Đề và đáp án thi thử đại học môn Toán 2010_Đề số 1
lượt xem 50
download
Tham khảo tài liệu 'đề và đáp án thi thử đại học môn toán 2010_đề số 1', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề và đáp án thi thử đại học môn Toán 2010_Đề số 1
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 10 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 ĐỀ KIỂM TRA SỐ 1: Thời gian làm bài: 120 phút ĐỀ BÀI Bài 1( 2 điểm): Tính thể tích khối tứ diện ABCD, biết: AB=a và AC = AD = BC = BD = CD = a 3 . Bài 2(2điểm): Cho hình chóp tam giác S.ABC có đáy là tam giác đều cạnh 7a, cạnh bên SC vuông góc với mặt phẳng (ABC) và SC=7a. Dựng và tính khoảng cách giữa hai đường thẳng SA và BC? Bài 3 (2 điểm ): Cho hình chóp S.ABCD có đáy ABCD là hình ch ữ nhật có cạnh AB=a, cạnh SA ⊥ ( ABCD) , cạnh bên SC hợp với đáy góc α và hợp với mặt bên (SAB) một góc β. Bài 4(2 điểm): Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB=a, AB hợp với mặt phẳng (A’D’CB) một góc α, ∠BAC ' = β . a 3 tan α CMR : VABCD.A ' B ' C ' D ' = sin( β + α )sin( β − α ) cos α cos β Câu 5:( 2 điểm) Trên đường thẳng vuông góc tại A với mặt phẳng chứa hình vuông ABCD cạnh a ta lấy điểm S với SA=2a. Gọi B’,D’ là hình chiếu vuông góc của A lên SB và SD. Mặt phẳng (AB’D’) cắt SC tại C’. Tính thể tích hình chóp S.AB’C’D’ ………………….Hết………………… BT Viên môn Toán hocmai.vn Trịnh Hào Quang Hocmai.vn – Ngôi trường chung của học trò Việt 1
- HDG ĐỀ KIỂM TRA ĐỊNH KỲ SỐ 1 Bài1 (2điểm): Tính thể tích khối tứ diện ABCD, biết: AB=a và AC = AD = BC = BD = CD = a 3 . Giải: Gọi I, J theo thứ tự là trung điểm của CD, AB. Do ∆ACD, ∆BCD đều. ⇒ AI ⊥ CD, BI ⊥ CD ⇒ CD ⊥ ( ABI ) Suy ra CI là đường cao của hình chóp C.ABI. 1 a 3 Ta có: VABCD = VCABI + VDABI = CD.SABI = SABI . 3 3 AD 3 3a Vì : AB = BI = = ⇒ AB ⊥ IJ và IJ 2 = AI 2 − AJ 2 = 2a 2 ⇒ IJ = a 2 2 2 a3 6 ⇒ VABCD = a 3 SABI = a 3 1 . a.a 2 = 3 3 2 6 Bài 2 (2 điểm): Cho hình chop tam giác S.ABC có đáy là tam giác đều cạnh 7a, cạnh bên SC vuông góc với mặt phẳng (ABC) và SC=7a. Tính khoảng cách giữa hai đường thẳng SA và BC? Giải: *) Cách dựng đoạn vuông góc chung: AM ⊥ BC - Gọi M, N là trung điểm của BC và SB ⇒ ⇒ BC ⊥ ( AMN ) MN ⊥ BC - Chiếu SA lên AMN ta được AK (K là hình chiếu của S lên (AMN)) - Kẽ MH ⊥ AK ⇒ Đoạn vuông góc chung chính là MH. 1 1 1 1 4 *) Ta có: MH 2 = MK 2 + MA2 = (7a)2 + 3(7a)2 ⇒ MH = a 21 Bài 3 (2 điểm ): Cho hình chóp S.ABCD có đáy ABCD là hình ch ữ nhật có cạnh AB=a, cạnh SA ⊥ ( ABCD) , cạnh bên SC hợp với đáy góc α và hợp với mặt bên (SAB) một góc β.
