecta UL _ Van de 3: CONG SUAT CUA DONG DIEN XOAY CHIEU • UR = UoRCOs(cot) -> U R . HE SO CONG SUAT • U L = UoLCOs(tt)t + nl2) ^ U L . • U c = UocCOS((Dt - 7T/2) ^ U C . 1. Gang su^t cue doan m a c h : D i e n nSng doan m a c h t i e u t h u t r o n g 1 s. • u= UR + U L + U c -> U = U R + U L + U C * Cong suat turc t h 6 i p = ui * Cong suat t r u n g b i n h , cung l a cong b) Dinh ludt 6m cho doan mach RLC mac not tie'p. Tdng trd mach suat toa n h i e t t r e n R U = VU^R+(U,-Ucf P = UIcoscp = RI^ U„ R I = - h o a c i = - ! ^ ; V d i 2= ^R^TczT^Z^ vdi coscp = — goi l a h e so cong suat z z Li * D i e n nSng t i e u t h u : W = P.t c) Do lech pha cua u so vol i 2. sd c6ng su^t U , - U(. Z, - Zc Tir g i a n do F r e - n e n cua mach R, L , C t a chdng m i n h diTOc: UR „ „ R 1 coscp = — - Hoac cosq)= — + Neu: Z L > Zc hay caL > t h i u n h a n h pha h o n i (mach c6 t i n h cam (oC U Z khang). Y nghia h e so cong suat * Trifofng hofp coscp = 1 cp = 0 + Neu: Z L < Zc hay M L < J _ t h i u cham pha h o n i (mach c6 t i n h dung Day l a triiorng hop doan mach d i e n xoay chieu c h i chufa R, hoSc m a c h coC khang). RLC n h i m g xay r a cong huorng. Liic nay P = U L * TrtfoTng hofp coscp = 0 cp = ±— + Neu: Z L = Zc hay coL = — t h i u ciing pha vdi i (mach cong hucfng dien) 2 wC
  14. Day la trUdng hop doan mach xoay chieu k h o n g chiJa d i e n trd t h u a n 4. Ccich mSc di$n 3 pha (Day la t r u o n g hop m a c h chi c6 cuon cam L hay t u di§n C hoac ca L va a) Cdch mac hinh sao C). Luc nay P = 0 Day pha 1 A', A, * T r i i c f n g hcfp 0 < coscp < ! < = > - — < ( p < 0 hoac 0 < cp < —. Luc nay: P = UIcoscp < U L D a y la t r i r d n g hop hay gap n h a t . Day t r u n g hoa Van de 4: MAY PHAT DIEN XOAY C H I E U A, i2 Day pha 2 1. Nguyfin t3c hoat dong m^y ph^t dien xoay chi^u a) Nguyen tdc hoat dgng cua cdc loqi may phdt dicn xoay chieu: Dua t r e n h i e n tiTOng cam ufng d i e n t\i. i3 Day pha 3 b) Co hai each too ra sudt dien dgng xoay chieu thuong dung trong cdc may dien C a c cong thufc: Ud = Vs Up ya Id =Ip ~ Tit trirdrng c6' d i n h , eac vong day quay t r o n g tijf triTdng. b) Cdch mdc hinh tam gidc - TiT truorng quay, eac vong day dat co d i n h . Day pha 1 2. MSyph^t di0n xoay chi^u m6t pha A i 1 B,., Co h a i bo p h a n c h i n h l a p h a n cam va p h a n iJng. . - P h a n cam la n a m c h a m d i e n hoac n a m cham v i n h cOru. Do Ik p h i n tao ra tii t r u d n g . - P h a n l i n g la nhOfng cuon day, t r o n g do xuat h i e n suat d i e n dong cam Day pha 2 ufng k h i may hoat dong. M o t t r o n g h a i p h a n dat co' d i n h , p h a n con l a i quay quanh m o t true. Day pha 3 P h a n CO d i n h goi l a stato, p h a n quay goi l a roto. Cac cong thufc: Ud = Up va Id = V3 I , , 3. MSy phSt diSn xoay chi^u ba pha a) Dong dien xoay chieu ba pha Van de 5: DONG C O KHONG DONG BO BA PHA Dong d i e n xoay chieu ba pha la he t h o n g ba dong dien xoay chieu, gay boi ba suat d i e n dong xoay chieu co cung t a n so, cung b i e n do n h u n g 1. Nguyen tSc hoat d6ng cua dSng cd kh6ng d6ng b6 lech nhau ve pha la — a) Tu: trUdng quay. Su quay dong bo 3 K h i quay mot n a m c h a m . q u a n h m o t true, tCr trUcfng do n a m c h a m gay ra b) Cdu tqo vd hoat dgng cua may phdt dien xoay chieu ba pha CO eac dxibng sufc tCr quay trong k h o n g gian. Do l a m o t tCf trUdng quay. • M a y c6 cau tao gom Stato c6 ba cuon day r i e n g r e , hoan t o a n gio'ng Neu dat giufa h a i cUe ciia m o t n a m cham h i n h chiJ U m o t k i m n a m cham nhau quan t r e n ba l o i sdt dat lech nhau 120° t r e n m o t vong t r o n . Roto v a quay deu n a m c h a m chuf U t h i k i m n a m c h a m quay theo v d i cung toe la m o t n a m cham di$n. do goc. Ta n o i k i m n a m cham quay dong bp vdri tii trUdng. b) Su quay khong dong bg K h i roto quay deu, eac suat d i e n dong cam iJng xuat h i ? n t r o n g ba c u p n Thay k i m n a m cham b k n g m o t k h u n g day d a n k i n . K h u n g n a y co the day CO cung b i e n do, cung t a n so nhiftig lech nhau ve pha 1^ — . N e u quay quanh true xx' t r u n g v d i true quay ciia n a m cham. N e u quay deu 3 n a m c h a m t a t h a y k h u n g day quay theo c u n g c h i e u , d e n m 6 t liic nao do noi cac dau day cua ba cuon v d i ba mach ngoai giong nhau t h i t a co he k h u n g day c u n g quay d e u nhitog v d i toe do goc < co c u a n a m c h a m . ba dong d i e n cung b i e n do, cung t a n so' n h u n g lech nhau ve pha 1^ — . Dong CO hoat dong difa theo nguyen t^c n 6 i t r e n goi la dong eo k h o n g dong bo.
