Nguyễn Công Phương
CONTROL SYSTEM DESIGN
Mathematical Models of Systems
Contents
Introduction
I. II. Mathematical Models of Systems III. State Variable Models IV. Feedback Control System Characteristics V. The Performance of Feedback Control Systems VI. The Stability of Linear Feedback Systems VII. The Root Locus Method VIII.Frequency Response Methods IX. Stability in the Frequency Domain X. The Design of Feedback Control Systems XI. The Design of State Variable Feedback Systems XII. Robust Control Systems XIII.Digital Control Systems
sites.google.com/site/ncpdhbkhn
2
Mathematical Models of Systems
1. Differential Equations of Physical Systems 2. Linear Approximations of Physical Systems 3. The Laplace Transform 4. The Transfer Function of Linear Systems 5. Block Diagram Models 6. Signal – Flow Graph Models 7. The Simulation of Systems Using Control
Design Software
sites.google.com/site/ncpdhbkhn
3
Differential Equations of Physical Systems (1)
i
v
a through-variable an across-variable
• Current i: • Voltage v:
sites.google.com/site/ncpdhbkhn
4
Differential Equations of Physical Systems (2)
System
Variable through element
Integrated through- variable
Variable across element
Integrated across- variable
Electrical
Current, i
Charge, q
Voltage, v
Flux linkage, λ
Mechanical translational
Force, F
Velocity, v
Displacement, y
Translational momentum, P
Mechanical rotational
Torque, T
Angular momentum, h
Angular velocity, ω
Angular displacement, θ
Fluid
Volume, V
Pressure, P
Pressure momentum, γ
Fluid volumetric rate of flow, Q
Thermal
Heat flow rate, q
Heat energy, H
Temperature, T
sites.google.com/site/ncpdhbkhn
5
Differential Equations of Physical Systems (3) Inductive storage
L
i
2
v
L
E
Li
21
di dt
1 2
1v
2v
Electrical inductance: v: voltage i: current L: inductance
2
k
v
E
21
1 dF k dt
1 2
F k
F 1v
2v
Translational spring: v: translational velocity F: force k: translational stiffness
k
E
21
F 1
1 dT k dt
2
21 T k 2
Rotational spring: ω: angular velocity T: torque k: rotational stiffness
QI
2
I
E
P 21
dQ dt
1 IQ 2
1P
2P
Fluid inertia: P: Pressure Q: fluid volumetric flow rate I: fluid inertance
sites.google.com/site/ncpdhbkhn
6
Differential Equations of Physical Systems (4) Capacitive storage
C
i
E
Cv
i C
2 21
21dv dt
1 2
1v
Electrical capacitance: v: voltage; i: current C: capacitance
2v
2
F M
E
M
v 1 const
2dv dt
F 2v
F k
1 2
Translational mass: v: translational velocity; F: force M: mas; k: translational stiffness
T
J
E
2 J 2
J
1 const
2d dt
1 2
T 2
Rotational mass: ω: angular velocity; T: torque J: moment of inertia
Q
E
C P
Q C
f
2 21
fC
dP 21 dt
1 2 f
Fluid capacitance: P: Pressure; Cf: fluid capacitance Q: fluid volumetric flow rate
2P
1P
q
tC
E C T 2t
q C t
T 1 const
2T
dT 2 dt
Thermal capacitance: P: Pressure; q: heat flow rate; Ct: thermal capacitance
sites.google.com/site/ncpdhbkhn
7
Differential Equations of Physical Systems (5) Energy dissipators
iR
i
P
1v
2v
21v R
2 21v R
Electrical resistance: v: voltage; i: current R: resistance
b
F
F bv
P bv
21
2 21
1v
2v
Translational damper: v: translational velocity; F: force b: viscous friction
b
T
T
b
P b
21
2 21
1
2
Rotational damper: ω: angular velocity; T: torque b: viscous friction
QfR
Q
P
P 21 R
2 P 21 R
f
f
1P
2P
Fluid resistance: P: Pressure; Rf: fluid resistance Q: fluid volumetric flow rate
qtR
q
P
T 21 R t
T 21 R t
Thermal resistance: P: Pressure; q: heat flow rate; Rt: thermal resistance
1T
2T
sites.google.com/site/ncpdhbkhn
8
