Proximal Gradient Descent (and Acceleration)
Hoàng Nam Dũng
Khoa Toán - Cơ - Tin học, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội
Last time: subgradient method
Consider the problem
f (x) min x
with f convex, and dom(f ) = Rn.
Subgradient method: choose an initial x (0) Rn, and repeat: ∈ x (k) = x (k−1) g (k−1), k = 1, 2, 3, . . . tk · − ∂f (x (k−1)). We use pre-set rules for the step sizes ∈ where g (k−1) (e.g., diminshing step sizes rule).
If f is Lipschitz, then subgradient method has a convergence rate O(1/ε2).
1
Upside: very generic. Downside: can be slow — addressed today.
Outline
(cid:73) Proximal gradient descent
(cid:73) Convergence analysis
(cid:73) ISTA, matrix completion
(cid:73) Special cases
(cid:73) Acceleration
2
Today
Decomposable functions
Suppose
f (x) = g (x) + h(x)
(cid:73) g is convex, differentiable, dom(g ) = Rn (cid:73) h is convex, not necessarily differentiable.
where
If f were differentiable, then gradient descent update would be
t x + = x f (x) · ∇
2f (x) by 1 t I
2 2
− Recall motivation: minimize quadratic approximation to f around x, replace ∇ z x . f (x)T (z x) + x + = argminz f (x) + ∇ 1 2t (cid:107) − (cid:107)
− ˜ft (z)
3
(cid:123)(cid:122) (cid:125) (cid:124)
Decomposable functions
In our case f is not differentiable, but f = g + h, g differentiable. Why don’t we make quadratic approximation to g , leave h alone?
I.e., update
x + = argminz ˜gt(z) + h(z)
2 2 + h(z) (cid:107)
z x g (x)T (z x) + = argminz g (x) + ∇ − 1 2t (cid:107) −
2 2 + h(z).
t (x = argminz 1 z 2t (cid:107) g (x)) (cid:107) ∇ − −
2 2
1 z 2t (cid:107)
4
(x − g (x)) (cid:107) stay close to gradient update for g also make h small t ∇ − h(z)
(cid:73) h(x) = 0: proxh(x) = x.
(cid:73) h(x) is indicator function of a closed convex set C : proxh is
2
2 = PC (x).
(cid:73) h(x) =
1: proxh is the ’soft-threshold’ (shrinkage)
the projection on C 1 x z proxh(x) = argminz∈C 2 (cid:107) − (cid:107) x (cid:107) (cid:107) operation 1 xi 1 xi − ≥ 0 1 xi proxh(x)i = | ≤ | 1. xi + 1 xi ≤ −
Examples:
Proximal mapping
The proximal mapping (or prox-operator) of a convex function h is defined as
2 2 + h(z). (cid:107)
5
x z proxh(x) = argminz 1 2 (cid:107) −
(cid:73) h(x) is indicator function of a closed convex set C : proxh is
2
2 = PC (x).
(cid:73) h(x) =
1: proxh is the ’soft-threshold’ (shrinkage)
the projection on C 1 x z proxh(x) = argminz∈C 2 (cid:107) − (cid:107) x (cid:107) (cid:107) operation 1 xi 1 xi − ≥ 0 1 xi proxh(x)i = | ≤ | 1. xi + 1 xi ≤ −
Proximal mapping
The proximal mapping (or prox-operator) of a convex function h is defined as
2 2 + h(z). (cid:107)
x z proxh(x) = argminz 1 2 (cid:107) −
(cid:73) h(x) = 0: proxh(x) = x.
5
Examples:
(cid:73) h(x) =
1: proxh is the ’soft-threshold’ (shrinkage)
x (cid:107) (cid:107) operation 1 xi 1 xi − ≥ 0 1 xi proxh(x)i = | ≤ | 1. xi + 1 xi ≤ −
Proximal mapping
The proximal mapping (or prox-operator) of a convex function h is defined as
2 2 + h(z). (cid:107)
x z proxh(x) = argminz 1 2 (cid:107) −
(cid:73) h(x) = 0: proxh(x) = x. (cid:73) h(x) is indicator function of a closed convex set C : proxh is
Examples:
the projection on C
2 2 = PC (x).
5
z proxh(x) = argminz∈C 1 x 2 (cid:107) − (cid:107)
Proximal mapping
The proximal mapping (or prox-operator) of a convex function h is defined as
2 2 + h(z). (cid:107)
x z proxh(x) = argminz 1 2 (cid:107) −
(cid:73) h(x) = 0: proxh(x) = x. (cid:73) h(x) is indicator function of a closed convex set C : proxh is
Examples:
the projection on C
2 2 = PC (x).
(cid:73) h(x) =
1: proxh is the ’soft-threshold’ (shrinkage) (cid:107)
z proxh(x) = argminz∈C 1 x 2 (cid:107) − (cid:107)
5
x (cid:107) operation 1 −
1 1. 1 xi xi 0 xi | xi + 1 xi proxh(x)i = ≥ | ≤ ≤ −
Optimality condition
z x ∂h(z) z = proxh(x) − ∈ ⇔ h(u) h(z) + (x z)T (u z), u. ≥ ⇔ − ∀ −
Proximal mapping
Theorem If h is convex and closed (has closed epigraph) then
2 2 + h(z). (cid:107)
x z proxh(x) = argminz 1 2 (cid:107) − exists and is unique for all x.
Chứng minh. See http://www.seas.ucla.edu/~vandenbe/236C/lectures/ proxop.pdf
6
Uniqueness since the objective function is strictly convex.
Proximal mapping
Theorem If h is convex and closed (has closed epigraph) then
2 2 + h(z). (cid:107)
x z proxh(x) = argminz 1 2 (cid:107) − exists and is unique for all x.
Chứng minh. See http://www.seas.ucla.edu/~vandenbe/236C/lectures/ proxop.pdf
Uniqueness since the objective function is strictly convex.
Optimality condition
6
z x ∂h(z) z = proxh(x) ∈ ⇔ − h(u) h(z) + (x z)T (u z), u. ≥ ⇔ − ∀ −
Chứng minh.
With u = proxh(x) and v = proxh(y ) we have
T
x u v ∂f (u) and y ∂f (v ). − ∈ − ∈ From the monotonicity of subdifferential we get
(x u) (y v ) (u v ) 0. − − − ≥ − (cid:0) (cid:1) From firm nonexpansiveness and Cauchy-Schwarz inequality we get
nonexpansiveness (Lipschitz continuity with constant 1)
2
2.
x y proxh(x) proxh(y ) (cid:107) − (cid:107) ≤ (cid:107) − (cid:107)
Properties of proximal mapping
Theorem Proximal mappings are firmly nonexpansive (co-coercive with constant 1)
2 2. (cid:107)
7
y ) (proxh(x) proxh(y ))T (x proxh(x) proxh(y ) − − ≥ (cid:107) −
From firm nonexpansiveness and Cauchy-Schwarz inequality we get
nonexpansiveness (Lipschitz continuity with constant 1)
2
2.
x y proxh(x) proxh(y ) (cid:107) − (cid:107) ≤ (cid:107) − (cid:107)
Properties of proximal mapping
Theorem Proximal mappings are firmly nonexpansive (co-coercive with constant 1)
2 2. (cid:107)
y ) (proxh(x) proxh(y ))T (x proxh(x) proxh(y ) − − ≥ (cid:107) −
Chứng minh. With u = proxh(x) and v = proxh(y ) we have
T
x u v ∂f (u) and y ∂f (v ). − ∈ − ∈ From the monotonicity of subdifferential we get
7
(x u) (y v ) (u v ) 0. − − − ≥ − (cid:0) (cid:1)
Properties of proximal mapping
Theorem Proximal mappings are firmly nonexpansive (co-coercive with constant 1)
2 2. (cid:107)
y ) (proxh(x) proxh(y ))T (x proxh(x) proxh(y ) − − ≥ (cid:107) −
Chứng minh. With u = proxh(x) and v = proxh(y ) we have
T
x u v ∂f (u) and y ∂f (v ). − ∈ − ∈ From the monotonicity of subdifferential we get
(x u) (y v ) (u v ) 0. − − − ≥ − (cid:0) (cid:1)
7
From firm nonexpansiveness and Cauchy-Schwarz inequality we get nonexpansiveness (Lipschitz continuity with constant 1)
2
2.
y proxh(x) proxh(y ) (cid:107) x ≤ (cid:107) − (cid:107) − (cid:107)
To make this update step look familiar, can rewrite it as
x (k) = x (k−1) tk Gtk (x (k−1)) · − where Gt is the generalized gradient of f , x t g (x)) proxth(x . − − ∇ Gt(x) = t
For h = 0 it is gradient descent.
Proximal gradient descent
Proximal gradient descent: choose initialize x (0), repeat:
8
x (k−1) g (x (k−1)) , k = 1, 2, 3, . . . tk x (k) = proxtk h − · ∇ (cid:0) (cid:1)
For h = 0 it is gradient descent.
Proximal gradient descent
Proximal gradient descent: choose initialize x (0), repeat:
x (k−1) g (x (k−1)) , k = 1, 2, 3, . . . tk x (k) = proxtk h − · ∇ (cid:0) (cid:1) To make this update step look familiar, can rewrite it as
x (k) = x (k−1) tk Gtk (x (k−1)) · −
8
where Gt is the generalized gradient of f , t x g (x)) . − − ∇ Gt(x) = proxth(x t
Proximal gradient descent
Proximal gradient descent: choose initialize x (0), repeat:
x (k−1) g (x (k−1)) , k = 1, 2, 3, . . . tk x (k) = proxtk h − · ∇ (cid:0) (cid:1) To make this update step look familiar, can rewrite it as
x (k) = x (k−1) tk Gtk (x (k−1)) · −
where Gt is the generalized gradient of f , t x g (x)) . − − ∇ Gt(x) = proxth(x t
8
For h = 0 it is gradient descent.
What good did this do?
You have a right to be suspicious ... may look like we just swapped one minimization problem for another.
Key point is that proxh( ) is can be computed analytically for a lot · of important functions h1.
Note:
(cid:73) Mapping proxh( · (cid:73) Smooth part g can be complicated, we only need to compute
) doesn’t depend on g at all, only on h.
its gradients.
1see http://www.seas.ucla.edu/~vandenbe/236C/lectures/proxop.pdf
9
Convergence analysis: will be in terms of number of iterations of ) once and this can the algorithm. Each iteration evaluates proxh( · be cheap or expensive depending on h.
Example: ISTA (Iterative Shrinkage-Thresholding Algorithm)
2 2
1 (cid:107) (cid:107) h(β)
Given y Rn×p, recall lasso criterion Rn, X ∈ X β + λ . β ∈ f (β) = 1 y 2 (cid:107) (cid:107) − g (β)
Proximal mapping is now (cid:124) (cid:123)(cid:122) (cid:125) (cid:124)
2 2 + λ
1 (cid:107)
z (cid:125) β (cid:123)(cid:122) proxth(β) = argminz 1 2t (cid:107) − (cid:107) z (cid:107)
= Sλt(β),
where Sλ(β) is the soft-thresholding operator
βi λ if βi > λ − if λ λ, i = 1, . . . , n. βi − ≤ ≤ [Sλ(β)]i = 0 λ βi + λ if βi < −
10
Example: ISTA (Iterative Shrinkage-Thresholding Algorithm)
Recall g (β) = X β), hence proximal gradient update is ∇ − − X β)). X T (y β+ = Sλt(β + tX T (y −
Often called the iterative soft-thresholding algorithm (ISTA)2. Very simple algorithm.