  15. 2. Tgo ra ta trudng quay bSng ddng di0n ba pha Neu bo qua moi hao phi nSng luong trong may bien ap, cong suat trong TCr trtrdng quay c6 the dUgrc tao r a bkng dong dien ba pha nhu sau: M^c ba mach so cap va thu" cap hhng nhau. cuon day giong nhau, bo tri lech nhau 1/3 vong tron vdi mang di^n ba pha. Trong ba cuon day c6 ba dong dien cung bien do, cung tan so nhung lech u, • 2TC pha nhau — . Moi cuon day deu gay d vung xung quanh true O mot tCr I, U„ N, 3 nen N, • I, trUdng ma cam iJng tCr c6 phUcfng n ^ m doc theo true cuon day va bien doj Do do: Dung may bien dp l a m dien dp tang bao nhieu Ian thi ciidng do dong dien giam bay nhieu Ian va nguoc lai. tuan hoan vdi cung tan so a nhuiig lech pha nhau — . 2. Truy^n t^i dien o Cong suat hao phi tren day 3. C^u tao hoat d6ng cua dSng c6 kh6ng dfing b6 ba pha Dong cd khong dong bo ba pha c6 hai bo phan chinh: AP = R I ' ^ AP = R - Stato C O ba cuon day gio'ng nhau quan tren ba loi sMt bo tri lech nhau (Ucoscp) 1/3 vong tron. Trong do: R: dien tror duong day ( Q ) - Roto la mot hinh tru tao bdi nhieu la thep mong ghep l a i goi la roto P: cong suat truyen di (W) ' U : dien dp d noi truyen di (V) long soc. costp: he so cong suat cua mach dien C a c e a c h g i a m AP • Pi Cong suat ccf hoc c6 ich • P: Cong suat tieu thu ciia dong cot C a c h thiir n h a t : G i a m dien.trd R cua dudng day. Day la edeh ton k e m vi • H : Hieu suat dong ccf phai tdng tiet dien cua day, do do ton nhieu k i m loai l a m day va phai tang sufe chiu dUng ciia cdc cot dien. Van de 6: M A Y B I E N A P - T R U Y E N T A I D I E N C a c h thvC h a i : Tdng dien dp U or noi phdt dien va giam dien dp cf ncfi tieu thu dien tdi gid tri can thiet. Cach nay ed the thifc hien don gian bang 1. M^y bi^n mdy bien dp, do do duoc dp dung rong rai. May bien dp 1^ thiet bi hoat dong dxia tren hi#n tUorng cam ufng di?n tCr, dung de tSng hoac giam di^n ap xoay chieu ma khong l a m thay doi t a n so ciia no. TRAC N G H I E M LI THUYET a) Cdu tao va nguycn tdc hoat dong C a u 1. Cudng do hieu dung ciia dong dien xoay chieu i = IQ eos(a)t + cpi) dugc May bien ap gom hai cuon day c6 s6 vong khac nhau quan tren mot loi tinh theo cong thiJc s^t kin. L o i thudng l a m bhng cdc la sdt hoac thep pha silic, ghep each dien vdi nhau de giam hao phi dien nSng do dong Phu-eo. C a c cuon A. I - I n V 2 B. I = ^ C.I = ^ D. I = 2I0. 2 V2 day thucfng lam bkng dong de cd dien trd nho va duoc each di^n vdi loi. May bien ap hoat dong dua tren hien tifcfng cam ufng dien tif. Mot trong hai C S u 2. Dat mot dien dp u = U \/2 cos(cot + (pj vao hai dau doan mach gom: dien cuon CLia may bien ap duoe noi vdi nguon dien xoay ehilu, duoe gpi la cuon so trd thuan R , cuon day thuan cam c6 dp tU cam L va tu dien eo dien dung C cap. Cuon thuf hai difdc noi vori tai tieu thu, diTOc goi la cuon thuf cap. mdc noi tiep. Cudng dp dong dien qua doan mach c6 gid tri h i | u dung l a b) Su bien doi dien dp va cUang dp ddng dien qua may bien dp U A. I = u B. I = U N 1 f 1 1 >2 Neu bo qua dien trd 2 cuon day thi: —-= — - / „ a)C + - — J R - (oL - 1 U, Nj V V coC> Vdy: T i so dien dp d h a i dau cupn thiJ cap vd cupn so cap b l n g ti so U U vong day ciia hai cuon day. C. I = D. I = 1 -2 • Neu N2 > N i -» U2 > U i : Mdy tdng dp. R + coL - R2 + coL — coC coC • Neu N2 < N i -> U2 < U i : Mdy h a dp.
  16. Cau 3 . Dat vao hai dau mot cuon day thuan cam c6 dp t u cam L mpt di^n ap vdi dien ap giOra hai dau doan mach. Moi lien he giOfa dien trd thuan R vdi cam khang Z L ciia cupn day va dung khang ZQ cua tu dien la u = Uo cos(a)t + — ). Cudng do dong dipn chay qua cupn day c6 bieu thiJc la 2 A.Z,= — = ^ B . Z L = R ^ ( Z L - Z C ) A. i = UoCoLcos(cot + - ) B. i = ^ coscot 2 tt)L C. i = H o c o s ( ( o t + - ) D. i = ^ cosCcot- ^ ) (Z,-Zc) -R2 • o)L 2 L 2 Cau 1 1 - Doan mach dien xoay chieu A B chi chura mot trong cac phan tuT: dien Cau 4 . Dat vao hai dau doan mach R, L, C mSc noi tiep mot dien dp xoay chie u CO bieu thiJc u - UoCos(ct)t + cpu) v6i U„, cp^ la hkng so con co thay doi duoc trd thuan, cupn day hoac tu dien. K h i dat dien ap u = UoCos(eot + - ) len hai Cu&ng dp dong dien hieu dung trong mach dat gia t r i Idn nhat k h i tan so 2 goc CD thoa man diu A va B t h i dong dien trong mach co bieu thuTc i - I(,cos(eot + —). Doan 2 A. 0) = - 7 = = ^ B. CO = C. CO = , — D. CO = — mach A B chiJa VLC ^/LC VL , C A. Dien trd thuan B . Tu dipn Cau 5. Dong dien chay qua mot doan mach R, L, C m^c noi tiep c6 bieu thiJc C. Cupn day thuan cam (cam'thuan) D. Cupn day c6 dien t r d thuan i = locos (cot + cpi). Nhiet liJOng toa ra tren di§n t r d R trong khoang thdi gian Cau 1 2 . Doan mach dien xoay chieu gom dien t r d thuan R, cupn day thuan cam t (t rat Idn so vcii chu k i ciia dong dien) la L va tu dien C m^c noi tiep. K i hieu U K , U ] , , U C tuong lirng la dien ap tiJc thdi A. Q = R I ^ t B. Q = R-Iot C.Q=-Rlgt D. Q = - ^ R ' l o t d hai dau cac phan tilr R, L va C. Quan he ve pha ciia cac dien ap tiJc thdi la Cau 6. Cho biet bieu thuTc cua di^n ap xoay chieu la u = Uo.cos(cot + cpu). Di?n ap A. UR sdm pha so vdi uc B. U L tre pha - so vdi Uc 2 2 hieu dung la C. UR tre pha so vdi uc — D. u^ sdm pha — so vdi uc A. U o = - ^ B. U6 = 2U C. UO = UN/2 D . U = 2UO. . 2 2 N/2 Cau 1 3 . Dong dien xoay chieu trong doan mach chi cd dien t r d thuan Cau 7. Dat vao hai dau doan mach RLC noi tiep mot di§n ap xoay chieu A. Cling tan so' va ciing pha vdi di|n ap d hai dau doan mach u = Uocoscot t h i dp lech pha giufa u va i ciia mach difpc tinh theo cong thiJc B. Cijng tan so' vdi dien ap d hai dau doan mach va cd pha ban dau luon T -wC—^ bang 0 . ^ (oL - Ceo „ ^ Leo A. tan cp = B. tan cp = C. Cd gia t r i hieu dung t i le thuan vdi dien t r d ciia mach R R D. Luon lech pha7r/4 so vdi dien ap d hai dau doan mach. T 1 ^ Ceo 4. coL + Cco ; Cau 1 4 . Dat vao hai dau cupn day cd dp ty cam L mot dien dp u = UoCos2Ttft C. tan cp = ^ D . tan cp = (V). Giam cam khang ciia cupn day bhng each R R . Giam tan so f cua dien ap u. Cau 8. Dat mot dien ap xoay chieu u = UoCoscot vao hai dau mot doan mach . Tdng dp tiT cam L ciia cupn day dign RLC khong phan nhanh. Dong dien cung pha dien ap a hai dau doan . Tang dien ap U mach dien n^y thi . Giam dien ap U. A. Leo = — B. Leo < — C. Leo > — D. co = - i - u 1 5 . Dat vao hai dau doan mach RLC khong phan nhanh mot dipn ap xoay Cco Ceo Ceo LC chieu u = UoCoseot. K i hieu U R , U L , U C tUctng iJng la dien ap hieu dung d hai Cau 9. Dong dien di qua mot doan mach R, L , C m^c noi tiep co bieu thu''' dau dien trd thuan R, cupn day thuan cam L va tu dien C. Neu U R = U^ = i = locoseot. Di$n ap giuTa hai dau doan mach nhanh pha hon cifdng dp dong dien k h i \ Uc t h i dong dien qua doan mach A. CO L < B. CO L > C. CO L = D. oj > - i - eoC coC coC LC J , A . Sdm pha — so vdi dien ap d hai dau doan mach Cau 1 0 . Cho doan mach dipn xoay chieu gom cupn day co dien trd thuan R' mdc noi tiep vdi tu di|n. Biet di^n dp giCra hai dau cupn day l^ch pha -
  17. t u dien vh hai dau cupn d a y thi so chi cua von ke tUOng ufng \k U , U c vd U L . B . T r e p h a — so v d i d i e n a p 6 h a i d a u d o a n m a c h B i e t U R = U C = 2 U i , . H e so' c o n g suat c u a m a c h d i $ n l a 2 2 \ C. S d m p h a - so v d i d i e n a p d h a i d a u d o a n m a c h A . COS (0 = —;= B . cos (p = 1 C. cos q) = — D . cos (p = — - . 45 2 2 4 2 3 . M o t d o a n m a c h d i e n x o a y c h i e u g o m d i $ n t r d thuan R m S c n d i tiep v d i D . T r e p h a — so v d i h i e u d i e n t h e d h a i d a u d o a n m a c h . t u d i e n C. N e u d u n g k h a n g Z c b a n g R t h i 4 A . C u d n g d p d o n g d i e n chay qua d i e n t r d l u o n c h a m pha 7i/4 so v d i d i e n dp d Cau 16. D a t v a o h a i d a u c i i a m o t d i e n t r d t h u a n R m o t d i e n d p x o a y chio hai dau doan mach. u = UoCosMt t h i ciTdng d o d d n g d i $ n c h a y q u a n o cd b i e u thuTc l a B. C u d n g d p d o n g d i | n q u a m a c h n h a n h pha 7t/2 so v d i d i e n dp d hai d a u A . i = locoswt B . i = lo cos(cot + 7 i / 2 ) doan mach. C . i = Iocos(a)t - 7 i / 2 ) D . i = I o c o s ( u t + n) C. D i e n ap h a i d a u m a c h c h a m pha 7i/4 so v d i cUdng dp d o n g d i e n q u a d o a n C a u 17. D i e n a p h a i d a u d o a n m a c h l a u = U > / 2 coscot v a c u d n g d p d o n g d i e i mach. q u a d o a n m a c h l a i = I N/2 cos(cot + - ) . D o a n m a c h chiJa d u n g cu Ih D . C u d n g d p d o n g d i e n qua^ d i e n t r d se c h a m pha 7t/2 so v d i d i e n dp d h a i A. R B. Cupn day t h u a n c a m dau t u d i e n . C.Tudien D . R, C C a u 2 4 . D a t d i e n dp u = U o c o s o t v a o h a i d a u m o t c u p n d a y cd d p t U c a m L v a C a u 18. D a t m o t d i e n a p x o a y c h i e u u = U Q costot v a o h a i d a u m o t d o a n m a c h dien d i e n trd t h u a n r k h a c k h o n g t h i d i e n ap h a i d a u c u p n d a y se c h i CO t u d i e n c6 d i e n d u n g C. B i e u thufc ciTdng dp d o n g d i e n t r o n g m a c h l a A . S d m pha gdc nl2 so v d i cUdng d p d o n g d i e n q u a c u p n d a y . A . i = U„coC. cos(a)t + n/2) B . i = U Q W C . coswt B. S d m pha m o t gdc k h d c n/2 so v d i cUdng d p d d n g d i e n q u a c u p n d a y . C. T r e pha m o t gdc TC/2 SO v d i cUdng d p d o n g d i e n q u a c u p n d a y . C. i = UocoC. cos{(ot - 71/2) D. i = UQCJC. cos((ot - ^) D . T r e pha m o t gdc k h a c nl2 so v d i cUdng dp d o n g d i e n q u a c u p n d a y . C a u 19. T a c d u n g c u a c u p n c a m d o i v d i d o n g d i e n x o a y c h i e u l a C a u 2 5 . D a t d i e n dp u = U V 2 coscot ( v d i U v a co k h o n g d o i ) v a o h a i d a u m o t d o a n A. N g S n can h o a n t o a n d o n g d i e n xoay chieu. m a c h R L C k h o n g phan n h d n h , x a c d i n h . D o n g d i e n c h a y t r o n g m a c h cd B . G a y c a m k h a n g I d n n e u t a n so d o n g d i e n n h o . A . G i a t r i tOfc t h d i phu thupc vao t h d i g i a n theo quy l u a t cua h a m so' s i n hoac cosin. C. G a y c a m k h a n g n h o n e u t a n so' d o n g d i e n n h o . ; B. G i d tri t d c t h d i t h a y d o i c o n c h i e u k h o n g t h a y d o i t h e o t h d i g i a n . D . C h i cho p h e p d o n g d i e n d i qua theo m o t chieu. C. C h i e u v a cUdng d p d o n g d i e n cUc d a i t h a y d o i t h