Nguyễn Công Phương

CONTROL SYSTEM DESIGN

Mathematical Models of Systems

Contents

Introduction

I. II. Mathematical Models of Systems III. State Variable Models IV. Feedback Control System Characteristics V. The Performance of Feedback Control Systems VI. The Stability of Linear Feedback Systems VII. The Root Locus Method VIII.Frequency Response Methods IX. Stability in the Frequency Domain X. The Design of Feedback Control Systems XI. The Design of State Variable Feedback Systems XII. Robust Control Systems XIII.Digital Control Systems

sites.google.com/site/ncpdhbkhn

2

Mathematical Models of Systems

1. Differential Equations of Physical Systems 2. Linear Approximations of Physical Systems 3. The Laplace Transform 4. The Transfer Function of Linear Systems 5. Block Diagram Models 6. Signal – Flow Graph Models 7. The Simulation of Systems Using Control

Design Software

sites.google.com/site/ncpdhbkhn

3

Differential Equations of Physical Systems (1)

i

v

a through-variable an across-variable

• Current i: • Voltage v:

sites.google.com/site/ncpdhbkhn

4

Differential Equations of Physical Systems (2)

System

Variable through element

Integrated through- variable

Variable across element

Integrated across- variable

Electrical

Current, i

Charge, q

Voltage, v

Flux linkage, λ

Mechanical translational

Force, F

Velocity, v

Displacement, y

Translational momentum, P

Mechanical rotational

Torque, T

Angular momentum, h

Angular velocity, ω

Angular displacement, θ

Fluid

Volume, V

Pressure, P

Pressure momentum, γ

Fluid volumetric rate of flow, Q

Thermal

Heat flow rate, q

Heat energy, H

Temperature, T

sites.google.com/site/ncpdhbkhn

5

Differential Equations of Physical Systems (3) Inductive storage

L

i

2

v

L

E

Li

21

di dt

1 2

1v

2v

Electrical inductance: v: voltage i: current L: inductance

2

k

v

E

21

1 dF k dt

1 2

F k

F 1v

2v

Translational spring: v: translational velocity F: force k: translational stiffness

k

E

  21

F 1

1 dT k dt

2

21 T k 2

Rotational spring: ω: angular velocity T: torque k: rotational stiffness

QI

2

I

E

P 21

dQ dt

1 IQ 2

1P

2P

Fluid inertia: P: Pressure Q: fluid volumetric flow rate I: fluid inertance

sites.google.com/site/ncpdhbkhn

6

Differential Equations of Physical Systems (4) Capacitive storage

C

i

E

Cv

i C 

2 21

21dv dt

1 2

1v

Electrical capacitance: v: voltage; i: current C: capacitance

2v

2

F M 

E

M

v  1 const

2dv dt

F 2v

F k

1 2

Translational mass: v: translational velocity; F: force M: mas; k: translational stiffness

T

J

E

2 J 2

J

  1 const

2d  dt

1 2

T 2

Rotational mass: ω: angular velocity; T: torque J: moment of inertia

Q

E

C P

Q C 

f

2 21

fC

dP 21 dt

1 2 f

Fluid capacitance: P: Pressure; Cf: fluid capacitance Q: fluid volumetric flow rate

2P

1P

q

tC

E C T 2t

q C  t

T  1 const

2T

dT 2 dt

Thermal capacitance: P: Pressure; q: heat flow rate; Ct: thermal capacitance

sites.google.com/site/ncpdhbkhn

7

Differential Equations of Physical Systems (5) Energy dissipators

iR

i

P

1v

2v

21v R

2 21v R

Electrical resistance: v: voltage; i: current R: resistance

b

F

F bv

P bv

21

2 21

1v

2v

Translational damper: v: translational velocity; F: force b: viscous friction

b

T

T

b

P b

21

2 21

1

2

Rotational damper: ω: angular velocity; T: torque b: viscous friction

QfR

Q

P

P 21 R

2 P 21 R

f

f

1P

2P

Fluid resistance: P: Pressure; Rf: fluid resistance Q: fluid volumetric flow rate

qtR

q

P

T 21 R t

T 21 R t

Thermal resistance: P: Pressure; q: heat flow rate; Rt: thermal resistance

1T

2T

sites.google.com/site/ncpdhbkhn

8

Differential Equations of Physical Systems (6)

C

L

R

( )r t

k

Wall friction b

Ex. 1

+–

y

Mass M

i t ( )

t

Ri t ( )

L

i t dt ( )

r t ( )

Force r(t)

0

di t ( ) dt

1 C

M

b

ky t ( )

r t ( )

( ) dy t dt

2 d y t ( ) 2 dt

t

M

bv t ( )

k

v t dt ( )

r t ( )

0

( ) dv t dt

v t ( )

dy t ( ) dt

sites.google.com/site/ncpdhbkhn

9

Differential Equations of Physical Systems (7)

1Ri

v t 1( )

2 ( ) v t Li

1R

1Ci

2Ri

2Ci

1L

k

2R

2C

1C

( )r t

Friction b2

Velocity v2(t)

M2

i

r t ( )

i

1

R

2

Friction b1

i C i

1 R 

R 1

2

L

Velocity v1(t)

M1

v

0 v 1

2

r t ( )

C 1

Force r(t)

i  v 1 R 2

 R 1

t

v

2

C

0

2

v dt 2

0

dv 2 dt

1 L

M

r t ( )

1

b v 1 1

b v 2 1

b v 1 2

dv 1 dt

r t ( )

C 1

v 1

v 1

t

M

k

0

2

b v 1 2

b v 1 1

v dt 2

t

0

dv 2 dt

C

v

0

2

2

v 1

v dt 2

0

dv 2 dt

v 2 R 1 1 L

1 R 2 1 R 1

1 R 1 1 R 1

  i   C dv  1  dt    v  1  R 1 dv  1  dt     

sites.google.com/site/ncpdhbkhn

10

Ex. 2

Mathematical Models of Systems

1. Differential Equations of Physical Systems 2. Linear Approximations of Physical

Systems

3. The Laplace Transform 4. The Transfer Function of Linear Systems 5. Block Diagram Models 6. Signal – Flow Graph Models 7. The Simulation of Systems Using Control

Design Software

sites.google.com/site/ncpdhbkhn

11

y

Linear Approximations of Physical Systems (1)

( )y t

( )x t

y mx

0

x

( )y t

( )x t

y t 1( )

x t 1( )

System

y t 2 ( )

x t 2 ( )

ky t ( )

kx t ( )

System System

System

y t ( ) 1

y t ( ) 2

x t ( ) 1

x t ( ) 2

System

System

sites.google.com/site/ncpdhbkhn

12

Superposition Homogeneity

Linear Approximations of Physical Systems (2)

y mx b

y 1y

( )y t

( )x t

y

0y

x

0

0x

1x

x

b

)

b

x   

y mx  1 1

y      0

b

y m x 0( 

y mx  0 0

y m x    

System

sites.google.com/site/ncpdhbkhn

13

Linear !!!

y

g x ( )

y

Linear Approximations of Physical Systems (3)

( )y t

( )x t

0y

dg dx  x x 0

y t ( )

g x t

[ ( )]

0

0x

x

2

(

x

)

(

x

)

)

...

g x ( 0

dg dx

x  0 1!

x  0 2!

2 d g 2 dx

x x  0

   

   

x x  0

   

   

)

(

x

)

g x ( 0

x 0

dg dx  x x 0

(

)

)

y

m x (

)

y (  

y m x  0

x 0

x 0

0 y m x    

sites.google.com/site/ncpdhbkhn

14

System

Linear Approximations of Physical Systems (4)

( )y t

( )x t

y

(

,

,...,

x

g x x 1

2

)n

g x (

,

x

,...,

x

)

(

)

20

10

n

0

x 1

x 10

 

g x 1

x x  0

(

x

x

)

(

x

x

)

...  

2

20

n

n

0

g x

g x

 

 

2

n

x x  0

x x  0

sites.google.com/site/ncpdhbkhn

15

System

Linear Approximations of Physical Systems (5)

T mgL

sin

)

T mgL 

(   

0

0

sin 

  

0

0;

0

  0

T 0

o

T mgL

o 0 )

 

(cos 0 )( 

mgL 

T

 2



http://www.ic.sunysb.edu/Class/phy141md/ doku.php?id=phy141:labs:lab1

0

 2

sites.google.com/site/ncpdhbkhn

16

Ex.

Mathematical Models of Systems

1. Differential Equations of Physical Systems 2. Linear Approximations of Physical Systems 3. The Laplace Transform 4. The Transfer Function of Linear Systems 5. Block Diagram Models 6. Signal – Flow Graph Models 7. The Simulation of Systems Using Control

Design Software

sites.google.com/site/ncpdhbkhn

17

The Laplace Transform (1)

The Laplace transformation of f(t):

F s ( )

st  t e dt ( )

f

 

0

j  

st

The inverse Laplace transform of F(s):

f

t ( )

F s e ds

( )

j  

j

1 2 

at

cos at

t

sin at

ate

te

( )u t

( )t

f(t)

1

2

2

2

2

2

F(s)

1 2 s

1 s

1 s a

(

)

s

s

1 s a

a a

s a

sites.google.com/site/ncpdhbkhn

18

The Laplace Transform (2)

Property

f(t)

F(s)

t ( )Af

AF s ( )

1. Magnitude scaling

2. Addition/subtraction

f

t ( )

f

t ( )

1

2

F s ( ) 1

3. Time scaling

F

f at (

)

f

0

4. Time shifting

)]

ase L f  [

F s ( ) 2 s 1     a a   ase F s  ( ) t a ( 

),

 0

5. Frequency shifting

(

)

F s a

t a u t a a ) ( ( ),  t u t a a f ( ) (   ate 

t ( )

f

n

n

2

1

n

1 

1 

n

6. Differentiation

n s F s ( )

s

f

(0)

s

f

(0) ...

