intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Lecture Business statistics in practice (7/e): Chapter 16 - Bowerman, O'Connell, Murphree

Chia sẻ: Fff Fff | Ngày: | Loại File: PPT | Số trang:14

41
lượt xem
2
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Chapter 16 - Times series forecasting and index numbers. This chapter includes contents: Time series components and models, time series regression, multiplicative decomposition, simple exponential smoothing, Holt-Winter’s Models, the Box Jenkins methodology (optional advanced section), forecast error comparisons, index numbers.

Chủ đề:
Lưu

Nội dung Text: Lecture Business statistics in practice (7/e): Chapter 16 - Bowerman, O'Connell, Murphree

  1. Chapter 16 Times Series Forecasting and Index  Numbers McGraw­Hill/Irwin Copyright © 2014 by The McGraw­Hill Companies, Inc. All rights reserved.
  2. Time Series Forecasting 16.1 Time Series Components and Models 16.2 Time Series Regression 16.3 Multiplicative Decomposition 16.4 Simple Exponential Smoothing 16.5 Holt­Winter’s Models 16.6 The Box Jenkins Methodology (Optional  Advanced Section) 16.7 Forecast Error Comparisons 16.8 Index Numbers 16­2
  3. LO16-1: Identify the components of a times series. 16.1 Time Series Components and  Models Trend Long­run growth or decline Cycle Long­run up and down fluctuation  around the trend level Seasonal Regular periodic up and down  movements that repeat within the  calendar year Irregular Erratic very short­run movements  that follow no regular pattern 16­3
  4. LO16-1 Time Series Exhibiting Trend, Seasonal, and  Cyclical Components Figure 16.1 16­4
  5. LO16-1 Seasonality Some products have demand that varies a  great deal by period ◦Coats, bathing suits, bicycles This periodic variation is called seasonality ◦Constant seasonality: the magnitude of the swing  does not depend on the level of the time series ◦Increasing seasonality: the magnitude of the  swing increases as the level of the time series  increases Seasonality alters the linear relationship  between time and demand 16­5
  6. LO16-2: Use time series regression to forecast time series having 16.2 Time Series Regression linear, quadratic, and certain types of seasonal patterns. Within regression, seasonality can be modeled  using dummy variables Consider the model: yt =  0 +  1t +  Q2Q2 +  Q3 Q3 +  Q4 Q4 +  t ◦For Quarter 1, Q2 = 0, Q3 = 0 and Q4 = 0 ◦For Quarter 2, Q2 = 1, Q3 = 0 and Q4 = 0 ◦For Quarter 3, Q2 = 0, Q3 = 1 and Q4 = 0 ◦For Quarter 4, Q2 = 0, Q3 = 0 and Q4 = 1 The   coefficient will then give us the seasonal  impact of that quarter relative to Quarter 1 ◦Negative means lower sales, positive lower sales 16­6
  7. LO16-3: Use data transformations to forecast time series Transformations having increasing seasonal variation. Sometimes, transforming the sales data  makes it easier to forecast ◦Square root ◦Quartic roots ◦Natural logarithms While these transformations can make the  forecasting easier, they make it harder to  understand the resulting model 16­7
  8. LO 4: Use multiplicative decomposition and moving averages to 16.3 Multiplicative Decomposition forecast time series having increasing seasonal variation. We can use the multiplicative decomposition  method to decompose a time series into its  components: Trend Seasonal Cyclical Irregular 16­8
  9. LO 16-5: Use simple exponential smoothing to forecast a time 16.4 Simple Exponential Smoothing series.  Earlier, we saw that when there is no trend, the least  squares point estimate b0 of β0 is just the average y  value ◦yt = β0 +  t  That gave us a horizontal line that crosses the y axis  at its average value  Since we estimate b0 using regression, each period  is weighted the same  If β0 is slowly changing over time, we want to  weight more recent periods heavier  Exponential smoothing does just this 16­9
  10. LO16-6: Use double exponential smoothing to forecast a time 16.5 Holt–Winters’ Models series.  Simple exponential smoothing cannot handle trend  or seasonality  Holt–Winters’ double exponential smoothing can  handle trended data of the form yt = β0 + β1t +  t ◦Assumes β0 and β1 changing slowly over time ◦We first find initial estimates of β0 and β1 ◦ Then use updating equations to track changes over time  Requires smoothing constants called alpha and gamma 16­10
  11. LO16-7: Use multiplicative Winters’ method to forecast a Multiplicative Winters’ Method time series.  Double exponential smoothing cannot handle  seasonality  Multiplicative Winters’ method can handle trended  data of the form yt = (β0 + β1t) ∙ SNt +  t ◦Assumes β0, β1, and SNt changing slowly over time ◦We first find initial estimates of β0 and β1 and seasonal  factors ◦ Then use updating equations to track over time  Requires smoothing constants alpha, gamma and delta 16­11
  12. LO16-8: Use the Box–Jenkins methodology to forecast a time series. 16.6 The Box–Jenkins Methodology  (Optional Advanced Section) Uses a quite different approach Begins by determining if the time series is  stationary ◦The statistical properties of the time series are  constant through time Plots can help If non­stationary, will transform series 16­12
  13. LO16-9: Compare time series models by using forecast errors. 16.7 Forecast Error Comparison Forecast errors: et = yt ­ ŷt Error comparison criteria ◦Mean absolute deviation (MAD) n n et yt yˆ t MAD t 1 t 1 n n ◦Mean squared deviation (MSD) n n 2 e t ( yt yˆ t ) 2 MSD t 1 t 1 n n 16­13
  14. LO16-10: Use index numbers to compare economic data over 16.8 Index Numbers time. Index numbers allow us to compare changes  in time series over time We begin by selecting a base period Every period is converted to an index by  dividing its value by the base period and then  multiplying the results by 100 ◦Simple (quantity) index yt it 100 y0 16­14
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2