e o t h d i g i a n . C a u 2 0 . D a t m o t d i e n a p x o a y c h i e u u = U Q coscot v a o h a i d a u m o t d o a n mach D. C u d n g dp d o n g d i e n h i e u d u n g t h a y d o i theo t h d i gian. d i e n c h i c6 t u d i e n . N e u d i e n d u n g c u a t u d i § n k h o n g d o i t h i d u n g k h a n g cua C S u 26. D a t d i e n dp u = Uocoscot v a o h a i d a u m o t d o a n m a c h c h i cd t u d i e n C t h i tu dien CUdng dp d o n g d i e n t d c t h d i c h a y t r o n g m a c h l a i. P h a t b i e u nao sau d a y d u n g ? A . L d n h o n k h i t a n so c u a d o n g d i e n n h o . A . D o n g d i e n i l u o n cimg pha vdi d i e n dp u. B . N h o h o n k h i t a n so c u a d o n g d i e n n h o . B. D o n g d i e n i l u o n n g u o c pha v d i d i e n dp u . C. L d n h o n k h i t a n so c i i a d o n g d i e n l d n . • C. O c u n g t h d i d i e m , d o n g d i e n i n h a n h pha nl2 so v d i d i ^ n dp u . D . K h o n g p h u t h u p c t a n so c u a d o n g d i e n . D . O c u n g t h d i d i e m , d o n g d i e n i c h a m pha nl2 so v d i d i e n dp u . C a u 2 1 . D a t d i e n a p u = U Q coscot v d o h a i d a u d o a n mach' c h i c6 t u d i e n C i ' C S u 2 7 . T r o n g m o t d o a n m a c h x o a y c h i e u k h o n g phan n h d n h , d i e n dp h a i d a u c u d n g dp d o n g ' d i e n t d c t h d i c h a y t r o n g m a c h l a i. P h a t b i e u n a o sau d a y d u n g ' m a c h s d m pha cp ( v d i 0 < cp < 0,57i) so v d i cUdng d p d o n g q u a m a c h . Doan A . CJ c u n g t h d i d i e m , d o n g d i e n i n h a n h p h a 7r/2 so v d i d i e n a p u . ;> m a c h d o g o m B. D o n g d i e n i l u o n c u n g p h a v d i d i e n a p u . I A . C u p n thuan c a m v a t u d i e n . B. D i e n t r d t h u a n va t u di^n. C. d c i j n g t h d i d i e m , d i e n a p u n h a n h p h a 7T/2 SO v d i d d n g d i e n i . C. C h i cd c u p n d a y t h u a n c a m . D. D o n g d i e n i luon c h a m p h a v d i d i e n ap u. D. G o m d i e n t r d t h u a n va cupn d a y t h u a n c a m . C a u 2 2 . M o t m a c h d i e n x o a y c h i e u k h o n g p h a n n h a n h g 6 m : d i | n t r d t h u a n H' 28. M o t m a y phat d i e n x o a y c h i e u m o t pha ( k i e u c a m d n g ) cd p cap cUc c u p n d a y t h u a n c a m L v a t u d i e n C. D a t v a o h a i d d u d o a n m a c h d i $ n iiP • q u a y d e u vdi t a n so gdc n (vong/phut), v d i so cap cUc b k n g so c u p n d a y c u a x o a y c h i e u c6 t ^ n so v d d i e n a p h i e u d u n g k h o n g d o i . D u n g v o n k e ( v o n k'' phan d n g t h i t a n so c u a d o n g d i e n do m a y t a o r a l a f ( H z ) . B i e u thufc h e n h e n h i e t ) c6 d i p n t r d r a t l d n , I a n l u p t d o d i e n a p d h a i d a u d o a n m a c h , h a i d A " giUa n, p v a f I d
  18. A.np=60f B . n p = ^ C. p = ^ D. f = ^ U 36. K l i i c6 cong hirdng trong doan mach dien xoay chieu RLC khong phan nhanh f f n A. D i e n ap tu^c t h d i giCfa h a i dau d i e n t r d t h u a n cung pha v d i d i e n ap tUc C a u 29. Dong cO d i e n xoay c h i l u 1^ t h i e t b i d i e n b i e n doi t h d i giOra hai ban t u d i e n A. D i e n n a n g t h a n h co nSng B. D i e n n a n g t h a n h hoa n a n g B. D i e n ap tUc t h d i giufa h a i diu d i e n t r d t h u a n cung pha v d i d i e n ap tUc t h d i giufa dau cuon cam C. Co n a n g t h a n h d i ? n nSng D. D i $ n nftng t h a n h quang n&ng C. Cdng suat t i e u t h u t r e n doan mach dat gia t r i l d n nha't C a u 30. K h i n d i ve dong ccf d i e n k h o n g dong bo, p h a t bieu nao sau day diing? A. B i e n ddi co n a n g t h a n h d i e n nSng ciia dong d i e n xoay chieu. D. Cudng dp dong d i e n tUc t h d i t r o n g mach sdm pha - v d i d i | n dp tiJc t h d i 3 B. Hoat dong dua t r e n h i e n tugng cam ufng dien txi v a suf dung ti^ trUdng quay. dat vao h a i dau doan mach C . T a n so quay ciia roto Idn hcfn t a n so cija dong dien xoay chieu qua dong co. Cau 37. Doan mach d i e n xoay chieu k h o n g p h a n n h a n h gom cuon day cd dp tU D. Roto cua dong co quay d6hg bo v d i tit trUdng quay t r o n g dong ccf. cam L, d i e n t r d t h u a n R va tu d i e n cd d i e n dung C. KJii dong d i e n ed t a n so' C a u 31. K h i dong cd k h o n g dong bp b a p h a hoat dpng o n d i n i i v d i toe dp quay cua tii trufdng k h o n g d o i t h i toe dp quay cua roto se • f = 7= 27rVLC chay qua doan mach t h i h f so cong suat cua doan mach n a y A. N h o hon toe dp quay ciia tii trUdng. A. 0 < coscp < 1 " . B. B^ng toe dp quay ciia tiT trUdng. B. Phu thupc dipn t r d t h u a n ciia doan mach C . L d n hcfn toe dp quay eiia tii' trUdng. C. B a n g 1 D. Co the l d n h o n , nho h o n hoac bang toe dp quay ciia tCf trUdng. D. Phu thupc t d n g t r d ciia doan mach C a u 32. Doan mach d i e n xoay chieu gom bien t r d R, cuon day t h u a n cam cd do C a u 38. M o t mdy bien dp cd hieu suat xap x i bang 100%, cd so' vdng day cuon tif cam L v a t u d i e n cd d i e n dung C m^c n o i tiep. B i e t hieu d i e n the hieu scf cap l d n h o n 20 I a n so v d n g day cuon t h i i cap. M a y bien dp nay dung h a i dau doan mach l a U , cam k h a n g Z L , dung k h a n g Zc (vdi Zc t a n so dong d i e n t r o n g mach k h o n g doi. T h a y doi R de'n gia t r i Ro t h i cdng suat t i e u t h u cua doan m a c h d a t gia t r i ciTc d a i Pmax, k h i do ZjJ va § A. L a m g i a m t a n so' dong d i e n d cuon thuT cap 20 I a n B. La may t a n g dp C. La mdy ha dp ' D. L a m t a n g t a n so' dong d i ? n d cuon scf cap 20 I a n . A. R o = f - B. R„=|Z,-Zcl C a u 39. M o t m d y bien dp dupc suf dung l a m m d y t d n g dp. D a t vao h a i dau cuon so cap m o t d i e n dp xoay chieu. Bp qua mpi hao p h i t r o n g mdy. K l i i mach t h d C.R„ = ZL. Zc D. R„ = Z L + ZC. cap k i n t h i C a u 33. D a t hieu d i e n the u = Uosinwt (Uo v a 03 k h o n g ddi) vao h a i dau dom; 1 A. So v d n g day ciia cuon thu" cap nho hen so' vdng day ciia cuon so cap mach RLC k h o n g p h a n n h a n h . B i e t dp t y cam v a d i e n dung difpc giOr k h o i u B. D i e n dp h i e u dung d h a i dau cuon thu" cap nho h o n d i e n dp h i e u d u n g d doi. Dieu c h i n h t r i so' d i e n t r d R de cong suat t i e u t h u cua doan mach d:: hai dau cuon so cap cue dai. K h i do h e so cong suat ciia doan mach b k n g C. Cudng dp hieu dung ciia dong d i e n t r o n g cuon thU ca'p b^ng eUdng dp dong dien hieu d u n g cua dong d i e n t r o n g eupn so cap A. ^ B. ^ C. ^ D. 1. D. Cudng dp dong d i e n hieu dung t r o n g cuon t h U cap nho horn cudng dp dong dien hipu dung ciia dong d i e n t r o n g eupn so cap. C a u 34. D a t vao h a i dau doan mach RLC k h o n g p h a n n h a n h m o t d i e n dp xoay jCSu 40. M o t m a y bien dp dung l a m mdy ha dp gom eupn so cap cd N i vdng, chieu u = Uocoscot (V) t h i dong d i e n t r o n g mach la i =locoscot (A). Doan mach eupn t h u cap cd N2 vdng. D a t vao h a i dau eupn scf cap m o t d i e n dp