o s f

(0)

n d f

t dt ( ) /

n

n

n

7. Multiplication by t

nt

f

t ( )

( 1) 

d F s ds ( ) / 

8. Division by t

F

d  ( )

f

t ( ) /

t

s

t

9. Integration

f

d  ( )

F s

( ) /

s

0

t

10. Convolution

f

f

t ( ) *

f

t ( )

f

(

t

 

( ) 

d )  

1

1

2

2

F s F s ( ) ( ) 1

2

0

11. Final value

0

 t lim ( ) f t 

sF s lim ( ) s 

sites.google.com/site/ncpdhbkhn

19

The Laplace Transform (3)

M

b

ky t ( )

r t ( )

dy t ( ) dt

2 d y t ( ) 2 dt

r t ( )

R s ( )

ky t ( )

kY s ( )

y t ( )

Y s ( )

b

b sY s ( )

 (0 )

y

 

 

( ) dy t dt

M

2 M s Y s ( )

sy

 (0 )

 (0 )

dy dt

2 d y t ( ) 2 dt

  

  

2 M s Y s ( )

sy

 (0 )

 (0 )

b sY s ( )

 (0 )

y

kY s ( )

R s ( )

 

 

dy dt

  

  

( )

 (0 )

 (0 )

by

 (0 )

R s M sy 

  

  

Ex. 1

? ( )y t

Y s ( )

2

p s ( ) q s ( )

Ms

k

dy dt bs 

 sites.google.com/site/ncpdhbkhn

20

The Laplace Transform (4)

1.5

Y s ( )

1

s  1)( s

2)

(

s

4( 

3) 

0.5

0

K 1 s 1 

K 2 s 2 

i

t r a P y r a n g a m

I

-0.5

8

K 1

-1

s 3) 4(  2) s ( 

s 1)

(

s

2)

4( 

3)  s ( 

s

1



s

1



-1.5

-3

-2.5

-2

-1.5

-0.5

0

0.5

1

K

4

 

-1 Real Part

2

s 4( s (

2)

(

s

s 4(  1) ( s 

3) 

4

3)  1) s 

2



s

3.5

3

Y s ( )

2.5

s

1

2

2  8 

2

1.5

Ke

at  

4 s  K s a 

1

0.5

t

2

t

4

0

0

1

2

3

4

5

e ( ) 8 e y t  sites.google.com/site/ncpdhbkhn

21

Ex. 1

The Laplace Transform (5)

15

10

5

Y s ( )

2

0

i

s  6 s

265

s

4 

76 

t r a P y r a n g a m

I

-5

-10

s

s

j 16

j 16

K 1 3  

K 2 3  

-15

-30

-25

-20

-15

-10

-5

0

5

10

Real Part

6

K 1

76 4 s  s ( 16) j

(

s

j 16)

3  

3  

s

j

16

3  

4

5.66e-3tcos(16t - 45o) 5.66e-3t -5.66e-3t

2

j

2 2.83

2  

o45

0

t 3

t cos(16

o 45 )

( ) 2 2.83 e y t  

-2

-4

5.66

te 3 

t cos(16

o 45 )

-6

0

0.2

0.4

0.6

0.8

1.2

1.4

1.6

1.8

2

1 Time

sites.google.com/site/ncpdhbkhn

22

Ex. 2

Mathematical Models of Systems

1. Differential Equations of Physical Systems 2. Linear Approximations of Physical Systems 3. The Laplace Transform 4. The Transfer Function of Linear Systems 5. Block Diagram Models 6. Signal – Flow Graph Models 7. The Simulation of Systems Using Control

Design Software

sites.google.com/site/ncpdhbkhn

23

The Transfer Function of Linear Systems (1) ( )Y s

( )R s

G s ( )

Output Input

Y s ( ) R s ( )

n

n

n

2

1 

1 

p

p

...  

...  

q n

q y 0

n

p r 0

n

2

1 

1 

n

n

r 2

n

y 1 

r 1 

n d y n dt

d dt

d dt n 2 

1 

p

p

n

p 0

Y s G s R s ( )

( )

( )

R s ( )

R s ( )

p s ( ) q s ( )

d dt n s 1  n s

s n 2  1 n  s

...  

 q n

...   q 0

1 

R s ( )

Y s ( ) 1

Y s ( ) 2

Y s ( ) 3

m s ( ) q s ( )

( ) p s q s ( )

( ) m s q s ( )

p s n s ( ) ( ) q s d s ( ) ( )

y t ( )

y t ( ) 3  steady-state reponse

y t y t ( ) ( )  1 2  transient response

sites.google.com/site/ncpdhbkhn

24

System

Given

4 ( ), where

r t

2

3

y

y

t

0. Find ( ) ?

y t

( ) 1, r t 

(0) 0; 

(0) 1; 

