intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Continuous regularization method for ill posed operator equations of hammerstein type

Chia sẻ: Nguyễn Minh Vũ | Ngày: | Loại File: PDF | Số trang:10

44
lượt xem
1
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

The aim of this paper is to study a method of approximating a solution of the operator equation of Hammerstein type x + F2F1(x) = f on the base of constructing a system of differential equations of the first order, where Fi , i = 1, 2, are the continuous monotone operators in real Hilbert space H. Then this method is considered in connection with finite-dimentional approximations for H.

Chủ đề:
Lưu

Nội dung Text: Continuous regularization method for ill posed operator equations of hammerstein type

’<br /> Tap ch´ Tin hoc v` Diˆu khiˆn hoc, T.23, S.2 (2007), 99–108<br /> ı<br /> a `<br /> e<br /> e<br /> .<br /> .<br /> .<br /> <br /> CONTINUOUS REGULARIZATION METHOD<br /> FOR ILL-POSED OPERATOR EQUATIONS OF HAMMERSTEIN TYPE<br /> NGUYEN BUONG1 , DANG THI HAI HA2<br /> 1<br /> <br /> Viˆn Cˆng nghˆ thˆng tin, Viˆn Khoa hoc v` Cˆng nghˆ Viˆt Nam<br /> e<br /> o<br /> e o<br /> e<br /> e e<br /> .<br /> .<br /> .<br /> . a o<br /> .<br /> .<br /> 2<br /> Vietnamese Forestry University, Xuan Mai, Ha Tay<br /> <br /> Abstract. The aim of this paper is to study a method of approximating a solution of the operator<br /> equation of Hammerstein type x + F2 F1 (x) = f on the base of constructing a system of differential<br /> equations of the first order, where Fi , i = 1, 2, are the continuous monotone operators in real Hilbert<br /> space H . Then this method is considered in connection with finite-dimentional approximations for<br /> H.<br /> ´<br /> ´<br /> ’<br /> o<br /> a a ’<br /> e<br /> ınh<br /> T´m t˘t. Muc d´ cua b`i b´o l` nghiˆn c´.u mˆt phu.o.ng ph´p xˆp xı nghiˆm cua phu.o.ng tr`<br /> o<br /> a<br /> a a a<br /> e u<br /> .<br /> .<br /> . ıch ’<br /> ´<br /> to´n tu. loai Hammerstein x + F2 F1 (x) = f du.a trˆn viˆc xˆy du.ng hˆ phu.o.ng tr` vi phˆn cˆp<br /> a ’ .<br /> e<br /> e a<br /> e<br /> ınh<br /> a a<br /> .<br /> .<br /> .<br /> .<br /> ’. dˆy c´c to´n tu. Fi , i = 1, 2, l` do.n diˆu v` liˆn tuc trong khˆng gian Hilbert H . Sau d´,<br /> ’<br /> a<br /> a<br /> e a e .<br /> o<br /> o<br /> mˆt, o a a<br /> o<br /> .<br /> .<br /> ´<br /> ´<br /> `<br /> ’<br /> e e e o<br /> a a<br /> e a ’ u<br /> e<br /> phu.o.ng ph´p n`y du.o.c x´t liˆn kˆt v´.i viˆc xˆ p xı h˜.u han chiˆu cua H.<br /> .<br /> .<br /> .<br /> <br /> 1. INTRODUCTION<br /> Let H be a real Hilbert space with norm and scalar product denoted by . and x∗ , x ,<br /> respectively. Let Fi , i = 1, 2, be monotone, in general nonlinear, bounded (i.e. image of any<br /> bounded subset is bounded) and continuous operators.<br /> Our main aim of this paper is to study a stable method of finding an approximative solution<br /> for the equation of Hammerstein type<br /> x + F2 F1 (x) = f, f ∈ R(I + F2 F1 ),<br /> <br /> (1.1)<br /> <br /> where I and R(A) denote the identity operator in H and the range of the operator A, respectively. Note that the solution set of (1.1), denoted by S0 , is closed convex (see [1]).<br /> Fih<br /> <br /> Usually instead of Fi , i = 1, 2, and f we know their monotone continuous approximations<br /> and fδ such that<br /> h<br /> F1 (x) − F1 (x)<br /> h<br /> F2 (x) − F2 (x)<br /> <br /> ∗ This<br /> <br /> hg( x ),<br /> hg( x ) ∀x ∈ H,<br /> <br /> work was supported by the Vietnamese Fundamental Research Program in Natural Sciences,<br /> MS 100506.<br /> <br /> 100<br /> <br /> NGUYEN BUONG, DANG THI HAI HA<br /> <br /> where g(t) is a real nonnegative, non-decreasing, bounded function (the image of a bounded<br /> set is bounded), and fδ − f<br /> δ . Without additional conditions for the operators Fi such<br /> as the strongly monotone property, equation (1.1) is ill-posed. For example, consider the case<br /> H = E2 , the Euclidean space, and<br /> 1 −1<br /> 0 −1<br /> F1 =<br /> , F2 =<br /> , x = (x1 , x2 ).<br /> 1 0<br /> 1 1<br /> It is easy to verify that F1x, x = x2<br /> 0, and F2 x, x = x2<br /> 0∀x ∈ E2 . It means that<br /> 1<br /> 2<br /> Fi , i = 1, 2, are monotone. Equation (1.1) has the form 0x1 = f1 , 2x1 = f2 with f = (f1 , f2).<br /> Obviously, this system of equations has a unique solution when f = (0, f2) for arbitrary f2 .<br /> δ<br /> δ<br /> When fδ = (f1 , f2) with f1 = 0 equation (1.1) in this case does not have solution. So,<br /> equation (1.1) with the monotone operators F1 , i = 1, 2, in general is ill-posed.<br /> To solve (1.1) we need use stable methods. One of the those is the operator equation<br /> h<br /> h<br /> x + F2,α F1,α (x) = fδ<br /> (1.2)<br /> h<br /> (see [1], [5]), where Fi,α = Fih + αI , α > 0 is the small parameter of regularization. For<br /> <br /> every α > 0 equation (1.2) has a unique solution xh,δ , and the sequence {xh,δ } converges to a<br /> α<br /> α<br /> solution x0 of satisfying<br /> x0 2 + x∗ 2 = min x 2 + F1(x) 2 , x∗ = F1 (x0),<br /> 0<br /> 0<br /> x∈S0<br /> <br /> as (h + δ)/α, α → 0. Moreover, this solution xh,δ , for every fixed α > 0, depends continuously<br /> α<br /> on Fih , i = 1, 2 and fδ .<br /> Recently, the use of differential equations for regularizing ill-posed convex optimization and<br /> nonlinear monotone problems is intensively investigated (see [6]-[14] and references therein),<br /> because by discretiting them one can obtain much different iterative processes. In this paper,<br /> this idea is developed for non-monotone, in general, Hammerstein equation, i.e., we find a<br /> strong differentiable function u(t) : [t0, +∞) → H, t0 0, which is a solution of some differetial<br /> equation such that<br /> lim u(t) = x0 .<br /> (1.3)<br /> t→+∞<br /> <br /> In Section 2, we give a system of differential equations with the solution u(t), u∗ (t) where u(t)<br /> satisfies (1.3). The Galerkin approximations un (t) for u(t) with the property<br /> lim un (t) = x0 ,<br /> n,t→+∞<br /> <br /> are considered in Section 3.<br /> Above and below, the symbols<br /> the norm, respectively.<br /> <br /> and → denote the weak convergence and convergence in<br /> <br /> 2. THE INFINITE-DIMENSIONAL CONTINUOUS REGULARIZATION<br /> Consider the system of differential equations<br /> du(t)<br /> h(t)<br /> + γ(t) F1 (u(t)) + α(t)u(t) − u∗ (t) = θ,<br /> dt<br /> du∗(t)<br /> h(t)<br /> + γ(t) F2 (u∗(t)) + α(t)u∗ (t) + u(t) − f (t) = θ,<br /> dt<br /> u(t0 ) = u0 , u∗(t0 ) = u∗ , t t0 0,<br /> 0<br /> <br /> (2.1)<br /> <br /> CONTINUOUS REGULARIZATION METHOD FOR ILL-POSED OPERATOR EQUATIONS OF<br /> <br /> 101<br /> <br /> where u0, u∗ are the fixed elements in H , θ denotes the zero element, h = h(t), α = α(t) ><br /> 0<br /> 0, t 0, α(t) is a convex decreasing differentiable function, γ(t) is a nondecreasing positive<br /> and differentiable function such that<br /> lim α(t) = lim h(t) = 0,<br /> t→+∞<br /> <br /> t→+∞<br /> <br /> α (t)<br /> γ (t)<br /> h(t)<br /> = lim 2<br /> = lim<br /> = 0.<br /> t→+∞ α (t)γ(t)<br /> t→+∞ α(t)γ 2 (t)<br /> t→+∞ α(t)<br /> <br /> (2.2)<br /> <br /> lim<br /> <br /> In order to prove that limt→+∞ u(t) = x0, we study the system of differential equations<br /> dy(t, τ )<br /> + γ(t) F1 (y(t, τ )) + α(τ )y(t, τ ) − y ∗ (t, τ ) = θ,<br /> dt<br /> dy ∗ (t, τ )<br /> (2.3)<br /> + γ(t) F2 (y ∗(t, τ )) + α(τ )y ∗ (t, τ ) + y(t, τ ) − f = θ,<br /> dt<br /> y(t0 , τ ) = u0 , y ∗(t0 , τ ) = u∗ , ∀t t0<br /> 0<br /> depending on the parameter τ<br /> We have a result.<br /> <br /> t0 .<br /> <br /> Theorem 2.1. Assume that the following conditions hold:<br /> (i) problems (2.1) and (2.3) possess solutions in the class C 1 [t0, +∞) for any u0 , u∗ ∈ H<br /> 0<br /> with u(t) , u∗(t)<br /> d1 , d1 > 0, t t0 .<br /> (ii) the functions α(t), h(t) and γ(t) satisfy the above conditions.<br /> Then, limτ →+∞ u(τ ) = x0 .<br /> Proof. Set<br /> r (t, τ ) = r1 (t, τ ) + r2(t, τ ),<br /> ˜<br /> ˜<br /> ˜<br /> r1(t, τ ) = y(t, τ ) − xα (τ ) 2,<br /> ˜<br /> r2(t, τ ) = y ∗(t, τ ) − x∗ (τ ) 2 ,<br /> ˜<br /> α<br /> <br /> where (xα(τ ), x∗ (τ )), x∗ (τ ) = F1 (xα (τ )), is the unique solution of the system of operator<br /> α<br /> α<br /> equations<br /> F1 (xα(τ )) + α(τ )xα(τ ) − x∗ (τ ) = θ,<br /> α<br /> (2.4)<br /> ∗<br /> ∗<br /> F2 (xα(τ )) + α(τ )xα(τ ) + xα (τ ) − f = θ,<br /> and limτ →+∞ xα (τ ) = x0 (see [1]). Since F1 is continuous, then x∗ = limτ →+∞ x∗ (τ ). Now,<br /> α<br /> 0<br /> from (2.3) and (2.4) it follows<br /> d(y(t, τ ) − xα (τ ))<br /> , y(t, τ ) − xα (τ ) + γ(t) F1 (y(t, τ )) − F1 (xα (τ )),<br /> dt<br /> y(t, τ ) − xα(τ ) + α(τ )˜1 (t, τ ) + x∗ (τ ) − y ∗(t, τ ), y(t, τ ) − xα (τ ) = 0,<br /> r<br /> α<br /> d(y ∗ (t, τ ) − x∗ (τ )) ∗<br /> α<br /> , y (t, τ ) − x∗ (τ ) + γ(t) F2 (y ∗(t, τ )) − F2 (x∗ (τ )),<br /> α<br /> α<br /> dt<br /> y ∗ (t, τ ) − x∗ (τ ) + α(τ )˜2(t, τ ) + y(t, τ) − xα (τ ), y ∗(t, τ ) − x∗ (τ ) = 0.<br /> r<br /> α<br /> α<br /> <br /> Substituting the two last equalities and using the relation<br /> dx(t)<br /> d x(t) 2<br /> =2<br /> , x(t)<br /> dt<br /> dt<br /> and the monotone property of Fi , i = 1, 2, we have got<br /> d˜(t, τ )<br /> r<br /> + 2γ(t)α(τ )˜(t, τ ) 0.<br /> r<br /> dt<br /> <br /> 102<br /> <br /> NGUYEN BUONG, DANG THI HAI HA<br /> <br /> Hence,<br /> <br /> t<br /> <br /> r (t, τ )<br /> ˜<br /> <br /> r (t0 , τ ) exp[−2α(τ )<br /> ˜<br /> <br /> γ(t)dt],<br /> <br /> (2.5)<br /> <br /> t0<br /> <br /> where<br /> <br /> r(t0 , τ ) = y(t0, τ ) − xα(τ )<br /> ˜<br /> 2[ y(t0, τ )<br /> 2[ u0<br /> <br /> 2<br /> <br /> 2<br /> <br /> 2<br /> <br /> + y ∗ (t0 , τ ) − x∗ (τ )<br /> α<br /> <br /> + xα (τ )<br /> <br /> + u∗<br /> 0<br /> <br /> 2<br /> <br /> + x0<br /> <br /> 2<br /> <br /> + y ∗ (t0, τ )<br /> <br /> 2<br /> <br /> 2<br /> <br /> 2<br /> <br /> + F1 (x0 ) 2 ].<br /> <br /> + x∗ (τ ) 2]<br /> α<br /> <br /> Consequently, from (2.2), (2.5) and the properties of γ(t), α(t) we can obtain (see [13] for<br /> details)<br /> lim r (τ, τ ) = 0<br /> ˜<br /> <br /> τ →+∞<br /> <br /> and the boundness of {y(t, τ )} and {y ∗ (t, τ )}. Therefore,<br /> lim y(τ, τ ) = x0 ,<br /> <br /> τ →+∞<br /> <br /> and there exists a positive constant d2 such that y(t, τ ) , y ∗(t, τ )<br /> ˜<br /> ˜<br /> ˜<br /> R(t, τ ) = R1 (t, τ ) + R2(t, τ ),<br /> <br /> d2 . Further, set<br /> <br /> ˜<br /> R1 (t, τ ) = u(t) − y(t, τ ) 2,<br /> ˜<br /> R2 (t, τ ) = u∗ (t) − y ∗ (t, τ ) 2.<br /> <br /> On the base of (2.1) and (2.3) we can write<br /> d(u(t) − y(t, τ ))<br /> h(t)<br /> , u(t) − y(t, τ ) + γ(t) F1 (u(t)) − F1 (y(t, τ )),<br /> dt<br /> u(t) − y(t, τ ) + α(t)u(t) − α(τ )y(t, τ ), u(t) − y(t, τ )<br /> + y ∗(t, τ ) − u∗ (t), u(t) − y(t, τ )<br /> <br /> = 0,<br /> <br /> d(u∗ (t) − y ∗ (t, τ )) ∗<br /> h(t)<br /> , u (t) − y ∗ (t, τ ) + γ(t) F2 (u∗ (t)) − F2 (y ∗ (t, τ )),<br /> dt<br /> u∗ (t) − y ∗ (t, τ ) + α(t)u∗ (t) − α(τ )y ∗ (t, τ ), u∗(t) − y ∗ (t, τ )<br /> + u(t)−y(t, τ ), u∗(t) − y ∗ (t, τ )<br /> <br /> Thus,<br /> <br /> = 0.<br /> <br /> ˜<br /> dR(t, τ )<br /> ˜<br /> +2γ(t)α(τ )R(t, τ )<br /> dt<br /> γ(t)[h(t)g( y(t, τ ) ) + |α(t) − α(τ )| y(t, τ ) ] u(t) − y(t, τ ) +<br /> γ(t)[h(t)g( y ∗(t, τ ) ) + |α(t) − α(τ )| y ∗ (t, τ ) ] u∗(t) − y ∗ (t, τ ) .<br /> <br /> Hence,<br /> ˜<br /> dR(t, τ )<br /> Dγ(t)[h(t) + |α(t) − α(τ )|] − 2α(t)R(t, τ ),<br /> ˜ ˜<br /> dt<br /> α(t) = γ(t)α(τ ), D = 2 max{g(d2 )(d1 + d2 ), d2}.<br /> ˜<br /> <br /> It is not difficult to verify that<br /> <br /> CONTINUOUS REGULARIZATION METHOD FOR ILL-POSED OPERATOR EQUATIONS OF<br /> <br /> ˜<br /> R(τ, τ )<br /> <br /> 103<br /> <br /> R1 (τ ) + R2 (τ )<br /> τ<br /> <br /> R1 (τ ) = D<br /> <br /> γ(t)h(t)ξ(t)dt/ξ(τ ),<br /> t0<br /> τ<br /> <br /> R2 (τ ) = D<br /> <br /> γ(t)α (t)(t − τ )ξ(t)dt/ξ(τ ),<br /> t0<br /> s<br /> <br /> ξ(s) = exp(<br /> <br /> α(t)dt.<br /> ˜<br /> t0<br /> <br /> Therefore, limt→+∞ R1 (τ ) = limt→+∞ R2 (τ ) = 0. Since x0 − u(τ )<br /> x0 − xα(τ ) +<br /> xα (τ ) − y(τ, τ ) + y(τ, τ ) − u(τ ) , then limτ →+∞ u(τ ) = x0 . Theorem is proved.<br /> Remark. The solution existence of (2.1) or (2.3) is followed from [7], [15] and [16], when<br /> h(t)<br /> Fi<br /> are weakly continuous or Lipschitz continuous for each t t0 .<br /> 3. FINITE-DIMENSIONAL REGULARIZATION<br /> Consider the system of finite-dimensional problems<br /> dun (t)<br /> h(t)<br /> + γ(t) F1,n (un (t)) + α(t)un (t) − u∗ (t) = θ,<br /> n<br /> dt<br /> ∗ (t)<br /> dun<br /> h(t)<br /> + γ(t) F2,n (u∗ (t)) + α(t)u∗ (t) + un (t) − fn (t) = θ,<br /> n<br /> n<br /> dt<br /> ∗<br /> ∗<br /> un (t0 ) = Pn u0 , un (t0) = Pn u0 ,<br /> h(t)<br /> <br /> h(t)<br /> <br /> h(t)<br /> <br /> (3.1)<br /> <br /> h(t)<br /> <br /> ∗<br /> ∗<br /> where F1,n = Pn F1 Pn , F2,n = Pn F2 Pn , fn (t) = Pn f (t), Pn is a linear projection from<br /> H onto its finite-dimensional subspace Hn such that Hn ⊂ Hn+1 , Pn x → x, as n → ∞ for<br /> ∗<br /> every x ∈ H , and Pn is the dual of Pn with Pn<br /> c = constant, for all n, and un (t), u∗ (t) :<br /> ˜<br /> n<br /> [t0 , +∞) → Hn .<br /> To prove<br /> lim un (t) = x0 ,<br /> n,t→+∞<br /> <br /> as in the Section 2, we use the system of finite-dimensional equations<br /> dyn (t, τ )<br /> ∗<br /> + γ(t) F1,n (yn (t, τ )) + α(τ )yn (t, τ ) − yn (t, τ ) = θ,<br /> dt<br /> ∗<br /> dyn (t, τ )<br /> ∗<br /> ∗<br /> + γ(t) F2,n (yn (t, τ )) + α(τ )yn (t, τ ) + yn (t, τ ) − fn = θ,<br /> dt<br /> ∗<br /> yn (t0 , τ ) = Pn u0 , yn (t0 , τ ) = Pn u∗ , ∀t t0 ,<br /> 0<br /> depending on the parameter τ<br /> We have a result.<br /> <br /> (3.2)<br /> <br /> ∗<br /> ∗<br /> t0 , where F1,n = Pn F1 Pn , F2,n = Pn F2 Pn , and fn = Pn f.<br /> <br /> Theorem 3.1. Assume that the following conditions hold:<br /> (i) problems (3.1) and (3.2) possess solutions in the class C 1 [t0, +∞) for any u0 , u∗ ∈ H<br /> 0<br /> with un (t) , u∗ (t)<br /> d3 , d3 > 0, t t0 .<br /> n<br /> (ii) the functions α(t), h(t) and γ(t) satisfy the above conditions.<br /> (iii) Fi , i = 1, 2, are Fr´chet differentiable with Lipschitz continuous derivatives ( common<br /> e<br /> Lipschitz constant L), there exist x1 and x2 such that<br /> <br />
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2