YOMEDIA
ADSENSE
Continuous regularization method for ill posed operator equations of hammerstein type
44
lượt xem 1
download
lượt xem 1
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
The aim of this paper is to study a method of approximating a solution of the operator equation of Hammerstein type x + F2F1(x) = f on the base of constructing a system of differential equations of the first order, where Fi , i = 1, 2, are the continuous monotone operators in real Hilbert space H. Then this method is considered in connection with finite-dimentional approximations for H.
AMBIENT/
Chủ đề:
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Continuous regularization method for ill posed operator equations of hammerstein type
’<br />
Tap ch´ Tin hoc v` Diˆu khiˆn hoc, T.23, S.2 (2007), 99–108<br />
ı<br />
a `<br />
e<br />
e<br />
.<br />
.<br />
.<br />
<br />
CONTINUOUS REGULARIZATION METHOD<br />
FOR ILL-POSED OPERATOR EQUATIONS OF HAMMERSTEIN TYPE<br />
NGUYEN BUONG1 , DANG THI HAI HA2<br />
1<br />
<br />
Viˆn Cˆng nghˆ thˆng tin, Viˆn Khoa hoc v` Cˆng nghˆ Viˆt Nam<br />
e<br />
o<br />
e o<br />
e<br />
e e<br />
.<br />
.<br />
.<br />
. a o<br />
.<br />
.<br />
2<br />
Vietnamese Forestry University, Xuan Mai, Ha Tay<br />
<br />
Abstract. The aim of this paper is to study a method of approximating a solution of the operator<br />
equation of Hammerstein type x + F2 F1 (x) = f on the base of constructing a system of differential<br />
equations of the first order, where Fi , i = 1, 2, are the continuous monotone operators in real Hilbert<br />
space H . Then this method is considered in connection with finite-dimentional approximations for<br />
H.<br />
´<br />
´<br />
’<br />
o<br />
a a ’<br />
e<br />
ınh<br />
T´m t˘t. Muc d´ cua b`i b´o l` nghiˆn c´.u mˆt phu.o.ng ph´p xˆp xı nghiˆm cua phu.o.ng tr`<br />
o<br />
a<br />
a a a<br />
e u<br />
.<br />
.<br />
. ıch ’<br />
´<br />
to´n tu. loai Hammerstein x + F2 F1 (x) = f du.a trˆn viˆc xˆy du.ng hˆ phu.o.ng tr` vi phˆn cˆp<br />
a ’ .<br />
e<br />
e a<br />
e<br />
ınh<br />
a a<br />
.<br />
.<br />
.<br />
.<br />
’. dˆy c´c to´n tu. Fi , i = 1, 2, l` do.n diˆu v` liˆn tuc trong khˆng gian Hilbert H . Sau d´,<br />
’<br />
a<br />
a<br />
e a e .<br />
o<br />
o<br />
mˆt, o a a<br />
o<br />
.<br />
.<br />
´<br />
´<br />
`<br />
’<br />
e e e o<br />
a a<br />
e a ’ u<br />
e<br />
phu.o.ng ph´p n`y du.o.c x´t liˆn kˆt v´.i viˆc xˆ p xı h˜.u han chiˆu cua H.<br />
.<br />
.<br />
.<br />
<br />
1. INTRODUCTION<br />
Let H be a real Hilbert space with norm and scalar product denoted by . and x∗ , x ,<br />
respectively. Let Fi , i = 1, 2, be monotone, in general nonlinear, bounded (i.e. image of any<br />
bounded subset is bounded) and continuous operators.<br />
Our main aim of this paper is to study a stable method of finding an approximative solution<br />