xoay d i e n nay luon ed 'f chieu cd gid t r i hi$u d u n g U i t h i d i e n dp hieu dung U2 d h a i dau eupn thU A. ZL > Zc B. Zl, < Zc C. ZL = Zc D. ZL = R. cap thda m a n Caxi 35. D a t d i e n a p u = uV2coscot vao h a i dau doan mach RLC k h o n g phan A. U2 = 2Ui B. U2 < U i C. U2> U i D. N2 > N , . n h a n h (dien t r d t h u a n R =^ 0). Chpn dp tuf cam cua cuon day v a d i $ n dunr! p S u 41. Gpi: ( I ) : G i a m cong sua't t r u y e n t a i ciia t u d i e n sao eho cam k h a n g b^ng dung k h a n g t h i ( I I ) : T d n g chieu d a i dudng day A. T d n g t r d ciia doan mach nho hcfn d i e n t r d t h u a n R ( I I I ) : T d n g d i e n the trUde k h i t r u y e n t a i B. Cudng dp dong d i e n t r o n g doan mach n h a n h p h a so v d i d i e n a p u. (IV) : G i a m t i e t d i e n day va g i a m dien the trude k h i t r u y e n t a i T r o n g qud t r i n h t r u y e n t a i d i e n n d n g , bien phdp l a m g i a m hao p h i t r e n C. He so cong suat ciia doan mach la 0 < eosqx 1 dudng day t a i d i ^ n dupe sii dung chii yeu h i e n nay la D. Cirdng dp dong d i ^ n h i p u dung qua mach cd g i d t r i cUc d a i . A. ( I ) B'. ( I I ) ' C. ( I l l ) D. ( I V )
  19. Tom tat Hii&ng ddn gidi P H A N II. B A I T A P T R A C NGHIEM (j) = 2.10"^cos(1007rt) (Wb; s) a) TCr t h o n g c i f c dai + BAI TAP LUYEN TAP al T i m is/,, = TCr bieu thu'c de cho (|)o = 2.10"^ (Wb) b) V i e t bieu thufc suat b) Bieu thurc suat d i e n dong d h a i dau k h u n g Van de 1: T L / T H O N G - S U A T D I E N D O N G C A M LfNG dien dong h a i dau e = -(t)'(t) = -[2.10-'cosl007ttJ TAN S O DONG DIEN - MAC MACH D I E N - DONG C O DIEN khung. -> e - 0,27isinl007Tt (V) hay e = 0,27rcos l O O n t - - (V) PHl/CfNG PHAP 2 I . Tijf t h o n g - S u a t d i ^ n d p n g c a m \?ng Neu tif t h o n g qua k h u n g day c6 dang B a i 2. M o t k h u n g day dan cd 500 vong day quan no'i t i e p , m o i v o n g c6 d i e n * = cD^cos((ot + cp) V(Ji 0 „ = N.B.S ; cp = (B,n) k h i t = 0 ti'ch la 200 em^. Khung day dugc dat trong ti^ triTcmg deu B = 0,2T. Luc t = 0 T h i bieu thiJc suat dien dong la t h i vecto phap tuyen cua k h u n g hop v d i B mot goc —. Cho k h u n g day E 6 e = E„.sin((ot + 9) Vdri E„ = O^.a); = quay deu quanh true (A) vuong goc v d i B v d i tSn so 40 v6ng/s. a) V i e t bieu thu'c suat d i e n dong cam iJng theo t . Trong do: b) V i e t bieu thufc tijr t h o n g theo t . * CD : TCr t h o n g t a i t h d i d i e m t (Wb) c) Xac d i n h gia t r i ciia suat dien dpng cam iJng va cua tCf t h o n g t a i t h d i * ct)„: T'lr t h o n g cifc d a i (Wb) diem — (s). * N ; So vong day ciia k h u n g . 40 * B: Tuf trirdng (T) * S: D i $ n t i c h k h u n g (m^) Tom tat Hitdng dan gidi * e: Suat dien dong t a i t h d i d i e m t (V) • N = 500 vong a) Bieu thiJc suat dien dong cam iJng theo t . * E,,: Suat d i e n dong cUc dai (V) • S = 200 cm^ e = Eosin(cot + cp) * E: Suat dien dong hieu dung (V) » = 200.10-" m ' * Eo = N.B.S.M = N.B.S.27Tf = IQOn (V) I I . T a n so' c i i a m a y p h a t d i ^ n . • B = 0,2 T * CO = 27if = 27r.40 = 80n (rad/s) h • Luc t = 0 f ^ np * f: T a n so dong dien (Hz) * (p = ? t = 0 ^ cp = (n,B) = - rad 60 f = n.p * p: So' cap ciTc. Vay e = IGOnsin 807it + - (V) * n : Toe do quay (vong/ phiit) hoac (v6ng/s) • f 40 vong/s = 40 Hz 6 I I I . Mac mang di^n b) Bieu thu'c til t h o n g theo t :
  20. B a i 3. R o l o c u a m o t i i u i y p h a t d i e n x o a y c h i e u c6 2 cSp cuc. D e t a o r a tAn so io = I i + 1 2 + I3 = I12 + I 3 5 0 H z t h i r o t o p h a i q u a y v 6 i to'c do b a o n h i e u ? Vdri I i = I2 = I 3 N e n t a c6 h i n h HUdng dan gidi T i f h i n h v e t a c6 I12 = I i = I2 = I 3 = 2 A Tom tat To'c d p q u a y c u a r o t o Ma I12 T i is n e n : p = 2 c a p cUc f = 50 H z np f.60 50.60 Io = I12 - I3 = 0 Io=0 f = n = N = ? 60 * TrurOng h o p 2: n = 1500v6ng/phut . Up 200 I, = 2 (A) R> 100 B a i 4. S t a t o c u a m o t d o n g co k h o n g d o n g bo b a p h a g o m 6 c u o n d a y . C h o Up 200 I2 = 2 ( A ) d o n g d i e n x o a y c h i e u b a p h a c6 t a n so f v a o d o n g ccf. TiS t r u d n g t a i t a r n R2 100 cua s t a t o q u a y v d i to'c d o l a 1 5 0 0 v o n g / p h u t . T i m t a n so f. Up 100 = lA o I , = 1 (A) 100 Tom tat Hiidng dan gidi 6 cuon d a y • T r o n g s t a t o c6 6 c u o n d a y tacfng ufng v d i p = 2 i . + 12+13 . I12 n - 1500 v o n g / p h u t c a p cUc. TCr h i n h v e t a c6: • T a n so c i i a d o n g d i e n x o a y c h i e u b a p h a . 1,2=1, = I 2 = 2A • Tim f 1500.2 Ma ii2 T i ia np f = 50Hz f = f = 60 I12 > I3 60 Nen Io = I12 - I 3 = 2 - 1 = l A o Io=lA B a i 5. M o t m a n g d i e n 3 p h a m ^ c h i n h sao c6 h i e u d i ^ n t h e g i f f a h a i d a y p h a l a 2 0 0 V3 ( V ) . B a i 6. M o t d p n g co d i e n b a p h a m a cac c u o n d a y c u a d p n g co d a u k i e u h i n h a) T i m h i e u d i e n t h e g i C a d a y p h a v a d a y t r u n g h 6 a . sao mac vao m a n g d i e n b a p h a mSc h i n h sao co h i e u d i e n t h e d a y l a b ) T i n h c u d n g d p d 6 n g d i e n cdc d a y p h a v a d a y t r u n g h o a k h i cac t a i t i e u 2 2 0 N/S ( V ) . B i e t r S n g c u d n g dp d o n g d i e n d a y l a 2 A v a h e so c o n g s u a t l a t h u m ^ c h i n h sao t r o n g h a i t r i r d n g h o p . 0,9. T i n h c o n g s u a t t i e u t h u c i i a d p n g co. * C a c t a i g i o n g n h a u , m o i t a i t i e u t h u c6 R = 6 0 Q v a Z,, = 8 0 Q. * T a i t i e u t h u thur 1 c6 R i = 100 Q , t i e u t h u t a i thuT 2 c6 R2 = lOOQ v a t a i Tom tat Hiidng dan gidi t i e u t h u thuf 3 c6 R.-, = 2 0 0 Q. U,, = 2 2 0 73 (V) Nhaii xet: C o n g s u a t t i e u t h u c i i a d p n g co b ^ n g 3 Tom tat Hu&ng ddn gidi I„ = 2 A I a n c o n g suat t i e u t h u cua m S i p h a . • Ud = 2 0 0 V3 ( V ) a) H i e u d i e n t h e giOra d a y p h a v a d a y t r u n g h o a coscp = 0,9 Pd, = 3 P p = 3.Up.Ip.cos(p a) T i m U p U P, = U,i = >/3 U p Up = = 200(V) Vdi: . Up = ^ = 220 (V) b) T i m 1,1 = ? V3 Io = ? b) Trircfng h o p 1: » I p = Id = 2 ( A ) * R = 60 Q T '_ Up U„ 200 V a y P r: 3 . 2 2 0 . 2 . 0 , 9 P = 1188(W) = 2 A ZL = 80 n 100 VR^7Z[ * R i = 100 Q ma = I p - > I„ = 2 ( A ) R2 = 1 0 0 Q 1,1 BAI TAPTRAC NGHIEM R3 - 2 0 0 Q • CiTdng d p d o n g d i e n t r o n g d a y t r u n g h o a . Nhqn xet: D o cdc t a i t i e u t h u g i o n g n h a u n e n c u d n g d p d o n g d i $ n hie^' Cfiu 1. M o t k h u n g d a y c6 tCf t h o n g d a n g : (j) = 2 . 1 0 ~ l c o s l 0 0 7 t t ( W b ) . Chpn ket d u n g q u a m o i p h a c6 d p I d n g i o n g n h a u v a cac d o n g d i e n n a y l e c h p h a n h a u m o t goc 120". ( d o cac t a i t i e u t h u do'i xufng n e n goc l e c h p h a giOfa i' qua d u n g v a i t r o n g m o i p h a d e u g i o n g n h a u - > cac d o n g d i e n l e c h p h a n h a u 1 2 0 " ) I . l . TCr t h o n g cifc d a i t r o n g k h u n g l a A. 2 W b B. 2 m W b C. 0,2 W b D . 0,02 W b
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
4=>1