Differential Equations of Physical Systems (6)
C
L
R
( )r t
k
Wall friction b
Ex. 1
+–
y
Mass M
i t ( )
t
Ri t ( )
L
i t dt ( )
r t ( )
Force r(t)
0
di t ( ) dt
1 C
M
b
ky t ( )
r t ( )
( ) dy t dt
2 d y t ( ) 2 dt
t
M
bv t ( )
k
v t dt ( )
r t ( )
0
( ) dv t dt
v t ( )
dy t ( ) dt
sites.google.com/site/ncpdhbkhn
9
Differential Equations of Physical Systems (7)
1Ri
v t 1( )
2 ( ) v t Li
1R
1Ci
2Ri
2Ci
1L
k
2R
2C
1C
( )r t
Friction b2
Velocity v2(t)
M2
i
r t ( )
i
1
R
2
Friction b1
i C i
1 R
R 1
2
L
Velocity v1(t)
M1
v
0 v 1
2
r t ( )
C 1
Force r(t)
i v 1 R 2
R 1
t
v
2
C
0
2
v dt 2
0
dv 2 dt
1 L
M
r t ( )
1
b v 1 1
b v 2 1
b v 1 2
dv 1 dt
r t ( )
C 1
v 1
v 1
t
M
k
0
2
b v 1 2
b v 1 1
v dt 2
t
0
dv 2 dt
C
v
0
2
2
v 1
v dt 2
0
dv 2 dt
v 2 R 1 1 L
1 R 2 1 R 1
1 R 1 1 R 1
i C dv 1 dt v 1 R 1 dv 1 dt
sites.google.com/site/ncpdhbkhn
10
Ex. 2
Mathematical Models of Systems
1. Differential Equations of Physical Systems 2. Linear Approximations of Physical
Systems
3. The Laplace Transform 4. The Transfer Function of Linear Systems 5. Block Diagram Models 6. Signal – Flow Graph Models 7. The Simulation of Systems Using Control
Design Software
sites.google.com/site/ncpdhbkhn
11
y
Linear Approximations of Physical Systems (1)
( )y t
( )x t
y mx
0
x
( )y t
( )x t
y t 1( )
x t 1( )
System
y t 2 ( )
x t 2 ( )
ky t ( )
kx t ( )
System System
System
y t ( ) 1
y t ( ) 2
x t ( ) 1
x t ( ) 2
System
System
sites.google.com/site/ncpdhbkhn
12
Superposition Homogeneity
Linear Approximations of Physical Systems (2)
y mx b
y 1y
( )y t
( )x t
y
0y
x
0
0x
1x
x
b
)
b
x
y mx 1 1
y 0
b
y m x 0(
y mx 0 0
y m x
System
sites.google.com/site/ncpdhbkhn
13
Linear !!!
y
g x ( )
y
Linear Approximations of Physical Systems (3)
( )y t
( )x t
0y
dg dx x x 0
y t ( )
g x t
[ ( )]
0
0x
x
2
(
x
)
(
x
)
)
...
g x ( 0
dg dx
x 0 1!
x 0 2!
2 d g 2 dx
x x 0
x x 0
)
(
x
)
g x ( 0
x 0
dg dx x x 0
(
)
)
y
m x (
)
y (
y m x 0
x 0
x 0
0 y m x
sites.google.com/site/ncpdhbkhn
14
System
Linear Approximations of Physical Systems (4)
( )y t
( )x t
y
(
,
,...,
x
g x x 1
2
)n
g x (
,
x
,...,
x
)
(
)
20
10
n
0
x 1
x 10
g x 1
x x 0
(
x
x
)
(
x
x
)
...
2
20
n
n
0
g x
g x
2
n
x x 0
x x 0
sites.google.com/site/ncpdhbkhn
15
System
Linear Approximations of Physical Systems (5)
T mgL
sin
)
T mgL
(
0
0
sin
0
0;
0
0
T 0
o
T mgL
o 0 )
(cos 0 )(
mgL
T
2
http://www.ic.sunysb.edu/Class/phy141md/ doku.php?id=phy141:labs:lab1
0
2
sites.google.com/site/ncpdhbkhn
16
Ex.
Mathematical Models of Systems
1. Differential Equations of Physical Systems 2. Linear Approximations of Physical Systems 3. The Laplace Transform 4. The Transfer Function of Linear Systems 5. Block Diagram Models 6. Signal – Flow Graph Models 7. The Simulation of Systems Using Control
Design Software
sites.google.com/site/ncpdhbkhn
17
The Laplace Transform (1)
The Laplace transformation of f(t):
F s ( )
st t e dt ( )
f
0
j
st
The inverse Laplace transform of F(s):
f
t ( )
F s e ds
( )
j
j
1 2
at
cos at
t
sin at
ate
te
( )u t
( )t
f(t)
1
2
2
2
2
2
F(s)
1 2 s
1 s
1 s a
(
)
s
s
1 s a
a a
s a
sites.google.com/site/ncpdhbkhn
18
The Laplace Transform (2)
Property
f(t)
F(s)
t ( )Af
AF s ( )
1. Magnitude scaling
2. Addition/subtraction
f
t ( )
f
t ( )
1
2
F s ( ) 1
3. Time scaling
F
f at (
)
f
0
4. Time shifting
)]
ase L f [
F s ( ) 2 s 1 a a ase F s ( ) t a (
),
0
5. Frequency shifting
(
)
F s a
t a u t a a ) ( ( ), t u t a a f ( ) ( ate
t ( )
f
n
n
2
1
n
1
1
n
6. Differentiation
n s F s ( )
s
f
(0)
s
f
(0) ...
o s f
(0)
n d f
t dt ( ) /
n
n
n
7. Multiplication by t
nt
f
t ( )
( 1)
d F s ds ( ) /
8. Division by t
F
d ( )
f
t ( ) /
t
s
t
9. Integration
f
d ( )
F s
( ) /
s
0
t
10. Convolution
f
f
t ( ) *
f
t ( )
f
(
t
( )
d )
1
1
2
2
F s F s ( ) ( ) 1
2
0
11. Final value
0
t lim ( ) f t
sF s lim ( ) s
sites.google.com/site/ncpdhbkhn
19
The Laplace Transform (3)
M
b
ky t ( )
r t ( )
dy t ( ) dt
2 d y t ( ) 2 dt
r t ( )
R s ( )
ky t ( )
kY s ( )
y t ( )
Y s ( )
b
b sY s ( )
(0 )
y
( ) dy t dt
M
2 M s Y s ( )
sy
(0 )
(0 )
dy dt
2 d y t ( ) 2 dt
2 M s Y s ( )
sy
(0 )
(0 )
b sY s ( )
(0 )
y
kY s ( )
R s ( )
dy dt
( )
(0 )
(0 )
by
(0 )
R s M sy
Ex. 1
? ( )y t
Y s ( )
2
p s ( ) q s ( )
Ms
k
dy dt bs
sites.google.com/site/ncpdhbkhn
20
The Laplace Transform (4)
1.5
Y s ( )
1
s 1)( s
2)
(
s
4(
3)
0.5
0
K 1 s 1
K 2 s 2
i
t r a P y r a n g a m
I
-0.5
8
K 1
-1
s 3) 4( 2) s (
s 1)
(
s
2)
4(
3) s (
s
1
s
1
-1.5
-3
-2.5
-2
-1.5
-0.5
0
0.5
1
K
4
-1 Real Part
2
s 4( s (
2)
(
s
s 4( 1) ( s
3)
4
3) 1) s
2
s
3.5
3
Y s ( )
2.5
s
1
2
2 8
2
1.5
Ke
at
4 s K s a
1
0.5
t
2
t
4
0
0
1
2
3
4
5
e ( ) 8 e y t sites.google.com/site/ncpdhbkhn
21
Ex. 1
The Laplace Transform (5)
15
10
5
Y s ( )
2
0
i
s 6 s
265
s
4
76
t r a P y r a n g a m
I
-5
-10
s
s
j 16
j 16
K 1 3
K 2 3
-15
-30
-25
-20
-15
-10
-5
0
5
10
Real Part
6
K 1
76 4 s s ( 16) j
(
s
j 16)
3
3
s
j
16
3
4
5.66e-3tcos(16t - 45o) 5.66e-3t -5.66e-3t
2
j
2 2.83
2
o45
0
t 3
t cos(16
o 45 )
( ) 2 2.83 e y t
-2
-4
5.66
te 3
t cos(16
o 45 )
-6
0
0.2
0.4
0.6
0.8
1.2
1.4
1.6
1.8
2
1 Time
sites.google.com/site/ncpdhbkhn
22
Ex. 2
Mathematical Models of Systems
1. Differential Equations of Physical Systems 2. Linear Approximations of Physical Systems 3. The Laplace Transform 4. The Transfer Function of Linear Systems 5. Block Diagram Models 6. Signal – Flow Graph Models 7. The Simulation of Systems Using Control
Design Software
sites.google.com/site/ncpdhbkhn
23
The Transfer Function of Linear Systems (1) ( )Y s
( )R s
G s ( )
Output Input
Y s ( ) R s ( )
n
n
n
2
1
1
p
p
...
...
q n
q y 0
n
p r 0
n
2
1
1
n
n
r 2
n
y 1
r 1
n d y n dt
d dt
d dt n 2
1
p
p
n
p 0
Y s G s R s ( )
( )
( )
R s ( )
R s ( )
p s ( ) q s ( )
d dt n s 1 n s
s n 2 1 n s
...
q n
... q 0
1
R s ( )
Y s ( ) 1
Y s ( ) 2
Y s ( ) 3
m s ( ) q s ( )
( ) p s q s ( )
( ) m s q s ( )
p s n s ( ) ( ) q s d s ( ) ( )
y t ( )
y t ( ) 3 steady-state reponse
y t y t ( ) ( ) 1 2 transient response
sites.google.com/site/ncpdhbkhn
24
System
Given
4 ( ), where
r t
2
3
y
y
t
0. Find ( ) ?
y t
( ) 1, r t
(0) 0;
(0) 1;
The Transfer Function of Linear Systems (2) dy dt
dy dt
2 d y 2 dt
4
2 s Y s ( )
sy
(0)
(0)
3
sY s ( )
y
(0)
Y s 2 ( )
R s 4 ( )
1 s
dy dt
2[ s Y s ( )
s
sY s
Y s ( ) 1] 2 ( )
4 /
s
] 3[
Y s ( )
2
2
K 3 s
K 1 s 1
K 2 s 2
K 4 s 1
K 5 s 2
2
s
s s (
2)
s
3 3 s
4 s 3
s
1
s
2
2 s
s
1
s
2
2
1
4
2
t
2
t
2
t
t
y t ( )
(2
e
e
)
(2
e
4
e
) 2
2
t
t
e
2
e
2
sites.google.com/site/ncpdhbkhn
25
Ex. 1
The Transfer Function of Linear Systems (3)
R1
R2
i2
vi
ii
vo
Ex. 2 Find the transfer function?
– +
ii
i 2
v
v
0
v i
v i
v i
i i
R 1
R 1
R 1
v i R 1
v
v
0
v o
v o
i 2
R 2
R 2
v o R 2
v o R 2
v i R 1
v o R 2
v o v i
R 2 R 1
sites.google.com/site/ncpdhbkhn
26
The Transfer Function of Linear Systems (4)
k
Friction b2
M
(
r t ( )
1
b 1
b v ) 2 1
b v 1 2
Velocity v2(t)
M2
t
M
0
k
2
b v 1 2
v dt 2
b v 1 1
0
dv 1 dt dv 2 dt
Friction b1
M sV s ( )
(
R s ( )
b V s ( ) ) 2 1
1
1
b 1
b V s ( ) 1 2
Velocity v1(t)
M1
M sV s ( )
k
0
2
2
Force r(t)
V s ( ) 1
(
b V s ( ) 1 2 ( M s b 1 1
( ) V s 2 b V s ( ) 1 1 s ( ) / ) M s b k s R s 2 1 b M s b )( k s / ) 2 2 1
2 b 1
2
G s ( ) v
V s ( ) 1 R s ( )
k
)
(
M
M s 2 b M s )( 2 2
k b s 1 2 b s 1
2 b s 1
1
s
b 1
2
s
G s ( ) x
X s ( ) 1 R s ( )
V s ( ) / 1 R s ( )
G s ( ) v s
k
)
]
s M [(
b s M s 1 2 2 b M s )( 2 2
k b s 1
2 b s 1
b 1
1
s
sites.google.com/site/ncpdhbkhn
27
Ex. 3 Find the transfer function?
The Transfer Function of Linear Systems (5)
Angle θ
t ( )
T m
K i 1 a
Inertia load
t ( )
K K i 1 f
f
t i ( ) a
http://www.electrical4u.com/permanent- magnet-dc-motor-or-pmdc-motor/
(
i )
t ( )
t ( )
K K I 1 f a
f
K i m f
s ( )
T s ( ) m
K I m f
T s ( ) L
T s ( ) d
T s ( ) L
Js
s ( )
s ( )
2
bs
(
R
s ( )
LT s ( ) V s ( ) f
f
sL I ) f
f
m
G s ( )
K s Js b L s R ( )(
)
s ( ) V s ( ) f
f
f
K
/(
JL
)
f
)(
/
/
s R L f
f
m ) s s b J ( sites.google.com/site/ncpdhbkhn
28
Ex. 4 Find the transfer function? fK i f
The Transfer Function of Linear Systems (8)
s I ( )
s ( )
T s ( ) m
K K I 1
f
f
a
If the armature current Ia is constant
m
G s ( )
K s Js b L s R ( )(
)
( ) s V s ( ) f
f
f JL /(
)
K
K
/(
bR
)
f
f
/
)(
/
)
m s s b J (
s
s
s
1)
(
1)(
m
s R L f
f
f
L
dT s ( )
( )
s ( )
( )mT s
fI
( )s
fV s ( )
( )s1
mK
R
1
1 s
LT s ( )
Js b Load
L s f s Field
Field – controlled DC motor sites.google.com/site/ncpdhbkhn
29
Ex. 4 Find the transfer function?
The Transfer Function of Linear Systems (9)
s I ( )
s ( )
T s ( ) m
K K I 1
f
f
a
s ( )
I
)
(
s ( )
If the field current If is constant
K K I 1
T s ( ) m
a
f
f
K I m a
(
s ( )
V s ( ) a
R a
sL I ) a
a
V s ( ) b
I
s ( )
a
V s ( ) a R a
V s ( ) b sL a
K
V s ( ) b
s ( ) b
Js
s ( )
s ( )
2
bs
LT s ( )
G s ( )
)
K K
]
K m
( ) s V s ( ) a
a
b m
s Js b L s R [( )( a Armature – controlled DC motor sites.google.com/site/ncpdhbkhn
30
Ex. 4 Find the transfer function?
The Transfer Function of Linear Systems (10)
s I ( )
s ( )
T s ( ) m
K K I 1
f
f
a
s ( )
T s ( ) m
K I m a
K
s ( )
b
s ( )
I
a
If the field current If is constant V s ( ) b
Js
s ( )
s ( )
2
bs
V s ( ) b sL a
G s ( )
)
K K
]
T s ( ) L K m
V s ( ) a R a s ( ) V s ( ) a
s Js b L s R [( )( a
a
b m
dT s ( ) ( )
( )mT s
( )s
( )s1
aV s ( )
1 s
LT s ( )
( )
Js b Load
K m L s R a a Armature
bK
Back electromotive force
Armature – controlled DC motor sites.google.com/site/ncpdhbkhn
31
Ex. 4 Find the transfer function?
Mathematical Models of Systems
1. Differential Equations of Physical Systems 2. Linear Approximations of Physical Systems 3. The Laplace Transform 4. The Transfer Function of Linear Systems 5. Block Diagram Models 6. Signal – Flow Graph Models 7. The Simulation of Systems Using Control
Design Software
sites.google.com/site/ncpdhbkhn
32
Block Diagram Models (1) ( )s
fV s ( )
m
m
G s ( )
G s ( )
K s Js b L s R ( )(
)
K s Js b L s R ( )(
)
s ( ) V s ( ) f
f
f
f
f
( )
( )
( )
( )
11
12
2
System
( )
( )
( )
( )
21
22
2
2
Y s G s R s G s R s ( ) 1 1 Y s G s R s G s R s ( ) 1
1( )R s R s 2 ( )
Y s 1( ) Y s 2 ( )
Y s 1( ) Y s 2 ( )
1( )R s R s 2 ( )
System
JR s ( )
IY s ( )
11
12
G s G s ( ) G s G s ( )
( ) ( )
Y GR
22
21 ( )
G s G s ( )
I
1
I
2
G s ( ) 1 J G s ( ) J 2 G s ( ) IJ
R s ( ) 1 R s ( ) 2 ( ) R s J
Y s ( ) 1 Y s ( ) 2 ( ) Y s I
sites.google.com/site/ncpdhbkhn
33
Block Diagram Models (2)
( )
( )
( )
( )
11
12
2
System
( )
( )
( )
( )
22
21
2
2
Y s G s R s G s R s ( ) 1 1 Y s G s R s G s R s ( ) 1
1( )R s R s 2 ( )
1( ) Y s Y s 2 ( )
1( )R s
Y s 1( )
R s 2 ( )
Y s 2 ( )
G11(s)
sites.google.com/site/ncpdhbkhn
34
G22(s)
Block Diagram Models (3)
X1 X2 X3 X1 X3
or
G1(s) G2(s) G1G2
X1 X3
Combining blocks in cascade
Moving a summing point behind a block
G2G1
X1 X3 X1 X3
( )
( )
G G
X2
sites.google.com/site/ncpdhbkhn
35
G X2
Block Diagram Models (4)
X1 X2 X2 X1
G G
G
Moving a pickoff point ahead of a block
Moving a pickoff point behind a block
X2 X2
X2 X1 X1 X2
G G
sites.google.com/site/ncpdhbkhn
36
X1 X2 1/G
Block Diagram Models (5)
X1 X3 X1 X3
( )
( )
G G
1/G X2
Moving a summing point ahead of a block
Eliminating a feedback loop
X2
2X
1X
X1 X2
1
G GH
( )
G
sites.google.com/site/ncpdhbkhn
37
H
Block Diagram Models (6)
Z(s)
U(s)
Y(s)
R(s)
Ea(s)
(–)
B(s)
Process G(s) Controller Gc(s) Actuator Ga(s)
R s ( )
B s ( )
R s H s Y s ( )
( )
( )
aE s ( )
Y s G s U s ( )
( )
( )
( )
( )
G s G s G s E s ( )
( )
( )
( )
G s G s Z s ( ) a
c
a
a
( )[
( )
( )
( )
( )
( )
( )]
Y s G s G s G s R s H s Y s c
a
Y s ( ) R s ( )
1
G s G s G s ( ) ( ) ( ) c a G s G s G s H s ( ) ( ) ( ) ( )
a
c
sites.google.com/site/ncpdhbkhn
38
Sensor H(s)
Block Diagram Models (7)
( )
Ex. H2
R(s) Y(s)
( )
G1 G2 G3 G4
H1
H3
X1 X2 X1 X2
G G
Moving a pickoff point behind a block
( )
X1 X2 1/G
R(s) Y(s)
( )
G1 G2 H2/G4 G3 G4
H1
sites.google.com/site/ncpdhbkhn
39
H3
( )
Ex.
R(s) Y(s)
G1
Block Diagram Models (8) H2/G4 G3
( )
G2 G4
H1
H3
X1 X2 X3 X1 X3
Combining blocks in cascade
G1(s) G2(s) G1G2
( )
H2/G4
R(s) Y(s)
( )
G1 G2
G3G4 H1
sites.google.com/site/ncpdhbkhn
40
H3
Ex.
Block Diagram Models (9) H2/G4
( )
R(s) Y(s)
( )
G1 G2
G3G4 H1
2X
1X
H3
1
G GH
( )
X1 X2 G
Eliminating a feedback loop
H
( )
H2/G4
R(s) Y(s)
1
G G 3 4 G G H 4
3
1
( )
G1 G2
sites.google.com/site/ncpdhbkhn
41
H3
Ex.
Block Diagram Models (10) H2/G4
( )
R(s) Y(s)
1
G G 3 4 G G H 4
3
1
( )
G1 G2
H3
( )
H2/G4
Y(s) R(s)
1
G G G 2 3 4 G G H 4
3
1
( )
G1
H3
2
Y(s) R(s)
1
G G G 3 4 G G H G G H 1
3
2
3
4
2
( )
G1
sites.google.com/site/ncpdhbkhn
42
H3
Block Diagram Models (11)
( )
Ex. H2
R(s) Y(s)
( )
G1 G2 G3 G4
H1
H3
2
Y(s) R(s)
1
G G G 4 3 G G H G G H 1
4
3
3
2
2
( )
G1
1
Y s ( ) R s ( )
1
3 G G H G G H G G G G H
G G G G 4 2
1
2
3
4
3
4
2
3
1
2
3
sites.google.com/site/ncpdhbkhn
43
H3
Mathematical Models of Systems
1. Differential Equations of Physical Systems 2. Linear Approximations of Physical Systems 3. The Laplace Transform 4. The Transfer Function of Linear Systems 5. Block Diagram Models 6. Signal – Flow Graph Models 7. The Simulation of Systems Using Control
Design Software
sites.google.com/site/ncpdhbkhn
44
Signal – Flow Graph Models (1)
R(s)
Y(s)
Y s G s R s ( )
( )
( )
R(s)
Y(s)
1( )R s
Y s 1( )
G s 11( )
R1(s)
Y1(s)
G(s)
G s 12 ( )
G s 21( )
R s 2 ( )
Y s 2 ( )
R2(s)
Y2(s)
G11(s)
G s 22 ( )
( )
( )
( )
( )
11
12
2
( )
( )
( )
22
21
2
2
Y s G s R s G s R s ( ) 1 1 Y s G s R s G s R s ( ) ( ) 1 sites.google.com/site/ncpdhbkhn
45
G22(s)
11a
1
1R
1X
x 1 x
Signal – Flow Graph Models (2) a x 12 2 a x 22 2
r 1 r 2
2
a x 11 1 a x 21 1
12a
21a
(1
)
2R
a x 12 2 x )
a
(1
2X
a x 11 1 a x 21 1
22
2
r 1 r 2
1
22a
1
22
x 1
r 1
r 2
(1
r 1 a
) a 22 )(1
a r 12 2 )
a
a 12
a a 12 21
1
x
2
r 2
r 1
(1
r 2 a
a 11
a 21
(1 a 11 ) a (1 11 )(1 a 11
22 a r 21 1 ) a a 12 21
22
(1
)(1
a
)
a
1
a 11
a a 12 21
22
a 11
22
a a 11 22
a a 12 21
N
...
1
L n
L L n m
L L L n m p
n
,
1
n m , nontouching
n m p , nontouching
sites.google.com/site/ncpdhbkhn
46
N
...
1
L L L n m p
L L n m
L n
Signal – Flow Graph Models (3)
n
,
1
n m , nontouching
n m p , nontouching
= 1 – (sum of all different loop gains)
+ (sum of the gain products of all combinations of two nontouching loops) – (sum of the gain products of all combinations of three nontouching loops) + ... 11a
1L
1
1R
1X
;
;
a
L 1
a 11
L 2
a a 12 21
L 3
22
2L
21a
12a
2R
2X
1
3L
22a
(sum of all different loop gains) = L1 + L2 + L3 = a11 + a12a21 + a22 (sum of the gain products of all combinations of two nontouching loops) = L1L3 = a11a22
1 (
a
)
a 11
22
a a 12 21
a a 11 22
sites.google.com/site/ncpdhbkhn
47
N
1
Signal – Flow Graph Models (4) L L ... n m
L L L n m p
L n
n
,
1
n m , nontouching
n m p , nontouching
P k
k
G s ( )
( ) Y s R s ( )
k
• Pk: gain of kth path from input to output • Δk (cofactor): the determinant Δ with the loop(s)
touching the kth path removed.
sites.google.com/site/ncpdhbkhn
48
Signal – Flow Graph Models (5) 3H
2H
P k
k
G s ( )
2L
1L
Y s ( ) R s ( )
k
1G
4G
2G
3G
• Pk: gain of kth path from input
( )R s
( )Y s
to output
6G
7G
8G
5G
• Δk (cofactor): the determinant Δ with the loop(s) touching the kth path removed.
3L
4L
;
P G G G G 1 4 1
3
2
P G G G G 2 8 5
6
7
6H
7H
Δ = 1 – (sum of all different loop gains)
+ (sum of the gain products of all combinations of two nontouching loops) – (sum of the gain products of all combinations of three nontouching loops) + ...
;
;
L G H L G H L G H L G H ; 1 3
3
4
7
2
6
6
3
2
2
7
1 (
)
(
)
L 1
L 2
L 3
L 4
L L 1 3
L L 1 4
L L 2 3
L L 2 4
sites.google.com/site/ncpdhbkhn
49
Ex. 1
Signal – Flow Graph Models (6) 3H
2H
P k
k
G s ( )
2L
1L
Y s ( ) R s ( )
k
1G
4G
2G
3G
3
2
( )R s
( )Y s
6G
7G
)
P G G G G 1 1 4 P G G G G 2 5 8 1 (
7
8G
5G
(
)
L 3
6 L 1 L L 1 3
L 2 L L 1 4
L 4 L L 2 3
L L 2 4
3L
4L
Δk (cofactor): the determinant Δ with the loop(s) touching the kth path removed.
6H
7H
1 (
)
1
L 3
L 4
0
L L 2 1
1 (
)
2
L 1
L 2
0
L L 4 3
5
P 2
2
G s ( )
)] )
P 1 1
3
L 3
L )] 4 ( )
L 1
G G G G 1 4 2 1 ( L L 2 1
[1 ( L 3
L 4
L L 1 3
[1 ( G G G G 6 8 7 L L L L 2 3 1 4
L 2 L L 2 4
sites.google.com/site/ncpdhbkhn
50
Ex. 1
Signal – Flow Graph Models (7)
dT s ( ) ( )
( )mT s
( )s
( )s1
aV s ( )
P k
k
G s ( )
1 s
LT s ( )
k
( )
s ( ) V s ( ) a
Js b Load
K m R L s a a Armature
bK
Back electromotive force
Δ = 1 – (sum of all different loop gains) + (sum of the gain products of all combinations of two nontouching loops) – (sum of the gain products of all
G s ( )
combinations of three nontouching loops) + ...
)
K K
]
K m
s ( ) V s ( ) a
s Js b L s R [( )( a
a
b m
L
G G H 2
1
dT s ( )
1
( )s
aV s ( )
( )mT s
LT s ( )
1
1L
1
1
1
1G
2G
3G
1
L
• •
G G H 2 Pk: gain of kth path from input to output Δk (cofactor): the determinant Δ with the loop(s) touching the kth path removed.
;
;
;
H K
G 1
G 2
G 3
b
P G G G 1 1 3
2
1 s
H 1 Js b
1
1
K m L s a 1 s
R a
G s ( )
P 1 1
L 0 s ( ) V s ( ) a
G G G 1 3 2 1 G G H 1 2
1
K
1
b
R a
R a K 1 m Js b L s a K 1 m Js b L s a sites.google.com/site/ncpdhbkhn
51
Ex. 2
Signal – Flow Graph Models (8)
H2
( )
Y(s)
R(s)
P k
k
G s ( )
G1
G2
G3
G4
Y s ( ) R s ( )
k
( )
H1
H3
Δ = 1 – (sum of all different loop gains) + (sum of the gain products of all combinations of two nontouching loops) – (sum of the gain products of all
1
combinations of three nontouching loops) + ...
( ) Y s R s ( )
3 G G H G G H G G G G H
1
G G G G 4 2
3
1
3
1
3
4 G G G G H 3
4
1
2
3
2 3 2 1 L 1
2 L 2
4 L 3
L 1
G G H 3
2
2
L G G H 3
2
4
1
L 3
• •
Pk: gain of kth path from input to output Δk (cofactor): the determinant Δ with the loop(s) touching the kth path removed.
P G G G G 1 4 1
2
3
1
1
0
3
1
G s ( )
1
3 G G H G G H G G G G H
G G G G 4 2
L L L , , 2 1 Y s ( ) R s ( )
P 1 1
1
2
3
4
2
3
3
4
1
2
3
1 G G G G 4 2 3 1 L L 1 3 2
L 1
sites.google.com/site/ncpdhbkhn
52
Ex. 3
Signal – Flow Graph Models (9)
7G
8G
P k
k
1
2G
6G
1G
4G
5G
G s ( )
( )Y s
( )R s
k
3G
4H
1H
2H
Δ = 1 – (sum of all different loop gains) + (sum of the gain products of all combinations of two nontouching loops) – (sum of the gain products of all
combinations of three nontouching loops) + ...
3H
L 1
G G G G H 4
3
2
5
2;
L 2
G G H 6
5
1;
L 3
G H 8
1;
L 4
G G H 7
2
2;
L 5
G H 4
L 6
G G G G G G H 4
2
3
6
1
5
L 7
G G G G H 6
2
1
7
L 8
G G G G G H 3
2
4
8
1
3;
1 (
)
(
3; )
4;
3; L 8
L 1
L 2
L 3
L 4
L 5
L 6
L 7
L L 5 7
L L 5 4
L L 3 4
• •
Pk: gain of kth path from input to output Δk (cofactor): the determinant Δ with the loop(s) touching the kth path removed.
P G G G G G G 1 2
1
5
3
4
6;
P G G G G 2 1
2
7
6;
P G G G G G 3 2
1
3
4
8;
1
1
2
L 5
3
1
all loops except L are zero
all loops are zero
5
1
P 3
3
G s ( )
1
2
4
)
2
( ) Y s R s ( )
P P 2 1 1 2
G G G G G G 6 3 L 2
1 L 1
5 L 3
1 L 4
G G G G (1 7 6 2 L L L 5 7 6
L 5 L 8
G G G G G 3 1 4 8 L L L L 5 7 5 4
1 L L 3 4
sites.google.com/site/ncpdhbkhn
53
Ex. 4 s ( ) V s ( ) a
Mathematical Models of Systems
1. Differential Equations of Physical Systems 2. Linear Approximations of Physical Systems 3. The Laplace Transform 4. The Transfer Function of Linear Systems 5. Block Diagram Models 6. Signal – Flow Graph Models 7. The Simulation of Systems Using Control
Design Software
sites.google.com/site/ncpdhbkhn
54
The Simulation of Systems Using Control Design Software (1)
k
Wall friction b
y
Mass M
M
b
ky t ( )
r t ( )
dy t ( ) dt
2 d y t ( ) 2 dt
Force r(t)
y
(0)
nt
y t ( )
e
sin
1
t
n
2
Ex. 1
2
1
;
;
cos
1
n
k M
b kM
2
sites.google.com/site/ncpdhbkhn
55
The Simulation of Systems Using Control Design Software (2)
Y s ( )
2
s 6 s
265
s
4
76
• zplane • roots • poly • conv • polyval • tf • series • parallel • feedback
sites.google.com/site/ncpdhbkhn
56
Ex. 2
The Simulation of Systems Using Control Design Software (3)
H2
( )
Y(s)
R(s)
G s ( ) 1
G1
G2
G3
G4
5
s
( )
H1
G s ( ) 2
s
H3
G s ( ) 3
4
7
G s ( ) 4
H s ( ) 1
1 1 1 2 2 s 2 4 s 1 6 1 2
s s s s s ( ) 3
( ) 1
H s 2 H s 3
sites.google.com/site/ncpdhbkhn
57
Ex. 3
The Simulation of Systems Using Control Design Software (4)
H2
( )
Y(s)
R(s)
G1
G2
G3
G4
( )
H1
H3
Ex. 3
X1 X2 X1 X2
G G
Moving a pickoff point behind a block
( )
X1 X2 1/G
R(s) Y(s)
( )
G1 G2 H2/G4 G3 G4
H1
sites.google.com/site/ncpdhbkhn
58
H3
( )
Ex. 3
R(s) Y(s)
The Simulation of Systems Using Control Design Software (5) H2/G4 G3
( )
G1 G2 G4
H1
H3
X1 X2 X3 X1 X3
Combining blocks in cascade
G1(s) G2(s) G1G2
( )
H2/G4
R(s) Y(s)
( )
G1 G2
G3G4 H1
sites.google.com/site/ncpdhbkhn
59
H3
The Simulation of Systems Using Control Design Software (6) H2/G4
( )
Ex. 3
R(s) Y(s)
( )
G1 G2
G3G4 H1
2X
1X
H3
1
G GH
( )
X1 X2 G
Eliminating a feedback loop
H
( )
H2/G4
R(s) Y(s)
1
G G 3 4 G G H 4
3
1
( )
G1 G2
sites.google.com/site/ncpdhbkhn
60
H3
The Simulation of Systems Using Control Design Software (7) H2/G4
( )
Ex. 3
R(s) Y(s)
1
G G 3 4 G G H 4
3
1
( )
G1 G2
H3
( )
H2/G4
R(s) Y(s)
1
G G G 2 3 4 G G H 4
3
1
( )
G1
H3
2
R(s) Y(s)
1
G G G 3 4 G G H G G H 1
4
2
3
3
2
( )
G1
sites.google.com/site/ncpdhbkhn
61
H3
The Simulation of Systems Using Control Design Software (8)
dT s ( ) ( )
( )s
d s ( )
3( )G s 500
0.5
2
1( )G s 10 1s
2 ( )G s 1 s
( )
( )
0.1
sites.google.com/site/ncpdhbkhn
62
Ex. 4

