intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài giảng Tín hiệu và hệ thống: Chương 6 (Lecture 11) - Trần Quang Việt

Chia sẻ: Star Star | Ngày: | Loại File: PDF | Số trang:13

131
lượt xem
10
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Nội dung chính của bài này trình bày về phân tích hệ thống LTI dùng biến đổi Laplace, sơ đồ khối và thực hiện hệ thống. Thông qua chương này người học có thể nắm bắt được: Hàm truyền của hệ thống LTI, xác định đáp ứng của hệ thống LTI, tính ổn định của hệ thống LTI mô tả bởi PTVP, thực hiện hệ thống ở mức sơ đồ khối, thực hiện hệ thống bằng mạch điện Op-amp.

Chủ đề:
Lưu

Nội dung Text: Bài giảng Tín hiệu và hệ thống: Chương 6 (Lecture 11) - Trần Quang Việt

  1. Ch-6: Phân tích hệ thống liên tục dùng biến đổi Laplace Lecture-11 6.2. Phân tích hệ thống LTI dùng biến đổi Laplace 6.3. Sơ đồ khối và thực hiện hệ thống Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 6.2. Phân tích hệ thống LTI dùng biến đổi Laplace 6.2.1. Hàm truyền của hệ thống LTI 6.2.2. Xác định đáp ứng của hệ thống LTI 6.2.3. Tính ổn định của hệ thống LTI mô tả bởi PTVP Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 1
  2. 6.2.1. Hàm truyền của hệ thống LTI  Hàm truyền của hệ thống LTI: xét HT LTI có đáp ứng xung h(t): Ta có: y(t)=f(t) ∗ h(t) Y(s)=F(s)H(s) H(s)=Y(s)/F(s) Với H(s) là biến đổi Laplace của h(t) còn được gọi là hàm truyền của hệ thống  Biểu diễn hệ thống LTI bằng hàm truyền  Hàm truyền của hệ thống LTI ghép nối tiếp: H(s)=H1 (s)H 2 (s) Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 6.2.1. Hàm truyền của hệ thống LTI  Hàm truyền của hệ thống LTI ghép song song: H(s)=H1 (s)+H 2 (s)  Hàm truyền của hệ thống LTI ghép hồi tiếp: H1 (s) H(s)= 1+H1 (s)H 2 (s) Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 2
  3. 6.2.1. Hàm truyền của hệ thống LTI  Hàm truyền của HT LTI nhân quả mô tả bởi phương trình vi phân Q(D)y(t)=P(D)f(t) D k y(t) ↔ s k Y(s) Q(s)Y(s)=P(s)F(s) k k D f(t) ↔ s F(s) Y(s) P(s) H(s)= = F(s) Q(s) Ví dụ: xác định hàm truyền của HT LTI mô tả bởi PTVP (D 2 +2D+3)y(t)=Df(t) P(s) s H(s)= = 2 Q(s) s + 2s + 3 Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 6.2.1. Hàm truyền của hệ thống LTI  Ví dụ về xác định hàm truyền của hệ thống  Ví dụ 1: Hệ thống cơ học x: chiều cao mặt đường , y: chiều cao xe d 2 y(t) dy(t) dx(t) ∴m 2 +b +ky(t)=b +kx(t) dt dt dt (D 2 + mb D+ mk ) y(t)= ( mb D+ mk ) x(t) (b/m)s+(k/m) (b/m)s+(k/m) H(s) = 2 X(s) Y(s) s +(b/m)s+(k/m) 2 s +(b/m)s+(k/m) Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 3
  4. 6.2.1. Hàm truyền của hệ thống LTI  Ví dụ 2: mạch điện y (t ) 1H ∴ (D 2 +4D+3)y(t)=Df(t) 4Ω 1 f (t ) + - F s 3 H(s)= 2 s +4s+3  Với hệ thống là mạch điện ta có thể đưa biến đổi Laplace vào mạch và giải mạch trực tiếp như là mạch thuần trở. Dưới đây là mô tả cho hệ thống là mạch điện thuộc hệ thống LTI nhân quả • Trở R: v R (t)=Ri R (t) VR (s)=RIR (s) dvc (t) 1 • Điện dung C: i C (t)=C IC (s)=CsVC (s) VC (s)= IC (s) dt Cs di (t) VL (s)=LsI L (s) • Điện cảm L: v L (t)=L L dt Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 6.2.1. Hàm truyền của hệ thống LTI n n • KCL: ∑ i j (t)=0 j=1 ∑ I (s)=0 j j=1 n n • KVL: ∑ v (t)=0 j ∑ V (s)=0 j=1 j j=1  Ví dụ 3: y (t ) 1H Y ( s) 4 s 4Ω 1 f (t ) + - F F ( s) 3/ s 3 s s ∴ H(s)= 2 F(s) 2 Y(s) s +4s+3 s +4s+3 Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 4
  5. 6.2.1. Hàm truyền của hệ thống LTI  Ví dụ 4: Bộ khuếch đại R − + F(s) k Y(s) F ( s) + − + Y ( s) − Rf ∴ H ( s) = − R =k  Ví dụ 5: Bộ tích phân 1/ Cs R − F(s) k Y(s) + F ( s) + − + Y ( s) s − 1 ∴ H ( s ) = − RCs = −1/sRC = ks Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 6.2.1. Hàm truyền của hệ thống LTI  Ví dụ 6: Hệ thống bậc 1 Rf R 1/ Cs F(s) ka Y(s) − + s+a F ( s) + − + Y ( s) − Rf 1 k = − R ;a = RfC Rf 1/ Cs F(s) k ( s+a ) Y(s) 1/ C f s ( s+b) − R + F ( s) + + Y ( s) C 1 1 − − k = − Cf ;a = RfC f ;b = RC Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 5
  6. 6.2.2. Xác định đáp ứng của hệ thống LTI  Ví dụ: Xét hệ thống cơ học sau (b/m)s+(k/m) X(s) 2 Y(s) s +(b/m)s+(k/m) 3s+ 2 Giả sử chọn m=1, k=2, b=3  H (s )= 2 s + 3s+ 2 1 Giả sử x(t)=u(t)  X (s )= s 3s+ 2 Y (s )= H (s )X ( s ) = s (s + 3 s + 2 ) 2 Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 6.2.2. Xác định đáp ứng của hệ thống LTI 1 1 2 Y (s )= + − s s+ 1 s+ 2 y (t)= (1 + e − t − 2 e − 2 t ) u (t) Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 6
  7. 6.2.2. Xác định đáp ứng của hệ thống LTI 2s+ 5 Nếu chọn m=1, k=5, b=2  H (s )= 2 s + 2s+ 5  1   2s+ 5  Y (s )= X (s )H (s )=    2   s   s + 2 s+ 5  y (t)= 1 − e − t (c o s 2 t − 1 2 s in 2 t)  u (t) Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 6.2.2. Xác định đáp ứng của hệ thống LTI  Xác định giá trị đầu và giá trị cuối của đáp ứng y ( 0 + ) = lim [s Y (s )] s→ ∞ lim y (t) = lim [s Y (s )] t→ ∞ s→ 0 3s+ 2 Ví dụ: Y (s )= s (s + 3 s + 2 ) 2 3s + 2 y ( 0 + ) = lim s = 0 s→ ∞ s (s + 3s + 2 ) 2 3s + 2 lim y ( t ) = lim s =1 t→ ∞ s→ 0 s (s + 3s + 2 ) 2 Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 7
  8. 6.2.3. Tính ổn định của hệ thống LTI mô tả bởi PTVP  Các poles của hàm truyền H(s) chính là nghiệm của PTĐT (xem lại chương 2) nên tính ổn định của hệ thống tùy thuộc vào vị trí của các poles trong mặt phẳng phức  Hệ thống ổn định tiệm cận nếu: tất cả các poles nằm ở LHP  Hệ thống ổn định biên nếu: không có pole nào ở RHP và có poles đơn trên trục ảo  Hệ thống không ổn định nếu có một trong 2 ĐK: có pole ở RHP hoặc có pole lặp trên trục ảo. Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 6.3. Sơ đồ khối và thực hiện hệ thống 6.3.1. Thực hiện hệ thống ở mức sơ đồ khối 6.3.2. Thực hiện hệ thống bằng mạch điện Op-amp Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 8