11
2Beck and Teboulle (2008), “A fast iterative shrinkage-thresholding algorithm for linear inverse problems”
Example of proximal gradient (ISTA) vs. subgradient method convergence rates
Backtracking line search
Backtracking for prox gradient descent works similar as before (in gradient descent), but operates on g and not f .
Choose parameter 0 < β < 1. At each iteration, start at t = tinit, and while
2 2 (cid:107)
t g (x Gt(x) tGt(x)) > g (x) g (x)T Gt(x) + − − t 2 (cid:107)
∇ shrink t = βt, for some 0 < β < 1. Else perform proximal gradient update.
12
(Alternative formulations exist that require less computation, i.e., fewer calls to prox)
Proximal gradient descent has convergence rate O(1/k) or O(1/ε). Same as gradient descent! (But remember, prox cost matters ...).
Proof: See http://www.seas.ucla.edu/~vandenbe/236C/
lectures/proxgrad.pdf
Convergence analysis
For criterion f (x) = g (x) + h(x), we assume
(cid:73) g is convex, differentiable, dom(g ) = Rn, and
g is Lipschitz ∇
2 2/(2t) + h(z)
z can continuous with constant L > 0. (cid:73) h is convex, proxth(x) = argminz {(cid:107) x } − (cid:107) be evaluated.
13
1/L satisfies ≤ x ∗ f ∗ f (x (k)) Theorem Proximal gradient descent with fixed step size t 2 2 (cid:107) x (0) (cid:107) − 2tk − ≤ and same result holds for backtracking with t replaced by β/L.
Proof: See http://www.seas.ucla.edu/~vandenbe/236C/
lectures/proxgrad.pdf
Convergence analysis
For criterion f (x) = g (x) + h(x), we assume
(cid:73) g is convex, differentiable, dom(g ) = Rn, and
g is Lipschitz ∇
2 2/(2t) + h(z)
z can continuous with constant L > 0. (cid:73) h is convex, proxth(x) = argminz {(cid:107) x } − (cid:107) be evaluated.
1/L satisfies ≤ x ∗ f ∗ f (x (k)) Theorem Proximal gradient descent with fixed step size t 2 2 (cid:107) x (0) (cid:107) − 2tk − ≤ and same result holds for backtracking with t replaced by β/L.
13
Proximal gradient descent has convergence rate O(1/k) or O(1/ε). Same as gradient descent! (But remember, prox cost matters ...).
Convergence analysis
For criterion f (x) = g (x) + h(x), we assume
(cid:73) g is convex, differentiable, dom(g ) = Rn, and
g is Lipschitz ∇
2 2/(2t) + h(z)
z can continuous with constant L > 0. (cid:73) h is convex, proxth(x) = argminz {(cid:107) x } − (cid:107) be evaluated.
1/L satisfies ≤ x ∗ f ∗ f (x (k)) Theorem Proximal gradient descent with fixed step size t 2 2 (cid:107) x (0) (cid:107) − 2tk − ≤ and same result holds for backtracking with t replaced by β/L.
13
Proximal gradient descent has convergence rate O(1/k) or O(1/ε). Same as gradient descent! (But remember, prox cost matters ...).
Proof: See http://www.seas.ucla.edu/~vandenbe/236C/ lectures/proxgrad.pdf
Example: matrix completion
Rm×n, and only observe entries Yij , (i, j) ∈ ∈
Given a matrix Y Ω. Suppose we want to fill in missing entries (e.g., for a recommender system), so we solve a matrix completion problem3
tr. (cid:107)
tr is the trace (or nuclear) norm of B
r
(Yij Bij )2 + λ min B 1 2 B (cid:107) − (cid:88)(i,j)∈Ω Here B (cid:107) (cid:107)
tr =
B σi (B), (cid:107) (cid:107)
i=1 (cid:88) ≥ · · · ≥
3Wikipedia: In the case of the Netflix problem the ratings matrix is expected to be low-rank since user preferences can often be described by a few factors, such as the movie genre and time of release 4https://math.berkeley.edu/~hutching/teach/54-2017/svd-notes.pdf
14
0 are the singular σr (X ) ≥ where r = rank(B) and σ1(X ) values4.
Example: matrix completion
Define PΩ, projection operator onto observed set
tr
2 F (cid:107)
(i, j) Ω Bij ∈ [PΩ(B)]ij = (i, j) Ω. 0 (cid:54)∈ Then the criterion is B + λ f (B) = . PΩ(Y ) PΩ(B) 1 2 (cid:107) (cid:107) (cid:107) h(B) − g (B)
(cid:73) Gradient calculation
Two ingredients needed for proximal gradient descent: (cid:124) (cid:123)(cid:122) (cid:125) (cid:123)(cid:122) (cid:125) (cid:124)
(cid:73) Prox function
g (B) = (PΩ(Y ) PΩ(B)). − − ∇
tr.
2 F + λ (cid:107)
15
B Z Z proxth(B) = argminZ 1 2t (cid:107) − (cid:107) (cid:107)
Example: matrix completion
Claim:
proxt(B) = Sλt(B), matrix soft-thresholding at the level λ.
Here Sλ(B) is defined by
Sλ(B) = UΣλV T
. Σii where B = UΣV T is an SVD, and Σλ is diagonal with (Σλ)ii = max { λ, 0 } −
tr. (cid:107)
Proof : note that proxth(B) = Z , where Z satisfies Z Z 0 B + λt ∂ ∈ − · (cid:107) Helpful fact: if Z = UΣV T , then
op
tr = (cid:107)
16
Z W ∂ UV T + W : 1, U T W = 0, WV = 0 (cid:107) { (cid:107) (cid:107) ≤ . } Now plug in Z = Sλt(B) and check that we can get 0.
Example: matrix completion
Hence proximal gradient update step is B + = Sλt (B + t(PΩ(Y ) PΩ(B))) . −
Ω (B))
g (B) is Lipschitz continuous with L = 1, so we can ∇ Note that choose fixed step size t = 1. Update step is now
Ω = B.
where P ⊥ B + = Sλ(PΩ(Y ) + P ⊥ Ω projects onto unobserved set, PΩ(B) + P ⊥
5Mazumder et al. (2011), “Spectral regularization algorithms for learning large incomplete matrices”
17
This is the soft-impute algorithm5, simple and effective method for matrix completion.
Special cases
Proximal gradient descent also called composite gradient descent or generalized gradient descent.
(cid:73) h = 0 – gradient descent
(cid:73) h = IC – projected gradient descent (cid:73) g = 0 – proximal minimization algorithm.
Why “generalized”? This refers to the several special cases, when minimizing f = g + h
18
Therefore these algorithms all have O(1/ε) convergence rate.
2
2 + IC (z)
2
2,
We have 1 x z proxtIC (x) = argminz 2t (cid:107) − (cid:107) x z (cid:107) = argminz∈C (cid:107) − i.e., proxtIC (x) = PC (x), projection operator onto C .
Projected gradient descent
Given closed, convex set C Rn, ∈ g (x) g (x) + IC (x) min x min x∈C ⇐⇒
x C is the indicator function of C . ∈ where IC (x) = x C 0 (cid:54)∈ ∞
19
Projected gradient descent
Given closed, convex set C Rn, ∈ g (x) g (x) + IC (x) min x min x∈C ⇐⇒
x C is the indicator function of C . ∈ where IC (x) = x C 0 (cid:54)∈ ∞
We have
2 2 + IC (z)
19
z proxtIC (x) = argminz − z 1 x 2t (cid:107) x = argminz∈C (cid:107) (cid:107) 2 2, (cid:107) − i.e., proxtIC (x) = PC (x), projection operator onto C .
Projected gradient descent
Therefore proximal gradient update step is
t g (x)), x + = PC (x − ∇
20
i.e., perform usual gradient update and then project back onto C. Called projected gradient descent.
Proximal minimization algorithm
Consider for h convex (not necessarily differentiable)
h(x). min x
Proximal gradient update step is just
2 2 + h(z). (cid:107)
z x + = argminz −
21
1 x 2t (cid:107) Called proximal minimization algorithm. Faster than subgradient method, but not implementable unless we know prox in closed form.
What happens if we can’t evaluate prox?
Theory for proximal gradient, with f = g + h, assumes that prox function can be evaluated, i.e., assumes the minimization
2 2 + h(z) (cid:107)
x z proxth(x) = argminz 1 2t (cid:107) −
can be done exactly. In general, not clear what happens if we just minimize this approximately.
But, if you can precisely control the errors in approximating the prox operator, then you can recover the original convergence rates6.
6Schmidt et al. (2011), “Convergence rates of inexact proximal-gradient methods for convex optimization”
22
In practice, if prox evaluation is done approximately, then it should be done to decently high accuracy.
Acceleration
(cid:73) 1983: original acceleration idea for smooth functions
(cid:73) 1988: another acceleration idea for smooth functions
(cid:73) 2005: smoothing techniques for nonsmooth functions, coupled
Turns out we can accelerate proximal gradient descent in order to achieve the optimal O(1/√ε) convergence rate. Four ideas (three acceleration methods) by Nesterov:
(cid:73) 2007: acceleration idea for composite functions7.
with original acceleration idea
7Each step uses entire history of previous steps and makes two prox calls 8Each step uses information from two last steps and makes one prox call
23
We will follow Beck and Teboulle (2008), an extension of Nesterov (1983) to composite functions8.
Accelerated proximal gradient method
As before consider
g (x) + h(x), min x where g convex, differentiable, and h convex.
Rn, repeat: Accelerated proximal gradient method: choose initial point x (0) = x (−1) ∈ v = x (k−1) + (x (k−1) x (k−2)) −
g (v )) k 2 − k + 1 tk x (k) = proxtk h(v − ∇ for k = 1, 2, 3, . . .
(cid:73) First step k = 1 is just usual proximal gradient update. (cid:73) After that, v = x (k−1) + k−2
k+1 (x (k−1)
x (k−2)) carries some
24
− “momentum” from previous iterations. (cid:73) h = 0 gives accelerated gradient method.
Accelerated proximal gradient method
Momentum weights
25
Accelerated proximal gradient method
Back to lasso example: acceleration can really help!
26
Note: accelerated proximal gradient is not a descent method.
Backtracking line search
Backtracking under with acceleration in different ways.
Simple approach: fix β < 1, t0 = 1. At iteration k, start with t = tk−1, and while
2 2
x + v g (x +) > g (v ) + g (v )T (x + v ) + 1 2t (cid:107) (cid:107) ∇ − t − g (v )). Else keep x +. shrink t = βt, and let x + = proxth(v − ∇
27
Note that this strategy forces us to take decreasing step sizes ... (more complicated strategies exist which avoid this).
Convergence analysis
For criterion f (x) = g (x) + h(x), we assume as before
(cid:73) g is convex, differentiable, dom(g ) = Rn, and
g is Lipschitz ∇
2 2/(2t) + h(z)
z can continuous with constant L > 0. (cid:73) h is convex, proxth(x) = argminz {(cid:107) x − (cid:107) } be evaluated.
2 2
1/L ≤ Theorem Accelerated proximal gradient method with fixed step size t satisfies
f ∗ f (x (k)) (cid:107) x ∗ x (0) 2 (cid:107) − t(k + 1)2 − ≤
and same result holds for backtracking, with t replaced by β/L.
28
Achieves optimal rate O(1/k 2) or O(1/√ε) for first-order methods.
FISTA (Fast ISTA)
Back to lasso problem
2 2 + λ
1. (cid:107)
y X β β min β 1 2 (cid:107) − (cid:107) (cid:107)
Recall ISTA (Iterative Soft-thresholding Algorithm):
X β(k−1))), k = 1, 2, 3, . . .
Sλ( β(k) = Sλtk (β(k−1) + tk X T (y − ) being vector soft-thresholding. ·
Applying acceleration gives us FISTA (F is for Fast)9: for k = 1, 2, 3, . . .
v = β(k−1) + (β(k−1) β(k−2)) k 2 − k + 1
9Beck and Teboulle (2008) actually call their general acceleration technique (for general g , h) FISTA, which may be somewhat confusing
29
− Xv )). β(k) = Sλtk (v + tk X T (y −
ISTA vs. FISTA
Lasso regression: 100 instances (with n = 100, p = 500):
30
ISTA vs. FISTA
Lasso logistic regression: 100 instances (n = 100, p = 500):
31
In practice the speedup of using acceleration is diminished in the
presence of warm starts. E.g., suppose want to solve lasso problem
for tuning parameters values
(cid:73) When solving for λ1, initialize x (0) = 0, record solution ˆx(λ1).
(cid:73) When solving for λj , initialize x (0) = ˆx(λj−1), the recorded
λ1 > λ2 > > λr . · · ·
solution for λj−1.
Over a fine enough grid of λ values, proximal gradient descent can often perform just as well without acceleration.
Is acceleration always useful?
32
Acceleration can be a very effective speedup tool ... but should it always be used?
Is acceleration always useful?
Acceleration can be a very effective speedup tool ... but should it always be used?
In practice the speedup of using acceleration is diminished in the presence of warm starts. E.g., suppose want to solve lasso problem for tuning parameters values
(cid:73) When solving for λ1, initialize x (0) = 0, record solution ˆx(λ1). (cid:73) When solving for λj , initialize x (0) = ˆx(λj−1), the recorded
λ1 > λ2 > > λr . · · ·
solution for λj−1.
32
Over a fine enough grid of λ values, proximal gradient descent can often perform just as well without acceleration.
Is acceleration always useful?
Sometimes backtracking and acceleration can be disadvantageous! Recall matrix completion problem: the proximal gradient update is
Ω (B)) (cid:17)
(cid:73) One backtracking loop evaluates generalized gradient Gt(x), i.e., evaluates proxt(x), across various values of t. For matrix completion, this means multiple SVDs ...
(cid:73) Acceleration changes argument we pass to prox: v
P ⊥ B + = Sλ − (cid:16) B + t(PΩ(Y ) where Sλ is the matrix soft-thresholding operator ... requires SVD.
t g (v ) − ∇ instead of x t g (x). For matrix completion (and t = 1), − B fast SVD + P ⊥ − ∇ ⇒ ∇ g (B) = PΩ(Y ) sparse
Ω (B) low rank P ⊥ Ω (V ) (cid:124) (cid:123)(cid:122) (cid:125) not necessarily low rank
33
V slow SVD. + (cid:124) (cid:123)(cid:122) (cid:125) ⇒ − ∇ g (V ) = PΩ(Y ) sparse
(cid:124) (cid:123)(cid:122) (cid:125) (cid:124) (cid:123)(cid:122) (cid:125)
References and further reading
Nesterov’s four ideas (three acceleration methods):
Y. Nesterov (1983), A method for solving a convex programming problem with convergence rate O(1/k 2)
Y. Nesterov (1988), On an approach to the construction of optimal methods of minimization of smooth convex functions
Y. Nesterov (2005), Smooth minimization of non-smooth functions
34
Y. Nesterov (2007), Gradient methods for minimizing composite objective function
References and further reading
Extensions and/or analyses:
A. Beck and M. Teboulle (2008), A fast iterative shrinkage-thresholding algorithm for linear inverse problems
S. Becker and J. Bobin and E. Candes (2009), NESTA: a fast and accurate first-order method for sparse recovery
35
P. Tseng (2008), On accelerated proximal gradient methods for convex-concave optimization
References and further reading
Helpful lecture notes/books:
E. Candes, Lecture notes for Math 301, Stanford University, Winter 2010-2011
Y. Nesterov (1998), Introductory lectures on convex optimization: a basic course, Chapter 2
36
L. Vandenberghe, Lecture notes for EE 236C, UCLA, Spring 2011-2012