The Transfer Function of Linear Systems (2) dy dt

dy dt

2 d y 2 dt

4

2 s Y s ( )

sy

(0)

(0)

3

sY s ( )

y

(0)

Y s 2 ( )

R s 4 ( )

1 s

dy dt

  

  

2[ s Y s ( )

s

sY s

Y s ( ) 1] 2 ( )

4 /

s

] 3[ 

 

Y s ( )

2

2

K 3 s

K 1 s 1 

K 2 s 2 

K 4 s 1 

K 5 s 2 

2

s

s s (

2)

s 

3  3 s 

4 s 3 

  

  

  

  

s

1

s

2

2 s

s

1

s

2

2 

1 

4 

2 

  

  

  

  

t

2

t

2

t

t

y t ( )

(2

e

e

)

(2

e

4

e

) 2 

2

t

t

e

2

e

2

sites.google.com/site/ncpdhbkhn

25

Ex. 1

The Transfer Function of Linear Systems (3)

R1

R2

i2

vi

ii

vo

Ex. 2 Find the transfer function?

– +

ii

i  2

v

v

0

v i

v i

v i

i i

 R 1

 R 1

 R 1

v i R 1

v

v

0

v o

v o

i 2

 R 2

 R 2

v  o R 2

v o R 2

v i    R 1

v o R 2

v o    v i

R 2 R 1

sites.google.com/site/ncpdhbkhn

26

The Transfer Function of Linear Systems (4)

k

Friction b2

M

(

r t ( )

1

b 1

b v ) 2 1

b v 1 2

Velocity v2(t)

M2

t

M

0

k

2

b v 1 2

v dt 2

b v 1 1

0

dv 1 dt dv 2 dt

    

Friction b1

M sV s ( )

(

R s ( )

 b V s ( ) ) 2 1

1

1

b 1

b V s ( ) 1 2

Velocity v1(t)

M1

M sV s ( )

k

0

2

2

Force r(t)

     V s ( )  1

(

b V s ( ) 1 2 ( M s b 1 1

( ) V s 2 b V s ( ) 1 1 s ( ) / ) M s b k s R s   2 1 b M s b )( k s / )    2 2 1

2 b 1

2

G s ( ) v

V s ( ) 1 R s ( )

k

)

(

M

M s 2 b M s )( 2 2

k b s  1 2 b s  1

2 b s 1

1

s

b 1

2

s

G s ( ) x

X s ( ) 1 R s ( )

V s ( ) / 1 R s ( )

G s ( ) v s

k

)

]

s M [(

 

b s M s 1 2 2 b M s )(  2 2

k b s 1

2 b s 1

b 1

1

s

sites.google.com/site/ncpdhbkhn

27

Ex. 3 Find the transfer function?

The Transfer Function of Linear Systems (5)

Angle θ

 

t ( )

T m

K i  1 a

Inertia load

t ( )

K K i 1 f

f

t i ( ) a

http://www.electrical4u.com/permanent- magnet-dc-motor-or-pmdc-motor/

(

i )

t ( )

t ( )

K K I 1 f a

f

K i m f

s ( )

T s ( ) m

K I m f

T s ( ) L

T s ( ) d

T s ( ) L

Js

s ( )

s ( )

2 

bs 

(

R

s ( )

LT s ( ) V s ( ) f

f

sL I ) f

f

m

G s ( )

K s Js b L s R ( )(

)

s ( )  V s ( ) f

f

f

K

/(

JL

)

f

)(

/

/

s R L f

f

m ) s s b J (   sites.google.com/site/ncpdhbkhn

28

Ex. 4 Find the transfer function? fK i f

The Transfer Function of Linear Systems (8)

s I ( )

s ( )

T s ( ) m

K K I 1

f

f

a

If the armature current Ia is constant

m

G s ( )

K s Js b L s R ( )(

)

( ) s  V s ( ) f

f

f JL /(

)

K

K

/(

bR

)

f

f

/

)(

/

)

m s s b J ( 

s

s

s

1)

( 

1)( 

m 

s R L f

f

f

L

dT s ( )

( )

s ( )

( )mT s

fI

( )s

fV s ( )

( )s1

mK

R

1 

1 s

LT s ( )

Js b Load

L s f s Field

Field – controlled DC motor sites.google.com/site/ncpdhbkhn

29

Ex. 4 Find the transfer function?

The Transfer Function of Linear Systems (9)

s I ( )

s ( )

T s ( ) m

K K I 1

f

f

a

s ( )

I

)

(

s ( )

If the field current If is constant 

K K I 1

T s ( ) m

a

f

f

K I m a

(

s ( )

V s ( ) a

R a

sL I ) a

a

V s ( ) b

I

s ( )

a

 

V s ( ) a R a

V s ( ) b sL a

K

V s ( ) b

s ( ) b

Js

s ( )

s ( )

2 

bs 

LT s ( )

G s ( )

)

K K

]

K m 

( ) s  V s ( ) a

a

b m

s Js b L s R [( )( a Armature – controlled DC motor sites.google.com/site/ncpdhbkhn

30

Ex. 4 Find the transfer function?

The Transfer Function of Linear Systems (10)

s I ( )

s ( )

T s ( ) m

K K I 1

f

f

a

s ( )

T s ( ) m

K I m a

K

s ( )

 b

s ( )

I

a

If the field current If is constant V s ( )  b 

Js

s ( )

s ( )

2 

bs 

V s ( ) b sL a

G s ( )

)

K K

]

T s ( ) L K m 

V s ( ) a R a s ( )  V s ( ) a

s Js b L s R [( )( a

a

b m

dT s ( ) ( )

( )mT s

( )s

( )s1

aV s ( )

1 s

LT s ( )

( )

Js b Load

K m L s R  a a Armature

bK

Back electromotive force

Armature – controlled DC motor sites.google.com/site/ncpdhbkhn

31

Ex. 4 Find the transfer function?

Mathematical Models of Systems

1. Differential Equations of Physical Systems 2. Linear Approximations of Physical Systems 3. The Laplace Transform 4. The Transfer Function of Linear Systems 5. Block Diagram Models 6. Signal – Flow Graph Models 7. The Simulation of Systems Using Control

Design Software

sites.google.com/site/ncpdhbkhn

32

Block Diagram Models (1) ( )s

fV s ( )

m

m

G s ( )

G s ( )

K s Js b L s R ( )(

)

K s Js b L s R ( )(

)

s ( )  V s ( ) f

f

f

f

f

( )

( )

( )

( )

11

12

2

System

( )

( )

( )

( )

21

22

2

2

Y s G s R s G s R s ( )  1 1  Y s G s R s G s R s ( )  1

1( )R s R s 2 ( )

Y s 1( ) Y s 2 ( )

Y s 1( ) Y s 2 ( )

1( )R s R s 2 ( )

System

JR s ( )

IY s ( )

11

12

G s G s ( ) G s G s ( )

( ) ( )

 Y GR

22 

21  ( )

G s G s ( )

I

1

I

2

G s ( )  1 J G s ( )  J 2   G s ( )  IJ

R s ( ) 1 R s ( ) 2  ( ) R s J

Y s ( )  1  Y s ( ) 2     ( ) Y s  I

      

     

           

     

sites.google.com/site/ncpdhbkhn

33

Block Diagram Models (2)

( )

( )

( )

( )

11

12

2

System

( )

( )

( )

( )

22

21

2

2

Y s G s R s G s R s ( )  1 1  Y s G s R s G s R s ( )  1

1( )R s R s 2 ( )

1( ) Y s Y s 2 ( )

1( )R s

Y s 1( )

R s 2 ( )

Y s 2 ( )

G11(s)

sites.google.com/site/ncpdhbkhn

34

G22(s)

Block Diagram Models (3)

X1 X2 X3 X1 X3

or

G1(s) G2(s) G1G2

X1 X3

Combining blocks in cascade

Moving a summing point behind a block

G2G1

X1 X3 X1 X3

( )

( )

G G

X2

sites.google.com/site/ncpdhbkhn

35

G X2

Block Diagram Models (4)

X1 X2 X2 X1

G G

G

Moving a pickoff point ahead of a block

Moving a pickoff point behind a block

X2 X2

X2 X1 X1 X2

G G

sites.google.com/site/ncpdhbkhn

36

X1 X2 1/G

Block Diagram Models (5)

X1 X3 X1 X3

( )

( )

G G

1/G X2

Moving a summing point ahead of a block

Eliminating a feedback loop

X2

2X

1X

X1 X2

1

G GH

( )

G

sites.google.com/site/ncpdhbkhn

37

H

Block Diagram Models (6)

Z(s)

U(s)

Y(s)

R(s)

Ea(s)

(–)

B(s)

Process G(s) Controller Gc(s) Actuator Ga(s)

R s ( )

B s ( )

R s H s Y s ( )

( )

( )

aE s ( )

Y s G s U s ( )

( )

( )

( )

( )

G s G s G s E s ( )

( )

( )

( )

G s G s Z s ( ) a

c

a

a

( )[

( )

( )

( )

( )

( )

( )]

Y s G s G s G s R s H s Y s c

a

Y s ( ) R s ( )

1

G s G s G s ( ) ( ) ( ) c a G s G s G s H s ( ) ( ) ( ) ( )

a

c

sites.google.com/site/ncpdhbkhn

38

Sensor H(s)

Block Diagram Models (7)

( )

Ex. H2

R(s) Y(s)

( )

G1 G2 G3 G4

H1

H3

X1 X2 X1 X2

G G

Moving a pickoff point behind a block

( )

X1 X2 1/G

R(s) Y(s)

( )

G1 G2 H2/G4 G3 G4

H1

sites.google.com/site/ncpdhbkhn

39

H3

( )

Ex.

R(s) Y(s)

G1

Block Diagram Models (8) H2/G4 G3

( )

G2 G4

H1

H3

X1 X2 X3 X1 X3

Combining blocks in cascade

G1(s) G2(s) G1G2

( )

H2/G4

R(s) Y(s)

( )

G1 G2

G3G4 H1

sites.google.com/site/ncpdhbkhn

40

H3

Ex.

Block Diagram Models (9) H2/G4

( )

R(s) Y(s)

( )

G1 G2

G3G4 H1

2X

1X

H3

1

G GH

( )

X1 X2 G

Eliminating a feedback loop

H

( )

H2/G4

R(s) Y(s)

1

G G 3 4 G G H 4

3

1

( )

G1 G2

sites.google.com/site/ncpdhbkhn

41

H3

Ex.

Block Diagram Models (10) H2/G4

( )

R(s) Y(s)

1

G G 3 4 G G H 4

3

1

( )

G1 G2

H3

( )

H2/G4

Y(s) R(s)

1

G G G 2 3 4 G G H  4

3

1

( )

G1

H3

2

Y(s) R(s)

1

G G G 3 4 G G H G G H  1

3

2

3

4

2

( )

G1

sites.google.com/site/ncpdhbkhn

42

H3

Block Diagram Models (11)

( )

Ex. H2

R(s) Y(s)

( )

G1 G2 G3 G4

H1

H3

2

Y(s) R(s)

1

G G G 4 3 G G H G G H  1

4

3

3

2

2

( )

G1

1

Y s ( ) R s ( )

1

3 G G H G G H G G G G H

G G G G 4 2 

1

2

3

4

3

4

2

3

1

2

3

sites.google.com/site/ncpdhbkhn

43

H3

Mathematical Models of Systems

1. Differential Equations of Physical Systems 2. Linear Approximations of Physical Systems 3. The Laplace Transform 4. The Transfer Function of Linear Systems 5. Block Diagram Models 6. Signal – Flow Graph Models 7. The Simulation of Systems Using Control

Design Software

sites.google.com/site/ncpdhbkhn

44

Signal – Flow Graph Models (1)

R(s)

Y(s)

Y s G s R s ( )

( )

( )

R(s)

Y(s)

1( )R s

Y s 1( )

G s 11( )

R1(s)

Y1(s)

G(s)

G s 12 ( )

G s 21( )

R s 2 ( )

Y s 2 ( )

R2(s)

Y2(s)

G11(s)

G s 22 ( )

( )

( )

( )

( )

11

12

2

( )

( )

( )

22

21

2

2

Y s G s R s G s R s ( )  1 1  Y s G s R s G s R s ( ) ( )   1 sites.google.com/site/ncpdhbkhn

45

G22(s)

11a

1

1R

1X

x 1 x

Signal – Flow Graph Models (2) a x  12 2 a x 22 2

r   1 r 2

2

a x 11 1 a x 21 1

  

12a

21a

(1

)

2R

a x 12 2 x )

a

(1  

2X

a x 11 1 a x 21 1

22

2

r 1 r 2

   

1

22a

1

22

x 1

r 1

r 2

(1

r 1 a

) a  22 )(1 

a r  12 2 ) 

a  

a 12 

a a 12 21

1

x

2

r 2

r 1

(1

r 2 a

a  11 

a 21 

(1 a 11 ) a (1  11 )(1 a  11

22 a r  21 1 ) a a  12 21

22

       

(1

)(1

a

)

a

 

1  

a 11

a a 12 21

22

a 11

22

a a 11 22

a a 12 21

N

...

1   

L n

L L n m

L L L n m p

n

,

1 

n m , nontouching

n m p , nontouching

sites.google.com/site/ncpdhbkhn

46

N

...

1   

L L L n m p

L L n m

L n

Signal – Flow Graph Models (3)  

n

,

1 

n m , nontouching

n m p , nontouching

= 1 – (sum of all different loop gains)

+ (sum of the gain products of all combinations of two nontouching loops) – (sum of the gain products of all combinations of three nontouching loops) + ... 11a

1L

1

1R

1X

;

;

a

L 1

a 11

L 2

a a 12 21

L 3

22

2L

21a

12a

2R

2X

1

3L

22a

(sum of all different loop gains) = L1 + L2 + L3 = a11 + a12a21 + a22 (sum of the gain products of all combinations of two nontouching loops) = L1L3 = a11a22

1 (

a

)

   

a 11

22

a a 12 21

a a 11 22

sites.google.com/site/ncpdhbkhn

47

N

1   

Signal – Flow Graph Models (4) L L ... n m

L L L n m p

L n

n

,

1 

n m , nontouching

n m p , nontouching

P k

k

G s ( )

( ) Y s R s ( )

k 

• Pk: gain of kth path from input to output • Δk (cofactor): the determinant Δ with the loop(s)

touching the kth path removed.

sites.google.com/site/ncpdhbkhn

48

Signal – Flow Graph Models (5) 3H

2H

P k

k

G s ( )

2L

1L

Y s ( ) R s ( )

k 

1G

4G

2G

3G

• Pk: gain of kth path from input

( )R s

( )Y s

to output

6G

7G

8G

5G

• Δk (cofactor): the determinant Δ with the loop(s) touching the kth path removed.

3L

4L

;

P G G G G 1 4 1

3

2

P G G G G 2 8 5

6

7

6H

7H

Δ = 1 – (sum of all different loop gains)

+ (sum of the gain products of all combinations of two nontouching loops) – (sum of the gain products of all combinations of three nontouching loops) + ...

;

;

L G H L G H L G H L G H ; 1 3

3

4

7

2

6

6

3

2

2

7

1 (

)

(

)

  

L 1

L 2

L 3

L 4

L L 1 3

L L 1 4

L L 2 3

L L 2 4

sites.google.com/site/ncpdhbkhn

49

Ex. 1

Signal – Flow Graph Models (6) 3H

2H

P k

k

G s ( )

2L

1L

Y s ( ) R s ( )

k 

1G

4G

2G

3G

3

2

( )R s

( )Y s

6G

7G

)

P G G G G 1 1 4 P G G G G 2 5 8 1 (   

7 

8G

5G

(

)

L 3 

6 L 1 L L 1 3

L 2 L L 1 4

L 4 L L 2 3

L L 2 4

3L

4L

Δk (cofactor): the determinant Δ with the loop(s) touching the kth path removed.

6H

7H

1 (

)

  

 

1

L 3

L 4

0

L L   2 1

1 (

)

  

 

2

L 1

L 2

0

L L   4 3

5

P 2

2

G s ( )

)] )

P    1 1 

3 

L 3 

L )] 4 ( ) 

L 1 

G G G G 1 4 2 1 ( L L  2 1

[1 (  L  3

 L 4

 L L 1 3

[1 ( G G G G  6 8 7 L L L L   2 3 1 4

L  2 L L 2 4

sites.google.com/site/ncpdhbkhn

50

Ex. 1

Signal – Flow Graph Models (7)

dT s ( ) ( )

( )mT s

( )s

( )s1

aV s ( )

P k

k

G s ( )

1 s

LT s ( )

k 

( )

s ( )  V s ( ) a

Js b Load

K m R L s  a a Armature

bK

Back electromotive force

Δ = 1 – (sum of all different loop gains) + (sum of the gain products of all combinations of two nontouching loops) – (sum of the gain products of all

G s ( )

combinations of three nontouching loops) + ...

)

K K

]

K m 

s ( )  V s ( ) a

s Js b L s R [( )( a

a

b m

L

 

G G H 2

1

dT s ( )

1

( )s

aV s ( )

( )mT s

LT s ( )

1

1L

    

1

1

1

1G

2G

3G

1

L

• •

G G H 2 Pk: gain of kth path from input to output Δk (cofactor): the determinant Δ with the loop(s) touching the kth path removed.

;

;

;

H K 

G 1

G 2

G 3

b

P G G G 1 1 3

2

1 s

H 1 Js b 

1

  

1

K m L s  a 1 s

R a

G s ( )

P  1 1 

L 0 s ( )  V s ( ) a

G G G 1  3 2 1 G G H 1  2

1

K

1

b

R a

R a K 1 m Js b L s   a K 1 m Js b L s   a sites.google.com/site/ncpdhbkhn

51

Ex. 2

Signal – Flow Graph Models (8)

H2

( )

Y(s)

R(s)

P k

k

G s ( )

G1

G2

G3

G4

Y s ( ) R s ( )

k 

( )

H1

H3

Δ = 1 – (sum of all different loop gains) + (sum of the gain products of all combinations of two nontouching loops) – (sum of the gain products of all

1

combinations of three nontouching loops) + ...

( ) Y s R s ( )

3 G G H G G H G G G G H

1

G G G G 4 2 

3

1

3

1 

3 

 

 

4 G G G G H 3

4

1

2

3

2 3 2 1 L    1

2 L 2

4 L 3

L 1

G G H 3

2

2

L G G H 3

2

4

1

L 3

• •

Pk: gain of kth path from input to output Δk (cofactor): the determinant Δ with the loop(s) touching the kth path removed.

P G G G G 1 4 1

2

3

1

  

1

0

3

1

G s ( )

1

3 G G H G G H G G G G H

G G G G 4 2 

L L L  , , 2 1 Y s ( ) R s ( )

P  1 1 

1

2

3

4

2

3

3

4

1

2

3

1 G G G G  4 2 3 1 L L 1    3 2

L 1

sites.google.com/site/ncpdhbkhn

52

Ex. 3

Signal – Flow Graph Models (9)

7G

8G

P k

k

1

2G

6G

1G

4G

5G

G s ( )

( )Y s

( )R s

k 

3G

4H

1H

2H

Δ = 1 – (sum of all different loop gains) + (sum of the gain products of all combinations of two nontouching loops) – (sum of the gain products of all

combinations of three nontouching loops) + ...

3H

 

 

 

 

L 1

G G G G H 4

3

2

5

2;

L 2

G G H 6

5

1;

L 3

G H 8

1;

L 4

G G H 7

2

2;

 

 

 

 

L 5

G H 4

L 6

G G G G G G H 4

2

3

6

1

5

L 7

G G G G H 6

2

1

7

L 8

G G G G G H 3

2

4

8

1

3;

1 (

)

(

3; )

4; 

  

3; L 8

L 1

L 2

L 3

L 4

L 5

L 6

L 7

L L 5 7

L L 5 4

L L 3 4

• •

Pk: gain of kth path from input to output Δk (cofactor): the determinant Δ with the loop(s) touching the kth path removed.

P G G G G G G 1 2

1

5

3

4

6;

P G G G G 2 1

2

7

6;

P G G G G G 3 2

1

3

4

8;

1

  

1  

2

L 5

     3

1

all loops except L are zero

all loops are zero

5

1

P 3

3

G s ( )

1

2 

4 

) 

2 

( ) Y s R s ( )

P P      2 1 1 2 

G G G G G G 6 3 L   2

1 L 1

5 L 3

1   L  4

G G G G (1  7 6 2 L L L   5 7 6

L 5 L 8

G G G G G  3 1 4 8 L L L L  5 7 5 4

1  L L 3 4

sites.google.com/site/ncpdhbkhn

53

Ex. 4 s ( )  V s ( ) a

Mathematical Models of Systems

1. Differential Equations of Physical Systems 2. Linear Approximations of Physical Systems 3. The Laplace Transform 4. The Transfer Function of Linear Systems 5. Block Diagram Models 6. Signal – Flow Graph Models 7. The Simulation of Systems Using Control

Design Software

sites.google.com/site/ncpdhbkhn

54

The Simulation of Systems Using Control Design Software (1)

k

Wall friction b

y

Mass M

M

b

ky t ( )

r t ( )

dy t ( ) dt

2 d y t ( ) 2 dt

Force r(t)

y

(0)



nt

y t ( )

e

sin

1

t

 n

2

Ex. 1

2

  

  

1

;

;

cos

1 

 n

k M

b kM

2

sites.google.com/site/ncpdhbkhn

55

The Simulation of Systems Using Control Design Software (2)

Y s ( )

2

s  6 s

265

s

4 

76 

• zplane • roots • poly • conv • polyval • tf • series • parallel • feedback

sites.google.com/site/ncpdhbkhn

56

Ex. 2

The Simulation of Systems Using Control Design Software (3)

H2

( )

Y(s)

R(s)

G s ( ) 1

G1

G2

G3

G4

5

s

( )

H1

G s ( ) 2

s

H3

G s ( ) 3

4

7 

G s ( ) 4

H s ( ) 1

1  1 1  2 2 s  2 4 s  1  6  1  2 

s s s s s ( ) 3 

( ) 1 

H s 2 H s 3

sites.google.com/site/ncpdhbkhn

57

Ex. 3

The Simulation of Systems Using Control Design Software (4)

H2

( )

Y(s)

R(s)

G1

G2

G3

G4

( )

H1

H3

Ex. 3

X1 X2 X1 X2

G G

Moving a pickoff point behind a block

( )

X1 X2 1/G

R(s) Y(s)

( )

G1 G2 H2/G4 G3 G4

H1

sites.google.com/site/ncpdhbkhn

58

H3

( )

Ex. 3

R(s) Y(s)

The Simulation of Systems Using Control Design Software (5) H2/G4 G3

( )

G1 G2 G4

H1

H3

X1 X2 X3 X1 X3

Combining blocks in cascade

G1(s) G2(s) G1G2

( )

H2/G4

R(s) Y(s)

( )

G1 G2

G3G4 H1

sites.google.com/site/ncpdhbkhn

59

H3

The Simulation of Systems Using Control Design Software (6) H2/G4

( )

Ex. 3

R(s) Y(s)

( )

G1 G2

G3G4 H1

2X

1X

H3

1

G GH

( )

X1 X2 G

Eliminating a feedback loop

H

( )

H2/G4

R(s) Y(s)

1

G G 3 4 G G H 4

3

1

( )

G1 G2

sites.google.com/site/ncpdhbkhn

60

H3

The Simulation of Systems Using Control Design Software (7) H2/G4

( )

Ex. 3

R(s) Y(s)

1

G G 3 4 G G H 4

3

1

( )

G1 G2

H3

( )

H2/G4

R(s) Y(s)

1

G G G 2 3 4 G G H  4

3

1

( )

G1

H3

2

R(s) Y(s)

1

G G G 3 4 G G H G G H  1

4

2

3

3

2

( )

G1

sites.google.com/site/ncpdhbkhn

61

H3

The Simulation of Systems Using Control Design Software (8)

dT s ( ) ( )

( )s

d s ( )

3( )G s 500

0.5

2

1( )G s 10 1s 

2 ( )G s 1 s 

( )

( )

0.1

sites.google.com/site/ncpdhbkhn

62

Ex. 4