  9. 6.3.1. Thực hiện hệ thống ở mức sơ đồ khối b ms m +b m-1s m-1 +...+b1s+b0  Xét hệ thống với hàm truyền: H(s)= s n +a n-1s n-1 +...+a1s+a 0  Ta có thể thực hiện hệ thống theo 3 cách khác nhau: a) Dạng trực tiếp b) Dạng nối tiếp c) Dạng song song  Dựa trên cơ sở bộ tích phân hoặc vi phân + khuếch đại & bộ cộng  Thực tế không dùng bộ vi phân  không ổn định!!!  Nếu m>n  H(s) là bộ vi phân bậc m-n  không xét trên thực tế!!!  Bài toán tổng quát trên thực tế m≤n – tổng quát m=n: b n s n +bn-1s n-1 +...+b1s+b0 H(s)= s n +a n-1s n-1 +...+a1s+a 0 Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 a) Dạng trực tiếp b3s3 +b 2s 2 +b1s+b0  Xét hàm truyền bậc 3: H(s)= 3 s +a 2s 2 +a1s+a 0 F(s) b3s3 +b2s 2 +b1s+b0 Y(s) s3 +a 2s 2 +a1s+a 0 1 X(s) 3 F(s) 3 2 b3s +b2s 2 +b1s+b0 Y(s) s +a 2s +a1s+a 0 H1 (s)=X(s)/F(s) H 2 (s)=Y(s)/X(s) Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 9
  10. a) Dạng trực tiếp 1 X(s) Y(s) H1 (s)= 3 2 = H 2 (s)=b3s3 +b2s 2 +b1s+b0 = s +a 2s +a1s+a 0 F(s) X(s) s3 X (s) F (s) +- b3 + Y (s) -- 1 s a2 b2 s 2 X ( s) 1 s a1 b1 sX (s) 1 s X (s) a0 b0 Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 a) Dạng trực tiếp b n s n +b n-1s n-1 +...+b1s+b0  Tổng quát cho hàm truyền bậc n: H(s)= s n +a n-1s n-1 +...+a1s+a 0 s n X (s) F (s) + - bn + Y (s) - -- 1 s a n −1 b n −1 s n−1 X ( s) 1 s an−k bn − k s n−k X ( s) 1 s sX (s) a1 b1 1 s X (s) a0 b0 Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 10
  11. a) Dạng trực tiếp  Ví dụ: Vẽ sơ đồ khối thực hiện hệ thống sau 5 s+5 s 4s+28 a) ; b) ; c) ; d) 2 s+2 s+7 s+7 s +6s+5 Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 b) Dạng nối tiếp 4s+28  Ví dụ 1: xét hệ thống sau: H (s)= 2 s +6s+5  4s+28   1  H (s)=     s+1   s+5  F(s) 4s+28 1 Y(s) s+1 s+5 7s 2 +37s+51  Ví dụ 2: xét hệ thống sau: H (s)= (s+2)(s+3) 2 Thực hiện như thế nào? Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 11
  12. c) Dạng song song 4s+28  Ví dụ 1: xét hệ thống sau: H (s)= 2 s +6s+5 6 2 H (s)= − s+1 s+5 6/(s+1) F(s) + Y(s) - 2/(s+5) 7s 2 +37s+51  Ví dụ 2: xét hệ thống sau: H (s)= (s+2)(s+3) 2 Thực hiện như thế nào? Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 d) Kết hợp nối tiếp và song song  Thực hiện H(s) có nghiệm lặp lại: 7s 2 +37s+51 Ví dụ: xét hệ thống sau: H (s)= (s+2)(s+3) 2 5 2 3 H (s)= + − s+2 s+3 (s+3) 2 5/(s+2) F(s) 2 + Y(s) - 1/(s+3) 1/(s+3) 3 Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 12
  13. d) Kết hợp nối tiếp và song song  Thực hiện H(s) có các cực liên hiệp phức: 10s+50 Ví dụ: xét hệ thống sau: H (s)= (s+3)(s 2 +4s+13) 2 1+j2 1-j2 Không H(s)= - - s+3 s+2-j3 s+2+j3 thực hiện 2 2s-8 H (s)= - 2 được s+3 s +4s+13 2/(s+3) F(s) + Y(s) 2s-8 2 Thực hiện theo dạng trực tiếp s +4s+13 Thực hiện nhờ hệ thống bậc 2 Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 6.3.2. Thực hiện hệ thống bằng mạch điện Op-amp 2s+5 Ví dụ: thực hiện hệ thống có hàm truyền H(s)= 2 bằng mạch điện Op-amp s +4s+10 Signal & Systems - Tran Quang Viet – FEEE, HCMUT – Semester: 02/10-11 13
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2