intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Threading Technologies

Chia sẻ: Bành Thị Liễu | Ngày: | Loại File: PDF | Số trang:30

87
lượt xem
9
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

dựng từ nhiều trang Internet và World Wide Web, hoặc đơn giản gọi là Web được gọi là tra cứu thông tin toàn cầu. Nó bao gồm hàng triệu các website, mỗi website được xây web. Mỗi trang web được xây dựng trên một ngôn ngữ HTML (Hyper Text Transfer Protocol) ngôn ngữ này có hai đặc trưng cơ bản: 1 Tích hợp hình ảnh âm thanh tạo ra môi trường multimedia 2 Tạo ra các siêu liên kết cho phép có thể nhảy ttừ trang web này sdang trang web khác không cần một trình tự nào. Để ...

Chủ đề:
Lưu

Nội dung Text: Threading Technologies

  1. 5 Threading Technologies ‘But I grow old always learning many things.’ SOLON (640 – 558 BC)  [Plutarch: Solon, xxxi]
  2. 182 Chapter 5 5 .1 Threads chapter.  Referring  to  Fig.  95,  the  angle  enclosed  by  the thread flanks is termed the included thread angle  (β – as illustrated in Fig. 95 – middle right). This thread  form  is  uniformly  spaced  along  an  ‘imaginary  cylin- An Introduction der’ ,  its  nominal  size  being  referred  to  as  the  major  diameter  (d).  The  effective  pitch  diameter  (d)  is  the  The  originator  of  the  first  thread  was  Archimedes  (287–212  BC),  although  the  first  modern-day  thread  diameter of a theoretical co-axial cylinder whose outer  can  be  credited  to  the  Engineer  and  inventor  Joseph  surface would pass through a plane where the width of  the groove, is half the pitch. Therefore, the pitch (p) is  Whitworth  in  1841,  where  he  developed  the  Stan- dards  for  today’s  screw  thread  systems.  Whitworth’s  normally  associated  with  this  ‘effective’  diameter  (i.e.  see  Fig.  95 – middle  right).  The  minor  diameter  (d),  55°  included  angled  V-form  thread,  became  widely  established  enabling  thread-locking  and  unlocking  is the diameter of another co-axial cylinder the outer  precision  parts  and  of  sub-assemblies  –  paving  the  surface  of  which  would  touch  the  smallest  diameter.  way to the build-up of precise and accurate modern- Thread clearance is normally achieved via truncating  day  equipment  and  instruments.  Standardisation  of  the thread at its crest, or root – depending upon where  Imperial  thread  forms  in  the  USA,  Canada,  UK,  and  the truncation is applied.  These  are  the  main  screw  thread  factors  that  con- elsewhere,  allowed  for  the  interchangeablity  of  parts  tribute  to  a  V-form  thread,  which  has  similar  geom- to become a reality. Around this time, both in France  etry and terminology for its mating nut – for a thread  and Germany metric threads were in use, but it took  until 1957 before both the common 60° included an- having single-start.  gled ISO M-thread and Unified thread profiles to be- come widely accepted and established (Fig. 95). Along  5.2 Hand and Machine Taps with these and other various V-form threads that have  been  developed  (Fig.  95i),  they  include  quick-release  threads such as the Buttress thread: this being a modi- fied form of square thread, along with the 29° included  Hand Taps angled truncated Acme form which is a hybrid of a V- form and Square thread. Tapered: gas, pipe and petro- Most ‘solid’ taps come in a variety of shapes and sizes  leum-type threads, were developed to give a mechani- (Fig.  94),  with  hand  taps  normally  found  in  sets  of  cal  sealing  of  the  fluid,  or  gas  medium,  with  many  three:  taper,  plug  and  bottoming  (Fig.  96).  The  pro- other types, including multi-start threads that are now  cess  of  tapping  a  hole  firstly  requires  that  a  specific- in use throughout the world.  sized diameter hole is drilled in the workpiece, this is  termed its  ‘tapping size’. The taper tap along with its  V-form  screw  threads  are  based  upon  a  triangle  (Fig. 95 – top diagram), which has a truncated crest and  wrench are employed in producing the tapped thread.  root, with the root either having a flat (as depicted), or  a more likely, a radius – depending upon the specifi- cation.  If  screw  threads  have  an  identical  pitch,  but  different  diameters,  it  follows  that  they  would  have  ‘Solid taps’ , are as their name implies, but it is possible to use    dissimilar  lead  angles.  Usually,  threads  have  just  one  ‘collapsible taps’. These ‘collapsing taps’ have their cutting ele- start, where the pitch and the lead are identical – more  ments  automatically  inwardly  collapsing  when  the  thread  is  completed – allowing withdrawal of the tap – without having  will be mentioned on multi-start threads later in this  to unscrew it, moreover, these ‘collapsible taps’ can be self-set- ting ready for the next hole to be tapped. They are ‘sized-re- stricted’ by their major diameter. ‘Tapping size’ , refers to the diameter of hole to be drilled that    will produce sufficient thread depth for the threaded section  ‘Root radius’ ,  is  usually  a  stronger  thread  form,  as  it  is  less    to be inserted and screwed down, for a particular engineering  prone to any form of shear-type failure mode in-service. application. For example, the alpha-numeric notation: M6x1,  Pitch, refers to the  spacing, or  distance between any  two cor-   refers to a metric V-form screw thread of  φ6 mm with a pitch  responding points on  adjacent threads, normally taken at the  of 1mm. It is not necessary to state whether the thread is left-,  thread’s effective pitch diameter. or right-handed, as the convention is it will be a right-handed  single-start thread. In this case, for an M6x1 thread, the tap- NB  The  reciprocal  of  this  pitch,  is  the  threads  per  inch  (i.e.  ping size can be obtained from the tables, as having a drill size  of φ5 mm.  for Imperial units).
  3. Threading Technologies 183 . Figure 94. A range of hand and machine taps and a die for the production of precision threads. [Courtesy of Guhring]
  4. 184 Chapter 5 . Figure 95. Basic V-form thread nomenclature. [Courtesy of Sandvik Coromant]
  5. Threading Technologies 185 . Figure 96. Hand taps and tapping nomenclature. [Courtesy of TRW-Greenfield Tap and Die] ‘galling’, or tap-breakage problems in-situ could arise.  This  taper  tap  has  a  large  length  of  taper  –  hence  its  name, to lead the tap with progressively deeper cuts as  Once the taper tap has been through a ‘running hole’ ,  it is rotated into the workpiece. As the taper tap enters  it is often only just necessary to ‘size’ the hole with the  the previously tapping sized drilled hole, care should  bottoming tap. However, if a ‘blind’/non-through hole,  be taken to ensure it remains normal to the work sur- face, otherwise and angled hole will result. As the ta- per tap is rotated, after each ¾ turn, it is counter-ro- tated by about a ¼ turn to break the chips, otherwise  ‘Galling’ ,  is  when  the  tap,  or  indeed  any  cutter  becomes    clogged with  the  remnants  of  workpiece  material,  which  will  impair its efficiency, or at worse, cause it to break in the par- tially tapped hole. 
  6. 186 Chapter 5 is  to  be  tapped  to  depth,  then  it  may  be  necessary  to  ting  direction,  or  feed  direction  and  are  particularly  utilise  all  three  taps  in  the  set,  as  each  successive  tap  useful  for  tapping  through-holes.  Whereas,  taps  with  once  rotated  to  depth,  it  will  have  less  lead  (i.e.  taper)  straight  flutes  (Fig.  97bii)  in  conjunction  with  a  long  on  the  tapped  hole,  creating  a  stronger  thread  –  up  to  chamfer  lead,  can  also  give  good  tapping  results.  For  the thread’s maximum shear strength.  blind-holes, right-handed flutes, or straight fluted taps  Very  large  diameter  hand  taps,  require  a  certain  having  shorter  chamfer  lead  lengths  give  acceptable  level  of  skill  in  ensuring  that  not  only  the  tapped  tapping  results.  These  right-hand  fluted  taps,  allow  hole  is  normal  to  the  surface,  but  a  considerable  level  chip-flow  in  the  backward  direction  –  up  the  flutes.  of  physical  strength  is  necessary  to  tap  such  a  hole!  The  chamfer  lead  length  is  such,  that  it  allows  return  movement of chips, but they will not jam and are reli- Curved  surfaces  are  more  difficult  to  tap,  particularly  ably sheared off.  concave  ones,  as  it  is  often  difficult  to  keep  the  hand  When tapping aluminium, grey cast iron, or certain  tap  normal  to  the  surface  With  concave  surfaces  any  brass  alloys,  the  tap  should  have  a  short  lead  length  –  rotational motion of the tap wrench may be somewhat  restricted, without a suitable extension chuck/bar – as- regardless  of  whether  the  hole  is  ‘blind’ ,  or  ‘through- suming workpiece access conditions allow.  running’.  If,  when  tapping  these  workpiece  materials,  For  manual  tapping  operations,  it  is  often  useful  to  a  long  chamfer  lead  length  was  utilised,  the  tap  would  utilise ‘Tapping chucks’. These chucks have a rotational  behave  like  a  ‘Core-drill’ with  chip-breaker  grooves.  drive,  coupled  to  a  sprung-loaded  Z-axis.  The  tapping  This  effect  would  create  ‘drilling’  a  tapping-sized  hole  chuck is positioned over the pre-drilled hole and man- to the major diameter – instead of actually cutting the  ually-fed down into the hole. Once the tap has engaged  required thread. with  the  hole,  it  is  pulled  and  simultaneously  ‘floated  On  some  machining  and  turning  centres,  it  is  pos- sible  to  ‘solid tap’  the  workpiece,  using  CNC  software  down’  the  hole  being  tapped  –  giving  excellent  tapped  hole  accuracy.  At  ‘bottoming-out’  the  tapping  chuck  developed just for this task. A ‘solid tapping’ operation  automatically  reverses  its  direction  and  ‘drives’  itself  requires  that  the  rotation  of  the  spindle  and  the  Z- axis  control  are  fully  synchronised,  otherwise  tapping  out of the hole – while the machine’s spindle continues  errors  would  arise.  It  is  possible  to  calculate  the  time  to rotate in the tapping direction. required  for  a  tapping  operation  (Degamo,  et  al.  2003  – modified for metric units), using the following equa- Machine Taps tion: Machine  taps  (Fig.  97)  are  utilised  across  a  diverse  range  of  machine  tools  and  special-purpose  tapping  Tm = L n � N = + AL + AR π DLn equipment.  They  can  have  a  variety  of  flute  helices,  � V ranging  from  quick-to-straight  flutes  (Fig.  97a),  de- pending  upon  the  composition  of  the  workpiece  ma- Where:  Tm = Cutting time (min.), terial  to  be  tapped.  When  tapping,  all  machining  is    L = Depth of tapped hole, or Length of cut (mm), undertaken  by  the  cutting  teeth  and  the  chamfer.  In    n = Feedrate (mm min–), general,  the  form  and  length  of  this  chamfer  will  de-   N = Spindle (rpm), pend  upon  what  type  of  hole  is  to  be  tapped.  Tapping    V = Cutting speed (m min–), ‘through-holes’  is  not  too  difficult,  but  ‘blind-holes’    AL = Allowance to start the tap (min), can  present  a  problem,  associated  with  the  evacu-   AR = Allowance to withdraw the tap (min). ation  of  swarf  in  the  reverse  direction  to  that  of  the  feed.  Tap  flute  spirals  that  are  left-handed  and  those  with spiral points (Fig. 97bi), remove chips in the cut- *  To  convert  to  inches,  substitute  12  for  the  1000  con- stant  in  the  equation  and  modify  the  metric  units  to  inches. ‘Tapping depth’ , is an often misleading term, as in many situ-   ations  holes are tapped too deeply,  as  its  is  only  necessary  to  have  a  full  thread  form  for  1.5D*,  as  this  is  where  the  maxi- mum  thread  shear  strength  occurs,  which  in  turn,  is  related  to  the  shear  strength  of  the  workpiece  material.*D = thread’s  major diameter.
  7. Threading Technologies 187 . Figure 97. Machine taps: with and without flutes. [Courtesy of Guhring]
  8. 188 Chapter 5 . Figure 98. Fluteles tapping and tool geometry. [Courtesy of Guhring]
  9. Threading Technologies 189 5 .3 Fluteless Taps In Appendix 7, some tapping problems are given, with  possible  causes  and  solutions  that  may  be  of  use  in  identifying  any  potential  remedial  machining  action  Fluteless  taps  (Fig.  98a),  do  not  have  cutting  edges  to be taken. (Fig.  98ai)  and  produce  the  desired  thread  geometry  by a ‘rolling action’ of the workpiece material. Threads  5.4 Threading Dies produced  by  fluteless  taps  are  much  stronger  than  their  equivalent  machined  taps  (Fig.  98b).  The  bulk  workpiece material approximately follows the thread’s  contour,  thereby  imparting  additional  shear  strength  On shafts, having either straight and tapered external  to  each  thread.  Oil  grooves  are  usually  incorporated  threads these can be manually cut, up to a realistic max- into  the  taps  periphery,  to  facilitate  workpiece  mate- imum  φ40 mm, with threading dies. In essence, these  rial movement and to reduce tap wear rates. Like the  threading dies can be considered as analogous to hard- conventional  machine  taps  (Fig.  97),  fluteless  taps  ened  threaded  nuts  with  multiple  cutting  edges  (Fig.  have a lead to the tap’s edge – termed a ‘forming lead’  99a). The cutting edges on the front die face are usually  (Fig. 98b – left), as opposed to a conventional machine  bevelled, or have a spiral lead to assist in starting the  tap which has a ‘chamfer lead’ (Fig. 98b-right) which  thread on the workpiece. Likewise, it is normal to add  forms  part  of  the  cutting  action.  Therefore,  the  chi- a reasonable chamfer to the bar’s end to be threaded, as  pless  tap  in  operation  (Fig.  98bi),  plastically  moves  this also helps to gently introduce the thread to depth,  workpiece material from the pre-drilled hole into the  as  the  stock  and  die  are  manually-rotated  down  its  spaces between the tap’s flanks and in so doing, locally  length. As is the case for tapping, it is normal practice  work-hardening this material to a limited depth in the  to  ‘back-off ’  the  ‘stock’s’  rotation  about  every  ¾  of  a  workpiece’s substrate.  turn  by  approximately  ¼  of  a  turn,  to  facilitate  chip- Several factors need to be considered prior to util- breaking. As a result of these ‘leads’ on both the shaft  ising fluteless taps on engineering components, these  and die, a few threads on the bar’s end will not be to  are: full  thread  depth.  Care  must  be  taken  when  initially  • Over-sized diameter of pre-drilled hole –  if  the  starting to cut the thread, as if it is not square to the  hole is too large, then insufficient workpiece mate- bar’s  axis,  then  a  ‘drunken thread’  will  result.  Previ- rial will be available to fully form the rolled thread, ously, most dies were manufactured from high carbon  • Undersized diameter of pre-drilled hole –  too  steel and, due to their size, their ‘ruling section’ and its  small a hole will be likely to cause the chipless tap  to  jam  –  as  it  attempts  to  roll  the  thread,  possibly  leading to tap breakage, NB  Therefore, precise control over the diameter of  the pre-drilled hole is imperative. • Workpiece material’s characteristics –  both  the  bulk hardness and more importantly, its mechanical  ‘Drunken threads’ ,  are  the  result  of  variations  in  the  helix    working ability and as a result of this action its lo- angle and its associated pitch differing in uniformity on each  cal hardening, are important factors when ‘rolling’  side of the thread’s diameter. Hence, a ‘true’ mating nut, would  a thread form.  ‘wobble’ somewhat as it is rotated down such poorly manufac- tured threaded shaft – hence, its name: ‘drunken thread’. NB  A ‘start-point’ for the size of pre-drilling diam-   ‘Ruling section’ ,  this  term  relates  to  the  cross-sectional  area  that can normally be hardened, being significantly influenced  eter can be obtained from the tooling suppliers. Of- by  the  component’s  geometry  which  affects  its  ‘critical cool- ten  some  form  of  experimentation  is  necessary  in  ing velocity’ (i.e.  usually  around  1,000°C  sec–)  when  being  order to obtain the optimum diameter, as this pre- quenched. This quenching rate is necessary if the part’s metal- drilled  diameter  will  vary  according  to  the  work- lurgical structure is to fully transform into a martensitic state,  piece material’s previous processing route. prior to subsequent tempering.
  10. 190 Chapter 5 . Figure 99. Die geometries and their nomenclature. [Courtesy of Guhring]
  11. Threading Technologies 191 associated  ‘mass effect’   meant  that  the  dies  could  be  die-head  cutting  elements  to  be  preset  to  take  firstly  through-hardened – which gave them an overall ‘bulk  a  roughing  cut,  followed  by  finishing  cut/chasing  of  hardness’  of  greater  than  HSS.  Today,  basically  dies  the threads down the bar. At the end of the threaded  are either manufactured from micro-grained HSS, or  section,  these  self-opening  dies  will  automatically  coated cemented carbide.  open  and  can  then  be  speedily  withdrawn  from  the  Solid dies (Fig. 99a), do not have any means to com- threaded  portion  of  the  bar.  These  self-opening  dies  pensate for die wear, whereas, their split-die nut coun- can be set to give the correct amount of tolerance, con- terparts (Fig. 99b-left), can be manually-adjusted. This  trolling  the  ‘play’  on  the  thread.  Moreover,  it  is  pos- adjustment of the die is achieved by turning a centrally  sible to fit different thread sizes and forms into the die  mounted  grub-screw  in  the  stock  body,  which  along  head, for more universal threading applications. Both  with  the  fixing  screws  can  be  made  to  open,  or  close  the  radial  and  tangential  threading  elements,  create  on the shaft to be threaded. In this manner, achieving  less  tool  flank  contact  and  frictional  rubbing  on  the  the  correct  thread  tolerance,  or  ‘play’  for  the  desired  cut thread.  fitment  of  its  associated  mating  nut.  It  is  also  usual  practice, to use a suitable die lubricant, to facilitate in  5.5 Thread Turning – the thread’s production while improving surface finish  and prolonging the die’s life – as excessive friction oc- Introduction curs during this type of threading process.  The  major  disadvantage  of  using  the  solid-type  threading dies is that they either have to be unscrewed  from  the  threaded  workpiece,  or  rewound  from  the  On conventional engine-/centre-lathes, a single-point  thread,  using  up  unproductive  time  elements,  this  thread cutting tool (Fig. 100), has a synchronised and  being  particularly  important  for  large  batch  runs,  or  combined  linear  and  rotary  kinematic  motion  for  its  in  a  continuous  production  environment.  Self-open- ing dies0  (i.e.  not  depicted)  have  been  utilised  for  many years on: capstan and turret lathes, single- and  multi-spindle automatics and so on, for cutting exter- nal  threads.  Several  types  of  self-opening  die  heads  are  available,  ranging  from:  radial,  tangential,  or  cir- cular  arrangement  of  the  multi-point  cutting  inserts  and  thread  chasers.  In  most  cases,  it  is  usual  for  the  ‘Mass effect’ , is related to the component’s ‘ruling section’. For    example, if the part has a large cross-sectional area, when it is  quenched from the hardening temperature zone (i.e. this can  be  found  from  its  associated  thermal equilibrium diagram –  for the present), it will  not exceed the  ‘critical cooling velocity’ and only a partial martensitic state occurs. This is because the  quench media used  could  not sufficiently  drastically  reduce  the part’s temperature with an incomplete atomic transforma- tion  occurring  and  in  so  doing,  the  heat-treated  component  will retain some austenite in the matrix. For this reason, large  holes (e.g. designed into in through-hardened Sine-bars) are  often strategically designed in these larger component regions.  Moreover, in many cases the larger component cross-sections  are  reduced,  so  that  the  ‘mass effect’ does  not  occur  –  apart  from the obvious factor of relieving weight, etc.  0  Self-opening dies, are often termed ‘Thread chasing die heads’ ,  whereas  in  reality  a  thread  is  only  ‘chased’  once  the  main  . Figure 100. External and internal threading tool holders and thread form has initially been cut. Thus chasing is employed  in-serts. [Courtesy of Seco Tools] to give the required fit and finish to the final thread form.
  12. 192 Chapter 5 threading insert. This insert is connected to the lead- and  moved  back  to  its  start  point,  then  fed  more  screw (i.e normally having a very accurately-hardened  deeply  beginning  another  threading  pass  down  the  and  ground  Acme  form)  which  is  precisely  synchro- same helical groove, this process being repeated until  nised  to  that  of  the  headstock’s  rotation.  On  a  CNC  full thread depth/profile is accomplished. In order to  turning  centre,  or  similar,  this  linear  motion  is  reli- obtain a consistent thread pitch on the workpiece, the  ant on the precision and accuracy of the recirculating  feedrate  along  the  threaded  portion  must  exactly  co- ballscrew  coupled  to  the  programmed  cutterpath.  In  incide.  The  thread  form  is  dependent  upon  the  pro- this manner, the threading insert being rigidly held in  filed geometry of the thread cutting insert. In order to  either the tool post, or turret, generates a spiral groove  achieve  the  required  final  thread  profile,  the  feedrate  which when at full depth creates a screwthread of the  must  be  considerably  larger  than  is  normally  utilised  desired  pitch  and  helix  angle.  During  successive  tra- for conventional turning operations.  verse  feeding  passes  (i.e.  to  prescribed  depths)  along  Any  V-form  thread  point  angle  geometry,  is  not  the  workpiece  the  thread  is  cut.  A  typical  thread  is  an  ideal  edge  shape  for  the  production  of  machined  routinely produced on CNC turning centres, using its  threads if the insert is fed in normal to the workpiece’s  fixed/canned  cycles  (i.e.  ‘bespoke  software’).  During  axis  of  rotation  (i.e.  radial/plunge-fed).  Chip  control  these  automated  threading  passes,  the  tool  precisely  here will be compromised, as each flank of the V-form  traverses down the bar’s length, is rapidly withdrawn  thread gets successively deeper. This narrowing of the  . Figure 101. Screwcutting tech- niques on turning centres and suggest- ed methods for improved chip control. [Courtesy of Sandvik Coromant]
  13. Threading Technologies 193 chips  from  each  formed  and  angled  flank  face  of  the  cessive passes at a slightly reduced angle (i.e. nor- V-shaped threading insert (i.e. see Fig. 103ai), creates  mally  ranging  from  1°  to  5°).  This  screwcutting  high  localised  forces  and  stresses,  which  will  tend  to  technique  provides  an  improved  flank  surface  fin- tear,  rather  than  cut  the  final  V-form  thread  profile.  ish – compared to the two previous methods, par- In order to minimise these potential high force/shear  ticularly on the either less hard, or for more ductile  workpiece materials. Modified flank infeed methods  components when radial/plunge-cutting a thread, the  are  recommended  rather  than  radial  infeeding  for  radial  infeed  passes  are  progressively  reduced  with  larger  threads,  due  to  contact  on  this  long  flank  increasing  thread  depth.  The  techniques  of  V-form  length which would otherwise result in vibrational  thread production by radial infeed techniques will be  effects  being  superimposed  (i.e  chatter)  onto  the  the subject of the next section. fi   nal thread form, 5.5.1 R adial Infeed Techniques NB  If  the  workpiece  material’s  characteristics  include  potential  machining  work-hardening  Utilising  single-point  threading  inserts  (i.e.  see  Fig.  problems,  then  flank  infeed  techniques  should  be  104, where a typical sequence of threading passes are  avoided,  depicted  –  as  the  V-form  thread  profile  is  partially  • Incremental feeding (Fig. 101 – top-middle right) –  formed), several different techniques of thread turning  are utilised today, they include: if the thread form is very large, then the incremen- • Radial infeed (Fig. 101 – top-left) – being the most  tal thread feeding strategy is normally utilised.  common method, where the threading insert is fed  at 90° to the workpiece’s rotational axis. The mate- These  same  radial  infeed  thread  production  tech- niques are used for the manufacture of internal threads rial  being  removed  on  both  sides  of  the  tool’s  V- (Fig.  102a),  by  either  ‘Pull-threading’ –  depicted  in  form flanks – producing a ‘soft’ chip-forming action  ‘A’ , where the thread form originates from the inter- giving uniform wear to both flanks of the insert, nal undercut, as opposed to ‘Push threading’ – shown  NB  Here  the  V-form  threading  insert  geometry  in ‘B’ – being toward say, an undercut. In both cases  forms  both  flanks  with  lighter  cuts  as  the  thread  of thread production, the modified flank infeed tech- depth progressively increases. niques are employed. • Flank infeed (Fig.  103aii)  –  is  often  known  as  the  NB  Threads  manufactured  by  method  ‘A’  allow  for  ‘half-angle screwcutting technique’ ,  mainly  utilised  excellent  evacuation  of  the  chips  –  being  an  ideal  technique for ‘blind holes’. Conversely, in case ‘B’ , the  on  a  conventional  engine-/centre-lathe.  Here,  the  left-hand  flank  is  formed  by  the  tool’s  V-form  ge- swarf  would  otherwise  simply  ‘bird’s nest’  in  such  a  ometry, while the right-hand thread flank is  gener- hole,  unless  a  through  hole  is  present,  as  is  depicted  in ‘B’.  ated  by  successive  passes,  as  the  tool  is  fed  down  the  face  at  half  the  thread’s  included  angle.  Chip  control is improved with all flank infeed techniques  If thread forms are based upon square threads, or their  over  ‘plunging’ ,  enabling  the  chip  to  be  vectored  modified  trapezoidal  forms:  Buttress,  or  Acme  (i.e.  away  from  the  previously  cut  surface  (i.e  see  Fig.  see Fig. 95i – for examples of these thread profiles), it  101 – middle, where the chips can be steered away  from the flank), NB  This  ‘half-angle technique’ producing  the  thread’s right flank, is generated by the tool’s right-   Incremental feeding,  is  sometimes  termed  the  ‘Alternating flank’ technique, it has the advantage of imparting a uniform  hand flank – which due to frictional effects, creates    wear to both of the cutting insert’s V-form flanks, thereby sig- here  a  more  pronounced  wear  rate  on  the  cutting  nificantly increasing the tool life.  edge resulting in a poor surface finish.   ‘Bird nesting’ , is a term that refers to the rotational entangle- ment and build-up of work-hardened swarf at the bottom of  • Modified flank infeed (Fig. 101top-middle left) – in  a  ‘blind  hole’ ,  which  can  create  some  problems  in  internal  this cutting action, the tool is fed to depth in suc- thread production. 
  14. 194 Chapter 5 . Figure 102. External and internal threading operations and the effect that the helix has as the diameter changes – for a given pitch. [Courtesy of Sandvik Coromant]
  15. Threading Technologies 195 is  advisable  to  pre-machine  the  thread  with  a  groov- to  a  deeper  thread  depth  and  the  process  is  repeated  ing  tool  –  with  the  tool’s  width  being  the  equivalent  until the full thread form has been completed. As pre- of the thread’s root spacing dimension. Not only does  viously  mentioned,  the  pitch  is  not  the  same  as  the  this  pre-machining  strategy  of  employing  a  grooving  lead for multi-start threads and the lead can be easily  tool  reduce  the  number  of  threading  passes  to  just  calculated as follows: flank finishing, the tool can have a chip-breaker pres- Lead = np ent during the rough machining stage to effectively re- move the bulk stock and its associated swarf.  Where: n = number of starts, 5.5.2 T hread Helix Angles, p = pitch (mm). f or Single-/Multi-Start Threads For example, in the case of the triple-start thread illus- The fundamental basis underpinning  any thread form  trated in Fig. 106c, for say, a V-form metric thread of  is the  helix angle, which in this case is denoted by the  6 mm pitch, then the lead will be: 3 × 6 mm = 18 mm. Greek symbol ‘ϕ’ – as schematically illustrated in Fig.  NB  This means that if a mating nut was rotated down  102b.  One  way  of  describing  how  the  helix  angle’s  geometry  is  created,  is  to  imagine  that  a  right-angle  this triple-start thread,  it would be  linearly displaced  triangle  is  formed  by  a  thin  wire  which  has  been  by  18 mm  in  one  revolution  –  allowing  the  nut  to  be  unwound  from  a  parallel  cylindrical  shaft,  whose  rotated in, or out quickly (i.e. because of its larger he- d   iameter  equates  to  its  ‘effective  diameter’.  Then,  this  lix  angle),  but  to  the  detriment  of  an  increased  axial  unwound wire length (i.e. πD) would be its circumfer- loading.  Although  this  load  is  distributed  across  the  ence, acting as a base for the triangle (Fig. 102b). The  contact between all the multi-start threads. perpendicular height of right-angled triangle is equal  to the  pitch ‘p’ , or the lead – in the case of a single- start thread. The angle that the hypotenuse makes with  5.5.3 T hreading Insert Inclination the  base is its  helix angle ‘ϕ’. From the schematic dia- gram in Fig. 101c, if the pitch ‘p’ remains constant and  the diameter ‘D’ is decreased (i.e. ‘D’ → ‘D’), then the  The  threading  insert  is  carefully  ground  by  the  tool- helix angle proportionally increases (i.e. ‘ϕ’ → ‘ϕ’).  ing manufacturer to provide the correct thread profile.  In the case of  multi-start threads, the pitch and the  This insert must operate with a radial cutting rake of  lead differ, as shown in Fig. 106c. In this illustration for  0°,  if  the  correct  thread  form  is  to  actually  imparted  the cutting the triple-start thread, the usual approach  to the formed thread (Fig. 103). The lead angle of the  to its manufacture is for the three successive starts to  flank  surface  varies  at  different  points  between  the  be  individually  completed  to  form  the  ‘triple-start’ ,  crest and the root of the thread, increasing toward the  with  each  start  being  angularly  displaced  120°  with  root – the opposite is true on an internal thread. Due  to  this  effect,  the  actual  cutting  rake  varies  along  the  respect to each other. Alternatively, if one start is be- insert’s  cutting  edge,  becoming  more  positive on  the  gun with the first threading pass, then the second start  leading edge and more negative on the trailing edge – the  is similarly machined and so on – for the number of  starts required, then the threading insert is advanced  closer it gets to the thread’s root. In order to minimise  such  threading  insert  rake  angle  variation  the  insert  is inclined, so that its top face is perpendicular to a    ‘Pitch’ – can be defined as the distance between correspond- ing points on adjacent threads, normally expressed in metric  units as ‘mm’ , or in Imperial units as threads per inch.   ‘Lead’  –  being  defined  as  the  axial distance through  which    Threading shimming – the tool holder is delivered fitted with  a shim that gives an effective side inclination angle of 1° – be- a  point on  the  thread  advances during  one revolution of  the  thread ×. This helix angle ‘ϕ’ is also known as its ‘lead angle’ ing the most common type. Although shims can be changed  in degree increments from: –2° to 4°, by simply fitting a differ- NB  Both  the  pitch  and  the  lead are  identical  for  single-start ent shim angle. Likewise, internal threading tool holder incli- threads. nations can be changed, by fitting such shims.
  16. 196 Chapter 5 . Figure 103. Thread for- mation by radial and flank infeeds, to-gether with threading insert inclina- tion angles. [Courtesy of Sandvik Coromant] line indicating the mean lead angle ‘λ’ – measured at  produces  a  symmetrical  side  clearance  (i.e.  depicted  the pitch diameter (Fig. 103b). This insert inclination  in  Fig.  103bi – bottom  left  diagram)  and  is  important  in  ensuring  a  uniform  edge  wear  on  both  flanks,  re- sulting in increased insert useful life. The fact that this  small threading insert inclination, causes one flank to  cut slightly below, while the other cutting marginally    Threading insert top face geometry – instead of a flat/straight  top  face  to  the  insert,  today,  it  is  often  angled  (i.e.  shown  in  above the centre-line of the workpiece – for a flat top  Fig. 103bi – bottom left), which enables improved control of  faced  insert,  is  of  no  practical  significance  at  normal  lead  angles  for  either  the  function  of  cutting,  or  the  the developing chip.
  17. Threading Technologies 197 . Figure 104. External threading with an indexable insert – chip formation in a partially-formed/generated thread for a single pass along the bar. [Courtesy of Sandvik Coromant] thread’s  profile.  Further,  a  small  deviation  from  the  of between 0° and 2° with an inclination of 1° and, still  exact  symmetry  required  in  the  insert’s  inclination  is  produce a satisfactory thread. This thread production  also  acceptable,  without  too  obvious  a  disadvantage.  technique  is  only  true  for  the  normal,  symmetrical  Thus, the inclined insert can be utilised to cut threads  threads  (i.e.  ‘V-forms’);  in  the  case  of  ‘saw-toothed’ 
  18. 198 Chapter 5 . Figure 105. Internal threading operations for right- and left-hand threads. [Courtesy of Sandvik Coromant] threads (e.g. Buttress), it should be borne in mind that  and external left- and right-hand threading configura- the ‘straight-flanked’ ones – those with angles between  tions, respectively).  0° to 7° – in particular, offer side clearances which may  In the case of internal thread inclination angles, the  tool must be ‘canted-over’ at the angle ‘λ’ (i.e. see Fig.  be adequate. In Fig. 103c a graph depicting the thread- ing insert inclination angles is given for differing helix  103bii), so that the cutting edge is situated normal to  angles, with the helix angle calculation derived as fol- the  centreline.  Often,  the  toolholder  shank  has  to  be  lows: ground-away  to  avoid  fouling  on  the  internal  hole’s  diameter as shown in Fig. 105a. Here (Fig. 105a), the  tan λ = P / D × π distance from the tool tip to the rear of the toolholder  shank  –  denoted  by  the  dimension  ‘D’ ,  is  relieved  to  ‘Dmod’ to avoid fouling on the curvature of the hole, as  Where:   λ = Helix angle (°), the tool is fed-out of the thread depth at the end of its   P = Pitch (mm, or threads per inch), successive ‘threading passes’.   D = Effective pitch diameter (mm, or inches). 5.5.4 T hread Profile Generation Metric  threading  inserts  are  characterised  by  their  thread  profile  and  the  associated  pitch,  being  ex- pressed  in  millimetres.  The  shape  and  size  of  the  in- The profile of a thread can be cut by several different  sert  will  determine  the  completed  thread  form.  One  techniques and differing types of inserts – depending  threading  insert  can  be  utilised  to  cut  all  threads  of  whether ‘topping’ the is required. For example, if a V- this profile and size, irrespective of their thread diam- form profiled threading insert is utilised (Fig. 106bi),  eter,  or  whether  they  are:  right-  or,  left-hand,  single-  no  actual  machining  is  undertaken  of  the  thread’s  or, multi-start (i.e. see Figs. 105b and 106a, for internal  top. In this situation, it is necessary to ensure that the 
  19. Threading Technologies 199 . Figure 106. External threading operations and insert forms. [Courtesy of Sandvik Coromant]
  20. 200 Chapter 5 5.5.5 T hreading Turning – pre-machined  workpiece  –  when  producing  external  C utting Data and Other threads – has the exact size for the major diameter re- I mportant Factors quired,  conversely,  for  internal  threads  this  must  be  the minor diameter that is pre-machined. Due to the  sharpness of the thread produced by this technique, it  Whatever  type  of  thread  to  be  cut,  whether  it  is  a:  is often necessary to ‘chase the thread’ afterward.  V-form, Multi-start, Trapezoidal, or Tapered, it is gen- In  the  case  of  profiled  threading  inserts,  the  com- erally quite difficult to vary such factors as the: cutting  plete  thread  profile  is  cut  from  a  slightly  oversized speed,  feed  and,  to  a  lesser  extent  the  DOC,  indepen- blank. Usually, three distinct profiling inserts could be  dently of one another, without certain consideration of  used in thread production, these are: some limiting factors. The typical limitations imposed  • V-form (Fig. 106bi) – has the ability to machine a  when cutting a thread, will now be discussed.  range of thread profiles, with the nose radius pre- cisely and accurately ground for the smallest pitch  Cutting Speed to  be  cut.  As  a  result  of  this  tightly  ground  nose  radius,  the  insert’s  life  is  shorter  than  with  other  Typical  limitations  imposed  by  the  action  of  cut- profiling  insert  versions,  as  its  size  has  not  been  ting  a  thread  include,  reducing  the  cutting  speed  by  optimised  for  individual  thread  geometries.  From  25%  –  compared  to  ordinary  turning,  as  the  insert’s  an  economic  viewpoint,  due  to  the  V-form  profil- shape  limits  heat  dissipation.  If  a  high  a  chip  load  ing  insert’s  ability  to  cut  a  wide  variety  of  thread  occurs  due  too  great  a  cutting  speed  selected,  then  pitches, less inserts need to be stocked, the  cutting  temperature  can  approach  that  of  say,  a  • Full-form (Fig.  106bii)  –  has  the  ability  to  profile  cemented  carbide’s  original  sintering  temperature.  the thread’s crest and is therefore manufactured to  As  a  result  of  this  elevated  temperature,  the  binder  exactly the specification of the required thread pro- phase  may  soften,  causing  potential  cutting  edge  file.  Such  full-profile  inserts  simplify  thread  pro- plastic  deformation.  The  remedy  here  seems  quite  duction,  as  no  profile  is  deeper  than  its  specifica- easy, simply reduce the cutting speed, but this may in- tion, allowing them to be a stronger insert thereby  crease the risk of BUE. This BUE may cause the chips  resulting in improved tool life, to  become  welded  onto  the  cutting  edge  from  which  • Multi-point form (Fig. 106biii) – with this multiple- they are shortly fragmented and continuously carried  pointed  profiling insert, the first  tooth  roughs-out  away  –  taking  a  minute  portions  of  the  insert’s  edge  the thread and is therefore slightly set back in com- along  with  them.  The  problem  can  be  minimised  by  parison to the second tooth on the insert, which acts  specifying a tougher grade of carbide for the threading  almost like a ‘chaser’ which fully-forms and blends  insert,  or  choosing  a  multi-coated  insert.  Normally,  the various thread profiling elements upon the final  the cutting speeds for any threading operation should  threading pass. Cutting conditions need to be rigid  not be less than 40 m min–, when machining with any  and stable for this type of insert to operate correctly  cemented carbides.  – due to its longer cutting edge length. It is essential  to ensure that the recommended in-feed values are  Feed and D OC used, to ensure that cutting forces are balanced for  The feed in millimetres per revolution, must coincide  both of the cutting teeth. One advantage of utilising  these multi-point threading inserts is that the num- with the desired pitch, or lead – when cutting multi- ber  of  threading  passes  can  be  reduced  by  almost  start threads. Hence, if the cutting speed is modified,  50% – as it cuts deeper than its counterparts, when  the  feedrate  will  also  have  to  be  increased,  or  de- compared to the single-profiling insert forms. creased,  so  that  the  feed  per  revolution  is  constantly  maintained.  So,  the  critical  factor  here  is  to  achieve  some  form  of  control  over  the  DOC when  threading.  Each threading pass along the workpiece causes an in- creasingly larger portion of the insert’s cutting edge to    ‘Chasing a thread’ , refers to using a  chasing tool with the ex- act thread profile which is utilised to follow the thread along,  become in contact in the threading operation, accord- thereby  deburring and  forming the desired profile simultane- ingly,  tool  forces  will  proportionally  increase.  If  the  DOC  is  kept  constant  during  several  passes,  the  chip- ously.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2