- TRUNG TÂM BỒI DƯỠNG VĂN HÓA HOCMAI.VN ………… , ngày ….tháng… năm ….. A5+A6, 52 Nguyễn Chí Thanh Tel: 04.3775-9290 a2 a) CMR: SC 2 = cos 2α − sin 2 β b) Tính thể tích hình chóp. Giải: a) Ta có: SA ⊥ ( ABCD) ⇒ ∠SCA = α . Mà BC ⊥ ( SAB ) ⇒ ∠BSC = β BC x Đặt: BC=x ⇒ SC = sin β = sin β (*) AC 2 = AB 2 + BC 2 ⇒ AC = a 2 + x 2 . AC a2 + x2 Mà SC = = (**) cosα cosα x2 a2 + x2 a 2 sin 2 β x2 a 2 sin 2 β Từ (*) và (**) ⇒ = ⇒ x2 = ⇒ SC 2 = = sin 2 β cos 2α cos 2α − sin 2 β sin 2 β cos 2α − sin 2 β SABCD.SA = 1 AB.BC.SA = 1 a sin α sin2β 3 1 b) SA = SC sin α ⇒ V = 3 3 3 cos 2α − sin β Bài 4 (2 điểm): Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB=a, AB hợp với mặt phẳng (A’D’CB) một góc α, ∠BAC ' = β . a 3 tan α CMR : VABCD. A ' B ' C ' D ' = sin( β + α )sin( β − α ) cos α cos β Giải: Từ A kẽ AH ⊥ BA ' Mà CB ⊥ ( ABB ' A ') ⇒ CB ⊥ AH ⇒ AH ⊥ ( A ' D ' CB) Suy ra : BH chính là hình chiếu vuông góc của AB lên (A’D’CB) ⇒ ∠ABH = α ∆ABA ' vuông ⇒ AA ' = AB tan α = a tan α AB ⊥ ( BCC ' B ') ⇒ AB ⊥ BC '. ∆ABC 'vuông ⇒ BC ' = AB tan β ∆BCC 'vuông ⇒ CB = C ' B 2 − CC '2 = a (tan β + tan α )(tan β − tan α ) a CB = sin( β + α ) sin( β − α ) cos α cos β a 3 tan α ⇒ VABCD.A ' B ' C ' D ' = AB.BC.BB ' = sin( β + α ) sin( β − α ) cos α cos β Câu 5 ( 2 điểm): Page 3 of 4
- Trên đ ường thẳng vuông góc tại A với mặt phẳng chứa hình vuông ABCD cạnh a ta lấy điểm S với SA=2a. Gọi B’,D’ là hình chiếu vuông góc của A lên SB và SD. Mặt phẳng (AB’D’) cắt SC tại C’. Tính thể tích hình chóp S.AB’C’D’ Giải: AB ' ⊥ SB Ta có: ⇒ AB ' ⊥ SC . Tương tự AD ' ⊥ SC ⇒ SC ⊥ ( AB ' C ' D ') ⇒ SC ⊥ AC ' AB ' ⊥ CB Do tính đối xứng ta có: VS . AB ' C ' D ' = 2VS . AB ' C ' . Áp dụng tính chất tỷ số thể tích cho 3 tia: SA,SB,SC, ta có: VS . AB ' C ' = SB ' . SC ' = SB '.SB . SC '.SC = SA . SA = 4a . 4a = 8 2 2 2 2 VS. ABC SB SC SB 2 2 SC 2 SB SC 2 5a 6a 2 2 15 2 3 3 3 3 1 a a 8 a 8a 16a Mà VS . ABC = . .2a = ⇒ VS . AB ' C ' = . = ⇒ VS . AB ' C ' D ' = 3 2 3 15 3 45 45 ………………….Hết………………… Phụ trách môn Toán Trịnh Hào Quang
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề và đáp án thi thử ĐH 2010 môn Tiếng Anh
4 p | 442 | 237
-
Đề và đáp án thi thử ĐH môn Sử khối C năm 2010_Đề 06
6 p | 247 | 93
-
Đề và đáp án thi thử đại học môn Toán 2010_số 01
5 p | 202 | 88
-
Đề và đáp án thi thử đại học môn Toán 2010_Đề số 10
6 p | 312 | 81
-
Đề và đáp án thi thử đại học môn Toán 2010_số 02
6 p | 181 | 76
-
Đề và đáp án thi thử đại học môn Toán 2010_số 03
9 p | 178 | 65
-
Đề và đáp án thi thử đại học môn Toán 2010_Đề số 6
5 p | 330 | 63
-
Đề và đáp án thi thử ĐH 2010 môn Toán khối A lần thứ nhất
6 p | 177 | 63
-
Đề và đáp án thi thử đại học môn Toán 2010_Đề số 7
9 p | 213 | 60
-
Đề và đáp án thi thử đại học môn Toán 2010_Đề số 9
7 p | 165 | 57
-
Đề và đáp án thi thử ĐH 2010 môn Toán khối A-B_Chuyên LQĐ lần II
6 p | 162 | 53
-
Đề và đáp án thi thử đại học môn Toán 2010_Đề số 8
6 p | 192 | 52
-
Đề và đáp án thi thử đại học môn Toán 2010_Đề số 5
5 p | 162 | 52
-
Đề và đáp án thi thử đại học môn Toán 2010_số 04
5 p | 162 | 51
-
Đề và đáp án thi thử đại học môn Toán 2010_Đề số 3
5 p | 168 | 44
-
Đề và đáp án thi thử đại học môn Toán 2010_Đề số 2
4 p | 191 | 42
-
Đề và đáp án thi thử đại học môn Toán 2010_Đề số 4
7 p | 153 | 40
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn