Nguyễn Công Phương

CONTROL SYSTEM DESIGN

The Stability of Linear Feedback Systems

Contents

Introduction

I. II. Mathematical Models of Systems III. State Variable Models IV. Feedback Control System Characteristics V. The Performance of Feedback Control Systems VI. The Stability of Linear Feedback Systems VII. The Root Locus Method VIII.Frequency Response Methods IX. Stability in the Frequency Domain X. The Design of Feedback Control Systems XI. The Design of State Variable Feedback Systems XII. Robust Control Systems XIII.Digital Control Systems

sites.google.com/site/ncpdhbkhn

2

The Stability of Linear Feedback Systems

1. The Concept of Stability 2. The Routh – Hurwitz Stability Criterion 3. The Stability of State Variable Systems 4. System Stability Using Control Design

Software

sites.google.com/site/ncpdhbkhn

3

The Concept of Stability (1)

• Stability is of the utmost importance. • A close – loop feedback system that is unstable

is of little value.

• A stable system is a dynamic system with a bounded response to a bounded input.

sites.google.com/site/ncpdhbkhn

4

The Concept of Stability (2)

http://www.ctc.org.uk/cyclists-library/bikes-and-other- cycles/cycle-styles/city-bike

sites.google.com/site/ncpdhbkhn

5

The Concept of Stability (4)

M

N

M

N

t

t

i

k

Y s ( )

y t ( ) 1

sin(

t

)

 

A e i

D e k

 k

k

2

1   s

s

A i  

k s

s

)

i

B s C  k 2 ( 2    k

k

2  k

i

k

i

k

1 

1 

1 

1 

j

1

1

10

1

0

0

0

0

-1

-1

-1

-10

5

10

5

10

5

10

5

10

0

0

0

0

1

1

10

1

0

0

0

0

-1

-1

-1

-10

0

0

0

5

10

5

10

5

10

5

10

0

1

1

2

10

0.5

0.5

1

5

0

0

0

0

0

0

0

5

10

5

10

5

10

0

5

10

sites.google.com/site/ncpdhbkhn

6

The Stability of Linear Feedback Systems

1. The Concept of Stability 2. The Routh – Hurwitz Stability Criterion 3. The Stability of State Variable Systems 4. System Stability Using Control Design

Software

sites.google.com/site/ncpdhbkhn

7

The Routh – Hurwitz Stability Criterion (1)

n

n

n

2

1 

n

n

2

0

1 

ns

na

2na 

4na  

a

n

2

n

n

a a n n

3

a 1 

,

b n

1 

a a

a n a

1  a

2  a

n

n

3

1 

n

n

1 

1 

1ns 

1na 

3na 

5na  

2ns 

3nb 

5nb  

1nb 

n

4

,

b n

3

a a

a n a

1  a

3ns 

n

n

5

1 

n

1 

3nc 

5nc  

1nc 

3

1 

,

c n

1 

0s

1nh 

a n b n

a n b n

3

1 

1  b n

1 

The Routh – Hurwitz criterion states that the number of roots of q(s) with positive real parts is equal to the number of changes in sign of the first column of the Routh array

sites.google.com/site/ncpdhbkhn

8

q s ( ) a s a s 0    ...    a s n a s a  1

The Routh – Hurwitz Stability Criterion (2)

n

n

n

2

1 

n

n

2

0

1 

q s ( ) a s s a 0   ...    a s n

ns

na

2na 

4na  

zero.

2. There is a zero in the 1st column,

1ns 

1na 

3na 

5na  

2ns 

3nb 

5nb  

1nb 

but some other elements of the row containing the zero in the 1st column are nonzero.

3ns 

3nc 

5nc  

1nc 

3. There is a zero in the 1st column, and the other elements of the row containing the zero are also zero. 4. Repeated roots of the characteristic

0s

1nh 

equation on the jω – axis.

The Routh – Hurwitz criterion states that the number of roots of q(s) with positive real parts is equal to the number of changes in sign of the first column of the Routh array

sites.google.com/site/ncpdhbkhn

9

a s a   1 1. No element in the 1st column is

The Routh – Hurwitz Stability Criterion (3)

2

ns

na

2na 

4na  

Ex. 1 ( )q s 

2s

2s

1ns 

2a

0a

2a

0a

1na 

3na 

5na  

1s

1s

2ns 

0

0

1a

1a

3nb 

5nb  

1nb 

0s

0s

3ns 

0

0

1b

0a

3nc 

5nc  

1nc 

n

2

b n

1 

b   1

a 0

a a

a n a

a 0 0

1  a

0s

n

n

3

1 

n

1 

a 1  2 aa 1 1

1nh 

The Routh – Hurwitz criterion states that the number of roots of q(s) with positive real parts is equal to the number of changes in sign of the first column of the Routh array

The system is stable if a2, a1 & a0 are all positive or all negative

sites.google.com/site/ncpdhbkhn

10

 a s 2 a s a  1 0

The Routh – Hurwitz Stability Criterion (4)

3

2

ns

na

2na 

4na  

s s 2 s 50

Ex. 2 q s ( ) 

1ns 

3s

3s

1na 

3na 

5na  

1

2

1

2

2ns 

2s

50

2s

3nb 

5nb  

1nb 

50

1

1

3ns 

1s

1s

3nc 

5nc  

1nc 

0

48

1b

0b

0s

0s

50

0

1c

0c

0s

1nh 

0,

48,

50,

 

0

b 0

b 1

c 1

c 0

1 0 1 0

2 1 1 50

1 48

50 0

0 1 48 0

1  1

1  1

1  48 

1  48 

The Routh – Hurwitz criterion states that the number of roots of q(s) with positive real parts is equal to the number of changes in sign of the first column of the Routh array

sites.google.com/site/ncpdhbkhn

11

  

The Routh – Hurwitz Stability Criterion (5)

3

2

Ex. 3 ( )q s 

0

3s

3a

1a

2s

0a

2a

a a 2 1

a a 0 3

,

b 1

c 1

a 0

 a

2

1s

0

1b

0s

0

1c

0

0

0

a 3 a

0

a 3 a

0

0

2

2 a a 2 1

a a 0 3

0

0

0

a a 0 3

 a

0

0

2 a a 2 1 

a 0

a  3  a    b  1   c 1

       

2 0

a 0

      

3

2

q s ( )

s

2

s

6

s

10,

2 6 10 1 2

  

 

a a 2 1

a a 0 3

sites.google.com/site/ncpdhbkhn

12

  a s 3 a s 2 a s a  1

3

4

2

5

The Routh – Hurwitz Stability Criterion (6) s 11

10 2 4 s s s s 2    

Ex. 4 q s ( ) 

5s

5s

2

11

1

2

11

1

4s

4s

10

10

4

2

4

2

3s

3s

6

0

0

6

0

2s

2s

10

0

10

0

1c

1c

1s

1s

0

0

0

0

1d

1d

0s

0s

10

10

12

6

4 

10 

c 1

,

4  

 

6 10 

c 1

d 1

 

12 

 c 1

Two sign changes  two roots with positive real part  the system is unstable

sites.google.com/site/ncpdhbkhn

13

The Routh – Hurwitz Stability Criterion (7)

4

3

2

s s s s K

Ex. 5 ( )q s 

4s

4s

K

K

1

1

1

1

3s

3s

0

0

1

1

1

1

2s

2s

K

K

0

0

0

1s

1s

0

0

0

0

1c

1c

1s

1s

K

K

K

1  

c 1

 

K 

One sign change  one root with positive real part  the system is unstable for all values of K

sites.google.com/site/ncpdhbkhn

14

   

2

3

3

4

3

2

5

The Routh – Hurwitz Stability Criterion (8) s s (   s 3 

21)( 3) s s    24 63 4 s s s s   

Ex. 6 q s ( ) 

5s

3

4

1

5

4

2

2

3

4s

63

24

1

5

s s 24 s s 3 63     

s

21

s 3s 3  2s s

4

3s

0

20

60

s

s

s 3

63

4

s

2s

63

0

21

3

s

s 3

63

224 s 23 s 221 s

1s

0

0

0

3

s

s 3

2

2

U s

s

3)

( ) 21 s 

63 21( 

221 s

63

221 s

4 s 33 s 3

0

sites.google.com/site/ncpdhbkhn

15

63 

3

2

3

4

3

2

5

The Routh – Hurwitz Stability Criterion (9) s s (   s 3 

21)( 3) s s    24 63 4 s s s s   

Ex. 6 q s ( ) 

5s

3

1

4

4s

63

1

24

3s

1

1

3s

0

20

60

2s

21

1

2s

63

0

21

1s

0

20

1s

0

0

0

0s

0

21

Two sign changes  two roots with positive real part  the system is unstable

sites.google.com/site/ncpdhbkhn

16

The Routh – Hurwitz Stability Criterion (10)

Ex. 7

( )R s

( )Y s

)

)

G s ( )

1 2)(

s s (

s

3)

K s a (  1 s 

1 2)(

s s (

s

3)

K s a (  1 s 

( )

T s ( )

4

3

1

G s ( ) G s ( ) 

s

6

s

6)

K s a ( )  2 ( K s 11 

s Ka 

K

60

4

3

2

0

Ka

 6 b K ( 3

Ka

4s

11

1

0

6) 6  b 3

3s

6

6K 

0

Ka

0

       

2s

Ka

0

3b

60

K

0

1s

0

0

3c

 (60

6)

1s

Ka

)( K K K 36

   a 

Ka

60

K

b K ( 3

,

b 3

c 3

 6

6) 6  b 3

sites.google.com/site/ncpdhbkhn

17

q s ( ) s 6 s s 11 ( K 6)       s Ka 

The Stability of Linear Feedback Systems

1. The Concept of Stability 2. The Routh – Hurwitz Stability Criterion 3. The Stability of State Variable Systems 4. System Stability Using Control Design

Software

sites.google.com/site/ncpdhbkhn

18

The Stability of State Variable Systems (1)

1

3

3

x

 

K

1

1

( )U s

X s 1( )

1/ s

x

x 1 

2 Kx Ku 

1/ s

2

1

2

Ex. 1 x   1  x  

2X

X s 2 ( ) 1

2

1 

1 

s

,

s 3

,

Ks

 

 

L 1

L 2

L 3

N

...

1   

L n

L L n m

L L L n m p

n

,

1 

n m , nontouching

n m p , nontouching

1 

2 

1 2

s

(

K

3)

s

 

1 (

)

(

)

 

L 1

L 2

L 3

L L 1 2

2

q s ( )

s

2

3)

s K ( 

K

K

3

3 0     

sites.google.com/site/ncpdhbkhn

19

a

x

x d dt

u 1 u 2

  

1 0 0 1 0 0

0 0 0

    

  

The Stability of State Variable Systems (2)        

    

    

Ex. 2     

0

0

a

0

0

  

det(

 0

0

0

I A 

) det 

 

0

 

  

0

 0

0

 

    

    

    

    

    

    

2

2

)

)]

[  

(    

( 

2

2

)

)]

q  ( )

[  

(    

( 

0

 

2

      

0  sites.google.com/site/ncpdhbkhn

20

The Stability of Linear Feedback Systems

1. The Concept of Stability 2. The Routh – Hurwitz Stability Criterion 3. The Stability of State Variable Systems 4. System Stability Using Control Design

Software

sites.google.com/site/ncpdhbkhn

21

System Stability Using Control Design Software (1)

Ex. 1

( )R s

( )Y s

1 2)(

s s (

s

3)

s 10( 2)  s 1 

( )

sites.google.com/site/ncpdhbkhn

22

System Stability Using Control Design Software (2)

3

2

s 2 s

Ex. 2 q s ( ) 

sites.google.com/site/ncpdhbkhn

23

  s K 3 

System Stability Using Control Design Software (3) Ex. 3 Given a characteristic equation q(s) = s4 + 8s3 + 17s2 + (K + 10)s + aK = 0. Find a & K such that the system is stable.

K

aK

4s

17

1

[(

K

 

10) 8 17]  

b 3

1 8

126  8

3s

10

8

K 

0

aK

)

aK

 

(1 0 8  

b 1

2s

0

1b

3b

1 8

1s

(126

10)

0

0

3c

aK 8

10)]

 

c 3

b [8 1

b K ( 3

K K )( 8

1 b 3

1s

3d

K

d

(

)

aK

 

0  

3

b 3

b c 1 3

b 1

0

1 c 3

0

126  8 (126

10)

aK 8

0

0  

K K )( 8

0

3

b  3  c  3  d 

aK

0

       

sites.google.com/site/ncpdhbkhn

24