for the equation of Hammerstein type<br />
x + F2 F1 (x) = f, f ∈ R(I + F2 F1 ),<br />
<br />
(1.1)<br />
<br />
where I and R(A) denote the identity operator in H and the range of the operator A, respectively. Note that the solution set of (1.1), denoted by S0 , is closed convex (see [1]).<br />
Fih<br />
<br />
Usually instead of Fi , i = 1, 2, and f we know their monotone continuous approximations<br />
and fδ such that<br />
h<br />
F1 (x) − F1 (x)<br />
h<br />
F2 (x) − F2 (x)<br />
<br />
∗ This<br />
<br />
hg( x ),<br />
hg( x ) ∀x ∈ H,<br />
<br />
work was supported by the Vietnamese Fundamental Research Program in Natural Sciences,<br />
MS 100506.<br />
<br />
100<br />
<br />
NGUYEN BUONG, DANG THI HAI HA<br />
<br />
where g(t) is a real nonnegative, non-decreasing, bounded function (the image of a bounded<br />
set is bounded), and fδ − f<br />
δ . Without additional conditions for the operators Fi such<br />
as the strongly monotone property, equation (1.1) is ill-posed. For example, consider the case<br />
H = E2 , the Euclidean space, and<br />
1 −1<br />
0 −1<br />
F1 =<br />
, F2 =<br />
, x = (x1 , x2 ).<br />
1 0<br />
1 1<br />
It is easy to verify that F1x, x = x2<br />
0, and F2 x, x = x2<br />
0∀x ∈ E2 . It means that<br />
1<br />
2<br />
Fi , i = 1, 2, are monotone. Equation (1.1) has the form 0x1 = f1 , 2x1 = f2 with f = (f1 , f2).<br />
Obviously, this system of equations has a unique solution when f = (0, f2) for arbitrary f2 .<br />
δ<br />
δ<br />
When fδ = (f1 , f2) with f1 = 0 equation (1.1) in this case does not have solution. So,<br />
equation (1.1) with the monotone operators F1 , i = 1, 2, in general is ill-posed.<br />
To solve (1.1) we need use stable methods. One of the those is the operator equation<br />
h<br />
h<br />
x + F2,α F1,α (x) = fδ<br />
(1.2)<br />
h<br />
(see [1], [5]), where Fi,α = Fih + αI , α > 0 is the small parameter of regularization. For<br />
<br />
every α > 0 equation (1.2) has a unique solution xh,δ , and the sequence {xh,δ } converges to a<br />
α<br />
α<br />
solution x0 of satisfying<br />
x0 2 + x∗ 2 = min x 2 + F1(x) 2 , x∗ = F1 (x0),<br />
0<br />
0<br />
x∈S0<br />
<br />
as (h + δ)/α, α → 0. Moreover, this solution xh,δ , for every fixed α > 0, depends continuously<br />
α<br />
on Fih , i = 1, 2 and fδ .<br />
Recently, the use of differential equations for regularizing ill-posed convex optimization and<br />
nonlinear monotone problems is intensively investigated (see [6]-[14] and references therein),<br />
because by discretiting them one can obtain much different iterative processes. In this paper,<br />
this idea is developed for non-monotone, in general, Hammerstein equation, i.e., we find a<br />
strong differentiable function u(t) : [t0, +∞) → H, t0 0, which is a solution of some differetial<br />
equation such that<br />
lim u(t) = x0 .<br />
(1.3)<br />
t→+∞<br />
<br />
In Section 2, we give a system of differential equations with the solution u(t), u∗ (t) where u(t)<br />
satisfies (1.3). The Galerkin approximations un (t) for u(t) with the property<br />
lim un (t) = x0 ,<br />
n,t→+∞<br />
<br />
are considered in Section 3.<br />
Above and below, the symbols<br />
the norm, respectively.<br />
<br />
and → denote the weak convergence and convergence in<br />
<br />
2. THE INFINITE-DIMENSIONAL CONTINUOUS REGULARIZATION<br />
Consider the system of differential equations<br />
du(t)<br />
h(t)<br />
+ γ(t) F1 (u(t)) + α(t)u(t) − u∗ (t) = θ,<br />
dt<br />
du∗(t)<br />
h(t)<br />
+ γ(t) F2 (u∗(t)) + α(t)u∗ (t) + u(t) − f (t) = θ,<br />
dt<br />
u(t0 ) = u0 , u∗(t0 ) = u∗ , t t0 0,<br />
0<br />
<br />
(2.1)<br />
<br />
CONTINUOUS REGULARIZATION METHOD FOR ILL-POSED OPERATOR EQUATIONS OF<br />
<br />
101<br />
<br />
where u0, u∗ are the fixed elements in H , θ denotes the zero element, h = h(t), α = α(t) ><br />
0<br />
0, t 0, α(t) is a convex decreasing differentiable function, γ(t) is a nondecreasing positive<br />
and differentiable function such that<br />
lim α(t) = lim h(t) = 0,<br />
t→+∞<br />
<br />
t→+∞<br />
<br />
α (t)<br />
γ (t)<br />
h(t)<br />
= lim 2<br />
= lim<br />
= 0.<br />
t→+∞ α (t)γ(t)<br />
t→+∞ α(t)γ 2 (t)<br />
t→+∞ α(t)<br />
<br />
(2.2)<br />
<br />
lim<br />
<br />
In order to prove that limt→+∞ u(t) = x0, we study the system of differential equations<br />
dy(t, τ )<br />
+ γ(t) F1 (y(t, τ )) + α(τ )y(t, τ ) − y ∗ (t, τ ) = θ,<br />
dt<br />
dy ∗ (t, τ )<br />
(2.3)<br />
+ γ(t) F2 (y ∗(t, τ )) + α(τ )y ∗ (t, τ ) + y(t, τ ) − f = θ,<br />
dt<br />
y(t0 , τ ) = u0 , y ∗(t0 , τ ) = u∗ , ∀t t0<br />
0<br />
depending on the parameter τ<br />
We have a result.<br />
<br />
t0 .<br />
<br />
Theorem 2.1. Assume that the following conditions hold:<br />
(i) problems (2.1) and (2.3) possess solutions in the class C 1 [t0, +∞) for any u0 , u∗ ∈ H<br />
0<br />
with u(t) , u∗(t)<br />
d1 , d1 > 0, t t0 .<br />
(ii) the functions α(t), h(t) and γ(t) satisfy the above conditions.<br />
Then, limτ →+∞ u(τ ) = x0 .<br />
Proof. Set<br />
r (t, τ ) = r1 (t, τ ) + r2(t, τ ),<br />
˜<br />
˜<br />
˜<br />
r1(t, τ ) = y(t, τ ) − xα (τ ) 2,<br />
˜<br />
r2(t, τ ) = y ∗(t, τ ) − x∗ (τ ) 2 ,<br />
˜<br />
α<br />
<br />
where (xα(τ ), x∗ (τ )), x∗ (τ ) = F1 (xα (τ )), is the unique solution of the system of operator<br />
α<br />
α<br />
equations<br />
F1 (xα(τ )) + α(τ )xα(τ ) − x∗ (τ ) = θ,<br />
α<br />
(2.4)<br />
∗<br />
∗<br />
F2 (xα(τ )) + α(τ )xα(τ ) + xα (τ ) − f = θ,<br />
and limτ →+∞ xα (τ ) = x0 (see [1]). Since F1 is continuous, then x∗ = limτ →+∞ x∗ (τ ). Now,<br />
α<br />
0<br />
from (2.3) and (2.4) it follows<br />
d(y(t, τ ) − xα (τ ))<br />
, y(t, τ ) − xα (τ ) + γ(t) F1 (y(t, τ )) − F1 (xα (τ )),<br />
dt<br />
y(t, τ ) − xα(τ ) + α(τ )˜1 (t, τ ) + x∗ (τ ) − y ∗(t, τ ), y(t, τ ) − xα (τ ) = 0,<br />
r<br />
α<br />
d(y ∗ (t, τ ) − x∗ (τ )) ∗<br />
α<br />
, y (t, τ ) − x∗ (τ ) + γ(t) F2 (y ∗(t, τ )) − F2 (x∗ (τ )),<br />
α<br />
α<br />
dt<br />
y ∗ (t, τ ) − x∗ (τ ) + α(τ )˜2(t, τ ) + y(t, τ) − xα (τ ), y ∗(t, τ ) − x∗ (τ ) = 0.<br />
r<br />
α<br />
α<br />
<br />
Substituting the two last equalities and using the relation<br />
dx(t)<br />
d x(t) 2<br />
=2<br />
, x(t)<br />
dt<br />
dt<br />
and the monotone property of Fi , i = 1, 2, we have got<br />
d˜(t, τ )<br />
r<br />
+ 2γ(t)α(τ )˜(t, τ ) 0.<br />
r<br />
dt<br />
<br />
102<br />
<br />
NGUYEN BUONG, DANG THI HAI HA<br />
<br />
Hence,<br />
<br />
t<br />
<br />
r (t, τ )<br />
˜<br />
<br />
r (t0 , τ ) exp[−2α(τ )<br />
˜<br />
<br />
γ(t)dt],<br />
<br />
(2.5)<br />
<br />
t0<br />
<br />
where<br />
<br />
r(t0 , τ ) = y(t0, τ ) − xα(τ )<br />
˜<br />
2[ y(t0, τ )<br />
2[ u0<br />
<br />
2<br />
<br />
2<br />
<br />
2<br />
<br />
+ y ∗ (t0 , τ ) − x∗ (τ )<br />
α<br />
<br />
+ xα (τ )<br />
<br />
+ u∗<br />
0<br />
<br />
2<br />
<br />
+ x0<br />
<br />
2<br />
<br />
+ y ∗ (t0, τ )<br />
<br />
2<br />
<br />
2<br />
<br />
2<br />
<br />
+ F1 (x0 ) 2 ].<br />
<br />
+ x∗ (τ ) 2]<br />
α<br />
<br />
Consequently, from (2.2), (2.5) and the properties of γ(t), α(t) we can obtain (see [13] for<br />
details)<br />
lim r (τ, τ ) = 0<br />
˜<br />
<br />
τ →+∞<br />
<br />
and the boundness of {y(t, τ )} and {y ∗ (t, τ )}. Therefore,<br />
lim y(τ, τ ) = x0 ,<br />
<br />
τ →+∞<br />
<br />
and there exists a positive constant d2 such that y(t, τ ) , y ∗(t, τ )<br />
˜<br />
˜<br />
˜<br />
R(t, τ ) = R1 (t, τ ) + R2(t, τ ),<br />
<br />
d2 . Further, set<br />
<br />
˜<br />
R1 (t, τ ) = u(t) − y(t, τ ) 2,<br />
˜<br />
R2 (t, τ ) = u∗ (t) − y ∗ (t, τ ) 2.<br />
<br />
On the base of (2.1) and (2.3) we can write<br />
d(u(t) − y(t, τ ))<br />
h(t)<br />
, u(t) − y(t, τ ) + γ(t) F1 (u(t)) − F1 (y(t, τ )),<br />
dt<br />
u(t) − y(t, τ ) + α(t)u(t) − α(τ )y(t, τ ), u(t) − y(t, τ )<br />
+ y ∗(t, τ ) − u∗ (t), u(t) − y(t, τ )<br />
<br />
= 0,<br />
<br />
d(u∗ (t) − y ∗ (t, τ )) ∗<br />
h(t)<br />
, u (t) − y ∗ (t, τ ) + γ(t) F2 (u∗ (t)) − F2 (y ∗ (t, τ )),<br />
dt<br />
u∗ (t) − y ∗ (t, τ ) + α(t)u∗ (t) − α(τ )y ∗ (t, τ ), u∗(t) − y ∗ (t, τ )<br />
+ u(t)−y(t, τ ), u∗(t) − y ∗ (t, τ )<br />
<br />
Thus,<br />
<br />
= 0.<br />
<br />
˜<br />
dR(t, τ )<br />
˜<br />
+2γ(t)α(τ )R(t, τ )<br />
dt<br />
γ(t)[h(t)g( y(t, τ ) ) + |α(t) − α(τ )| y(t, τ ) ] u(t) − y(t, τ ) +<br />
γ(t)[h(t)g( y ∗(t, τ ) ) + |α(t) − α(τ )| y ∗ (t, τ ) ] u∗(t) − y ∗ (t, τ ) .<br />
<br />
Hence,<br />
˜<br />
dR(t, τ )<br />
Dγ(t)[h(t) + |α(t) − α(τ )|] − 2α(t)R(t, τ ),<br />
˜ ˜<br />
dt<br />
α(t) = γ(t)α(τ ), D = 2 max{g(d2 )(d1 + d2 ), d2}.<br />
˜<br />
<br />
It is not difficult to verify that<br />
<br />
CONTINUOUS REGULARIZATION METHOD FOR ILL-POSED OPERATOR EQUATIONS OF<br />
<br />
˜<br />
R(τ, τ )<br />
<br />
103<br />
<br />
R1 (τ ) + R2 (τ )<br />
τ<br />
<br />
R1 (τ ) = D<br />
<br />
γ(t)h(t)ξ(t)dt/ξ(τ ),<br />
t0<br />
τ<br />
<br />
R2 (τ ) = D<br />
<br />
γ(t)α (t)(t − τ )ξ(t)dt/ξ(τ ),<br />
t0<br />
s<br />
<br />
ξ(s) = exp(<br />
<br />
α(t)dt.<br />
˜<br />
t0<br />
<br />
Therefore, limt→+∞ R1 (τ ) = limt→+∞ R2 (τ ) = 0. Since x0 − u(τ )<br />
x0 − xα(τ ) +<br />
xα (τ ) − y(τ, τ ) + y(τ, τ ) − u(τ ) , then limτ →+∞ u(τ ) = x0 . Theorem is proved.<br />
Remark. The solution existence of (2.1) or (2.3) is followed from [7], [15] and [16], when<br />
h(t)<br />
Fi<br />
are weakly continuous or Lipschitz continuous for each t t0 .<br />
3. FINITE-DIMENSIONAL REGULARIZATION<br />
Consider the system of finite-dimensional problems<br />
dun (t)<br />
h(t)<br />
+ γ(t) F1,n (un (t)) + α(t)un (t) − u∗ (t) = θ,<br />
n<br />
dt<br />
∗ (t)<br />
dun<br />
h(t)<br />
+ γ(t) F2,n (u∗ (t)) + α(t)u∗ (t) + un (t) − fn (t) = θ,<br />
n<br />
n<br />
dt<br />
∗<br />
∗<br />
un (t0 ) = Pn u0 , un (t0) = Pn u0 ,<br />
h(t)<br />
<br />
h(t)<br />
<br />
h(t)<br />
<br />
(3.1)<br />
<br />
h(t)<br />
<br />
∗<br />
∗<br />
where F1,n = Pn F1 Pn , F2,n = Pn F2 Pn , fn (t) = Pn f (t), Pn is a linear projection from<br />
H onto its finite-dimensional subspace Hn such that Hn ⊂ Hn+1 , Pn x → x, as n → ∞ for<br />
∗<br />
every x ∈ H , and Pn is the dual of Pn with Pn<br />
c = constant, for all n, and un (t), u∗ (t) :<br />
˜<br />
n<br />
[t0 , +∞) → Hn .<br />
To prove<br />
lim un (t) = x0 ,<br />
n,t→+∞<br />
<br />
as in the Section 2, we use the system of finite-dimensional equations<br />
dyn (t, τ )<br />
∗<br />
+ γ(t) F1,n (yn (t, τ )) + α(τ )yn (t, τ ) − yn (t, τ ) = θ,<br />
dt<br />
∗<br />
dyn (t, τ )<br />
∗<br />
∗<br />
+ γ(t) F2,n (yn (t, τ )) + α(τ )yn (t, τ ) + yn (t, τ ) − fn = θ,<br />
dt<br />
∗<br />
yn (t0 , τ ) = Pn u0 , yn (t0 , τ ) = Pn u∗ , ∀t t0 ,<br />
0<br />
depending on the parameter τ<br />
We have a result.<br />
<br />
(3.2)<br />
<br />
∗<br />
∗<br />
t0 , where F1,n = Pn F1 Pn , F2,n = Pn F2 Pn , and fn = Pn f.<br />
<br />
Theorem 3.1. Assume that the following conditions hold:<br />
(i) problems (3.1) and (3.2) possess solutions in the class C 1 [t0, +∞) for any u0 , u∗ ∈ H<br />
0<br />
with un (t) , u∗ (t)<br />
d3 , d3 > 0, t t0 .<br />
n<br />
(ii) the functions α(t), h(t) and γ(t) satisfy the above conditions.<br />
(iii) Fi , i = 1, 2, are Fr´chet differentiable with Lipschitz continuous derivatives ( common<br />
e<br />
Lipschitz constant L), there exist x1 and x2 such that<br />
<br />
ADSENSE
CÓ THỂ BẠN MUỐN DOWNLOAD
Thêm tài liệu vào bộ sưu tập có sẵn:
Báo xấu
LAVA
AANETWORK
TRỢ GIÚP
HỖ TRỢ KHÁCH HÀNG
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn