Nguyễn Công Phương
CONTROL SYSTEM DESIGN
The Root Locus Method
Contents
Introduction
I. II. Mathematical Models of Systems III. State Variable Models IV. Feedback Control System Characteristics V. The Performance of Feedback Control Systems VI. The Stability of Linear Feedback Systems VII.The Root Locus Method VIII.Frequency Response Methods IX. Stability in the Frequency Domain X. The Design of Feedback Control Systems XI. The Design of State Variable Feedback Systems XII. Robust Control Systems XIII.Digital Control Systems
sites.google.com/site/ncpdhbkhn
2
The Root Locus Method
1. The Root Locus Concept 2. The Root Locus Procedure 3. Parameter Design by the Root Locus Method 4. Sensitivity and the Root Locus 5. PID Controllers 6. Negative Gain Root Locus 7. The Root Locus Using Control Design
Software
sites.google.com/site/ncpdhbkhn
3
The Root Locus Concept (1)
( )R s
( )Y s
( )G s
K
=
=
T s ( )
( )-
Y s ( ) R s ( )
KG s ( ) + KG s ( )
1
+
1
KG s
= ( ) 0
= - ( ) KG s
1
o
fi
KG s ( )
= — ( )] 1 180 KG s
[
=
KG s ( )
1
fi —
=
KG s
+ o ( )] 180
[
k
o 360 ;
= k
0, 1, 2,...
The root locus is the path of the roots of the characteristic equation traced out in the s-plane as a system parameter varies from zero to infinity.
sites.google.com/site/ncpdhbkhn
4
fi — – –
The Root Locus Concept (2)
Ex. 1
( )R s
( )Y s
K
1 s s + (
2)
( )-
+
= +
=
1
KG s
( ) 1
0
K +
s s (
2)
2
2
+
=
+
=
= ( ) s
s
+ 2
+ s K s
zw 2
w s
0
n
2 n
2
zw
z
fi D
1
w z 1
1
= - s 1,2
w n
- = - 2 n
n
fi – – -
Ex. 2
( )R s
( )Y s
10
)
1 s s a+ (
( )-
sites.google.com/site/ncpdhbkhn
5
The Root Locus Concept (3)
N
= - ( ) 1 s
...
+ L n
L L n m
+ L L L n m p
∑
∑
∑
= 1
n
,
n m , nontouching
n m p , nontouching
= + 1
( )F s
D -
= fi s ( ) 0
= - ( ) F s
1
+
3
=
F s ( )
+ s +
+ +
K s ( + s (
)( z 1 s )(
z p
+ s )( 2 + s )(
)...( s s )...(
) )
2
p 1
z p 3
z M p n
+
2
=
=
F s ( )
1
+ s +
D
K s + s
z p
... ...
2
o
o
+
+
=
fi
F s ( )
= — + ( [
s
(
s
z
)
— + ...]
[
)
(
s
)
+ ...] 180
k
360
—
z 1 p s 1 + — + z ) 1
2
+ — + ( p s 1
p 2
sites.google.com/site/ncpdhbkhn
6
-
The Root Locus Method
1. The Root Locus Concept 2. The Root Locus Procedure 3. Parameter Design by the Root Locus Method 4. Sensitivity and the Root Locus 5. PID Controllers 6. Negative Gain Root Locus 7. The Root Locus Using Control Design
Software
sites.google.com/site/ncpdhbkhn
7
The Root Locus Procedure (1)
1. Prepare the root locus sketch. 2. Locate the open – loop poles and zeros of P(s) in the s
– plane with selected symbols.
3. The loci proceed to the zeros at infinity along asymptotes centered at σA and with angle ϕA.
4. Determine the points at which the locus crosses the
imaginary axis (if it does so).
5. Determine the breakaway point on the real axis (if
any).
6. Determine the angle of locus departure from complex poles and the angle of locus arrival at complex zeros, using the phase criterion.
7. Complete the root locus sketch.
sites.google.com/site/ncpdhbkhn
8
£ £ ¥
The Root Locus Procedure (2) Step 1 = + ( ) 0 F s 1 = ( ) KP s
0, 0
K
fi + 1 M
+
(
s
) z i =
fi + 1
K
0
= 1 i n
+
(
s
p
)
(cid:213)
j
= 1
j
M
n
+
=
(cid:213)
+ ( s
+ ( s
K
(
s
p
)
(
s
) 0
+ ) p j
= « z ) 0 i
j
z i
1 K
= 1
i
= 1
j
n + = 1
j
M + = 1
i
n
=
fi (cid:213) (cid:213) (cid:213) (cid:213)
K
0
+ ( s
p
= ) 0 j
= 1
j
M
+
fi (cid:213)
K
= s
(
z
) 0
j
= 1
j
The locus of the roots of the characteristic equation 1 + KP(s) = 0 begins at the poles of P(s) and ends at the zeros of P(s) as K increases from zero to infinity.
sites.google.com/site/ncpdhbkhn
9
fi ¥ fi (cid:213)
The Root Locus Procedure (3)
1. Prepare the root locus sketch. 2. Locate the open – loop poles and zeros of P(s) in the s – plane with selected symbols: the root locus on the real axis always lies in a section of the real axis to the left of an odd number of poles and zeros
3. The loci proceed to the zeros at infinity along asymptotes
centered at σA and with angle ϕA.
4. Determine the points at which the locus crosses the
imaginary axis (if it does so).
5. Determine the breakaway point on the real axis (if any). 6. Determine the angle of locus departure from complex poles and the angle of locus arrival at complex zeros, using the phase criterion.
7. Complete the root locus sketch.
sites.google.com/site/ncpdhbkhn
10
The Root Locus Procedure (4) Step 2
Ex. 1
+
=
1
K
0
+ +
2( s s s (
2) 4)
2
s + 1
1s
0
4-
2-
2s
1s
4
s + 1
The locus of the roots of the characteristic equation 1 + KP(s) = 0 begins at the poles of P(s) and ends at the zeros of P(s) as K increases from zero to infinity.
- -
The number of separate loci is equal to the number of poles. The root loci must be symmetrical with respect to the horizontal real axis.
sites.google.com/site/ncpdhbkhn
11
The Root Locus Procedure (5)
1. Prepare the root locus sketch. 2. Locate the open – loop poles and zeros of P(s) in the s
– plane with selected symbols.
3. The loci proceed to the zeros at infinity along asymptotes centered at σA and with angle ϕA. 4. Determine the points at which the locus crosses the
imaginary axis (if it does so).
5. Determine the breakaway point on the real axis (if
any).
6. Determine the angle of locus departure from complex poles and the angle of locus arrival at complex zeros, using the phase criterion.
7. Complete the root locus sketch.
sites.google.com/site/ncpdhbkhn
12
M
The Root Locus Procedure (6) Step 3 +
(
s
)
z i
+
= +
=
(cid:213)
1
KP s
( ) 1
K
0, 0
K
= i 1 n
+
(
s
p
)
£ £ ¥
j
= 1
j
n
M
(cid:213)
(
(
p
)
)
j
z i
∑
∑
poles of
P s ( )
zeros of
P s ( )
∑
= 1
j
= 1
s
=
=
A
- - - -
∑ n M
i n M
+
f
=
=
- -
o 180 ,
k
0,1, 2,..., (
n M
1)
A
2 k 1 n M
sites.google.com/site/ncpdhbkhn
13
- - -
The Root Locus Procedure (7) Step 3
Ex. 2
+
=
+
0
1
K
2
( +
s 2)(
1) + s
4)
poles of
P s ( )
zeros of
P s ( )
( s s ∑
s
=
A
-
∑ n M
-
[( 2)
- + - + - ( 4)
( 4)]
( 1)
=
= -
3
- -
4 1
0
+
4-
2-
1-
f
=
=
-
o 180 ,
k
0,1, 2,..., (
n M
1)
A
k 1 2 n M
+
o
=
=
+
=
180
(2
k
o 1)60 ,
k
0,1, 2.
- - -
k 2 1 4 1
o
k
60
o
k
= fi 0 = fi 1
180
o
k
= fi 2
300
f = A = f A = f A
sites.google.com/site/ncpdhbkhn
14
-
The Root Locus Procedure (8)
1. Prepare the root locus sketch. 2. Locate the open – loop poles and zeros of P(s) in the s
– plane with selected symbols.
3. The loci proceed to the zeros at infinity along asymptotes centered at σA and with angle ϕA.
4. Determine the points at which the locus crosses the
imaginary axis (if it does so).
5. Determine the breakaway point on the real axis (if
any).
6. Determine the angle of locus departure from complex poles and the angle of locus arrival at complex zeros, using the phase criterion.
7. Complete the root locus sketch.
sites.google.com/site/ncpdhbkhn
15
D
The Root Locus Procedure (9) Step 5 = = fi ( ) ( ) 0 p s s
K
=
breakaway point :
0
dp s ( ) ds
Ex. 3
+
+
=
1
K
0
+
s ( + 2)(
1) s
3)
s s (
+ s s (
+ s
3) =
= K
p s ( )
2)( + 1
s
+ 3
- fi
+ s s (
+ s
2
s
+ s
6
3) =
10 2
+ 2 +
dp = ds
d dt
2)( + 1
s
s 8 s (
1)
= -
- fi
= fi 0
+ 3 s
2
+ 2 s
8
10
+ = fi s
6 0
= - 2.46 ,
0.77
j
0.79
s 1
s 2,3
dp ds
sites.google.com/site/ncpdhbkhn
16
–
The Root Locus Procedure (10)
1. Prepare the root locus sketch. 2. Locate the open – loop poles and zeros of P(s) in the s – plane with
selected symbols.
3. The loci proceed to the zeros at infinity along asymptotes centered
at σA and with angle ϕA.
4. Determine the points at which the locus crosses the imaginary axis
(if it does so).
5. Determine the breakaway point on the real axis (if any). 6. Determine the angle of locus departure from complex poles and the angle of locus arrival at complex zeros, using the phase criterion: The angle of locus departure from a pole is the difference between the net angle due to all other poles and zeros and the criterion angle of ±180°(2k + 1).
7. Complete the root locus sketch.
sites.google.com/site/ncpdhbkhn
17
The Root Locus Procedure (11) Step 6
q
1
q
3
0
The angle of locus departure from a pole is the difference between the net angle due to all other poles and zeros and the criterion angle of ±180°(2k + 1).
q
2
o
+ q
q
+
=
q o
q
180
q 180
+ (
)
1
q 2
3
= 1
2
3
sites.google.com/site/ncpdhbkhn
18
fi -
The Root Locus Procedure (12)
5
1p
=
4
Ex. 2 +
0
1
4
3
2
+
+
s
12
s
128
s
K + 64
3
0
fi + 1
+
s K + + 4
s
j
4)(
s
+ - 4
= 4)
j
2
( s s = - + 4
4)( 4
j
= -
1
j
4
p 1 p
4
2
3p
4p
= -
p
4
3
- 0
0
-1
= p 4 (cid:1)(cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1)(cid:1)
1. 2.
-2
3.
-3
2p
4.
-4
5.
-5 -7 -6 -5 -2 -1 0 1 -4 -3
poles of
P s ( )
zeros of
P s ( )
∑
s
=
6.
A
-
∑ n M
-
4 4
4 4
j
4
=
= -
3
7.
Prepare the root locus sketch. Locate the open – loop poles and zeros of P(s) in the s – plane with selected symbols. The loci proceed to the zeros at infinity along asymptotes centered at σA and with angle ϕA. Determine the points at which the locus crosses the imaginary axis (if it does so). Determine the breakaway point on the real axis (if any). Determine the angle of locus departure from complex poles and the angle of locus arrival at complex zeros, using the phase criterion. Complete the root locus sketch.
- - -
- + j 4 0
sites.google.com/site/ncpdhbkhn
19
-
The Root Locus Procedure (13)
5
1p
=
4
Ex. 2 +
0
1
4
3
2
+
+
s
12
s
s
128
s
K + 64
3
+
=
f
=
o 180 ,
k
0,1, 2,..., (
n M
1)
A
2 k 1 n M
2 - - - 1
+
=
=
o 180 ,
k
0,1, 2, 3
3p
4p
0
k 2 1 4 0
- -1
1. 2.
-2
(cid:1)(cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1)(cid:1)
3.
-3
2p
4.
-4
5.
o
45
k
-5 -7 -3 -2 -1 0 1 -6
6.
o
135
k
o 225
k
= fi 1 = fi 2
7.
Prepare the root locus sketch. Locate the open – loop poles and zeros of P(s) in the s – plane with selected symbols. The loci proceed to the zeros at infinity along asymptotes centered at σA and with angle ϕA. Determine the points at which the locus crosses the imaginary axis (if it does so). Determine the breakaway point on the real axis (if any). Determine the angle of locus departure from complex poles and the angle of locus arrival at complex zeros, using the phase criterion. Complete the root locus sketch.
o
315
k
= fi 3
sites.google.com/site/ncpdhbkhn
20
-5 = fi 0
-4 f = A = f A = f A = f A
The Root Locus Procedure (14)
5
1p
4
Ex. 2 +
=
1
0
4
3
2
+
+
s
12
s
s
128
s
K + 64
3
2
1
3p
4p
64 128 K 0
K 0 0 0
0
1 12 1b 1c K
-1
1. 2.
-2
4s 3s 2s 1s 0s (cid:1)(cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1)(cid:1)
3.
-3
2p
(cid:1)(cid:1)(cid:1)(cid:1)
4.
-4
5.
-5 -7 -6 -5 -4 -3 -2 -1 0 1
K
=
=
=
53.33;
c 1
b 1
6.
53.33 128 12 53.33
568.89
> fi 0
12 64 128 12 < K
c 1
2
7.
Prepare the root locus sketch. Locate the open – loop poles and zeros of P(s) in the s – plane with selected symbols. The loci proceed to the zeros at infinity along asymptotes centered at σA and with angle ϕA. Determine the points at which the locus crosses the imaginary axis (if it does so). Determine the breakaway point on the real axis (if any). Determine the angle of locus departure from complex poles and the angle of locus arrival at complex zeros, using the phase criterion. Complete the root locus sketch.
+
568.89
= fi 0
3.27
s 53.33
j
= – s 1,2
sites.google.com/site/ncpdhbkhn
21
· - · -
The Root Locus Procedure (15)
q
1
5
4
Ex. 2 +
=
1
0
4
3
2
1p
+
+
s
12
s
s
128
s
K + 64
3
4
3
2
= - K
+ ( s
+ 12 s
+ 64 s
= 128 ) s
p s ( )
2 fi
3
2
+ (4 s
+ 36 s
+ 128 s
128)
q
q
4
1 fi
3p
3 4p
0
= fi 0
1.58 ;
3.71 2.55
= - s 1
= - s 2,3
– -1
1. 2.
-2
q
dp = - ds dp ds (cid:1)(cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1)(cid:1)
3.
-3
2 2p
4.
-4
5.
o
+ q
q
+
+
=
180
1
q 2
4
-5 -6 -5 -4 -3 -2 -1 0 1
(cid:1)(cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1)(cid:1)
6.
o
+
-7 q 3
180
+ q (
)
= q 1
q 2
q 3
4
o
o
Prepare the root locus sketch. Locate the open – loop poles and zeros of P(s) in the s – plane with selected symbols. The loci proceed to the zeros at infinity along asymptotes centered at σA and with angle ϕA. Determine the points at which the locus crosses the imaginary axis (if it does so). Determine the breakaway point on the real axis (if any). Determine the angle of locus departure from complex poles and the angle of locus arrival at complex zeros, using the phase criterion. Complete the root locus sketch.
7.
=
+ o
fi -
(90
+ o 135
= - o 90 )
= o 135
180 sites.google.com/site/ncpdhbkhn
225 22
-
The Root Locus Procedure (16)
5
4
Ex. 2 +
=
1
0
4
3
2
1p
+
+
s
12
s
s
128
s
K + 64
3
2
1
3p
4p
0
-1
1. 2.
-2
(cid:1)(cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1)(cid:1)
3.
-3
2p
4.
-4
5.
(cid:1)(cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1)(cid:1)
6.
7.
Prepare the root locus sketch. Locate the open – loop poles and zeros of P(s) in the s – plane with selected symbols. The loci proceed to the zeros at infinity along asymptotes centered at σA and with angle ϕA. Determine the points at which the locus crosses the imaginary axis (if it does so). Determine the breakaway point on the real axis (if any). Determine the angle of locus departure from complex poles and the angle of locus arrival at complex zeros, using the phase criterion. Complete the root locus sketch.
(cid:1)(cid:1)(cid:1)(cid:1)
sites.google.com/site/ncpdhbkhn
23
-5 -7 -6 -5 -4 -3 -2 -1 0 1
The Root Locus Procedure (17)
Ex. 2 +
=
fi + 1
0
1
0
4
3
2
+
+
s s (
4)(
s
K + + 4
= 4)
j
j
4)(
s
s
12
s
K + 64
s
128
s
+ 5
+ - 4
4
1p
3
2
1
0
3p
4p
s 1 s 2 s 3 s 4
-1
-2
-3
-4
2p
-5
-7
-6
-5
-3
-2
-4
0
1
-1 sites.google.com/site/ncpdhbkhn
24
The Root Locus Procedure (18)
Ex. 3
=
+
0.
1
2
3
4
+
+
K Given the characteristic Find K so that s = –1 + j2? + s 64
128
12
s
s
s 5
j
4
1
+ + s 1 4
+
s s (
4)(
s
j
4)(
s
+ - 4
K + + 4
= - 4)
j
fi
1p
4
+ = K s s
+ + 4 s
4
j
4
+ - s
4
j
4
3 fi
2
+
=
2
2 3
3.61
s + = 1 4
1s
2
1
4
s + 1
1 s
2
+ +
=
+
=
j
4
2 3
2 6
6.71
s 1 4
3
3p
4p
j
4
s 0 s
+ - 1 4 s
4
+ 2
= 4
j
2
= 2 3
3.61
+ - 1 4 s
s -1
+
=
2 1
2 2
2.24
-2
s = 1
-3
3.61 6.71 3.61 2.24
K =- + 1 s
-4 fi · · ·
= 2 j =
2p -3
195
sites.google.com/site/ncpdhbkhn
25
-5 -7 -6 -5 -4 -2 -1 0 1 2 4 3
The Root Locus Procedure (19)
Ex. 4
2
+
K s (
113)
=
+ Given the characteristic equation . Find K so that:
0
1
+ 2
s
(
s 16 + s 16)
1. The damping ratio ζ = 0.5. 2. The settling time is less than 2 seconds.
zw
2
+
+
=
s
zw 2
w s
0;
= fi ( ) 1 r t
= - ( ) 1
y t
e
q wb nt sin(
t
)
n
2 n
+ n
1 b
1.8
1.6
1.4
1.2
z = 0.1 z = 0.2 z = 0.5 z = 0.7 z = 1.1 z = 2.0
1
0.8
0.6
0.4
0.2
0
-0.2
0
0.5
1.5
2
2.5
3
1 sites.google.com/site/ncpdhbkhn
26
-
The Root Locus Procedure (20)
Ex. 4
2
+
K s (
113)
=
+ Given the characteristic equation . Find K so that:
1
0
+ 2
s
(
s 16 + s 16)
1. The damping ratio ζ = 0.5. 2. The settling time is less than 2 seconds.
K s (
+ - 8
j
7)
+
=
1
0
8
+ + 8 2 s
j 7)( + s (
s 16)
6
poles of
P s ( )
zeros of
P s ( )
∑
s
=
A
4
-
-
2
(0 16)
[( 8
( 8
j
7)]
=
- - - -
∑ n M + - + j 7) 3 2
0
-2
+
f
=
=
-
o 180 ,
k
0,1,..., (
n M
1)
A
-4
0= k 1 2 n M +
-6
1
2
f
=
=
o 180 ,
k
0
A
k 1
-8
o
=
-20
-18
-16
-14
-12
-10
-8
-6
-4
-2
0
180
sites.google.com/site/ncpdhbkhn
27
- - -
The Root Locus Procedure (21)
Ex. 4
2
+
K s (
113)
=
+ Given the characteristic equation . Find K so that:
1
0
+ 2
s
(
s 16 + s 16)
1. The damping ratio ζ = 0.5. 2. The settling time is less than 2 seconds.
8
16 0
q
6
1
4
3s 2s 1s 0s
2
4,q q
3
1 0 1b 1c 1 16
=
q
b 1
5
0
0
1 0
0
3
2
+
-2
= -
K
p s ( )
2
s +
s
16
16 s = + 113 s
-4
=
1
-6
q
2
o
-8
dp ds q
q +
+
q +
+
1
q 2
q 3
4
= 5 180
-20
-18
-16
-14
-12
-10
-8
-6
-4
-2
0
-
o 90
q = 3
sites.google.com/site/ncpdhbkhn
28
fi
The Root Locus Procedure (22)
Ex. 4
2
+
K s (
113)
=
+ Given the characteristic equation . Find K so that:
1
0
+ 2
s
(
s 16 + s 16)
1. The damping ratio ζ = 0.5. 2. The settling time is less than 2 seconds.
2
+
+
=
s
zw 2
w s
0
n
2 n
s
8
1
2
s
zw
w
2
z j
1
*s
= - s 1,2
n
n
6
s
3
4
2
w
fi – -
1
n
=
=
=
k
1
1 2
2
z zw
z
s Im{ } 1 s Re{ } 1
n
0
z =
0.5
fi = k
1.73
-2
-4
- -
= - * s
+ 4.5
j 8.0
-6
4 =
fi
-8
T
0.89 second
= settling
zw
4 = 4.5
n
-20
-18
-16
-14
-12
-10
-8
-6
-4
-2
0
sites.google.com/site/ncpdhbkhn
29
fi
The Root Locus Method
1. The Root Locus Concept 2. The Root Locus Procedure 3. Parameter Design by the Root Locus
Method
4. Sensitivity and the Root Locus 5. PID Controllers 6. Negative Gain Root Locus 7. The Root Locus Using Control Design
Software
sites.google.com/site/ncpdhbkhn
30
+
£ £ ¥
Parameter Design by the Root Locus Method (1) = 0, 0
KP s ( )
K
1
n
n
1
+
=
a
s
+ + ...
0
a s n
n
1
+ a s a 1
0
fi + 1
0
- -
n
n
2
+
+
a
s
a s 1 + + 1 ...
= a
a s n
n
1
a s 2
0
3
2
+
+
+ a
=
s
s
sb
0
a
*
a
a
+ 3 s
+ = fi + 2 s 0
1
0
2
s
(
s
*
b
fi + *
- -
+ 3 s
+ 2 s
+ a s
1
b 0
3
+
= fi + 1) b s = fi + a * 2
= fi b 0 a
s
s
sites.google.com/site/ncpdhbkhn
31
fi
Parameter Design by the Root Locus Method (2)
( )R s
( )Y s
=
G s ( )
K 1 + s s (
2)
( )-
( )-
=
( )H s
K s 2
Ex. Design the system to satisfy the following specifications: 1. Steady – state error for a ramp input is less than 35% of input slope. 2. The damping ratio ζ ≥ 0.707. 2. The settling time is less than 3 seconds.
2
+
+
=
=
=
E s ( )
2
R s s
s + (
2)
( K K 1 2 + K K 1
2
2) + s K 1
+
1
+
2)
2/ R s ( ) G s G s H s ( ) ( )
1
+
1
+
1
K s 2
R s / K 1 + s s ( K 1 + s s (
2)
+
+
+
2
=
=
=
=
s
R
e
steady state
2
e t lim ( ) t
sE s lim ( ) s
0
lim s 0
R s
K K 2 1 K
s + (
2)
s
1
K K ( 2 1 + K K 1
2
2) + s K 1
+
2
fi ¥ fi fi
0.35
0.35
sse R
K K 1 2 K 1
sites.google.com/site/ncpdhbkhn
32
£ fi £
Parameter Design by the Root Locus Method (3)
( )R s
( )Y s
=
G s ( )
K 1 + s s (
2)
( )-
( )-
=
( )H s
K s 2
Ex. Design the system to satisfy the following specifications: 1. Steady – state error for a ramp input is less than 35% of input slope. 2. The damping ratio ζ ≥ 0.707. 2. The settling time is less than 3 seconds.
2
2
+
+
w
s
zw 2
w s
= fi 0
j
1
n
2 n
= - zw s 1,2
z n
n
z =
0.707
2
w
– -
1
n
=
=
=
k
1
1 2
z zw
z
s Im{ } 1 s Re{ } 1
n
1.33
z ‡
- -
0.707
1k
4
=
=
s
zw
fi £
T
3
1.33
settling
n
zw
n
sites.google.com/site/ncpdhbkhn
33
£ fi ‡
Parameter Design by the Root Locus Method (4)
( )R s
( )Y s
=
G s ( )
K 1 + s s (
2)
( )-
( )-
=
( )H s
K s 2
2
+
+
=
0
(
s
2
5 5 s
Ex. Design the system to satisfy the following specifications: 1. Steady – state error for a ramp input is less than 35% of input slope. 2. The damping ratio ζ ≥ 0.707. 2. The settling time is less than 3 seconds. + s K 1 a =
1
K K 1 + 2 s
2) sb +
+ 2 s
0
2
b
= fi 0
+ = a 2 s
0
*s
fi 4 4 s s 1 s 2 3 3
fi + 1
0
2 2
z =
+ 2 s a +
0.707
= 2)
s s (
1 1
a
=
=
b
0 0
20
+ 2 s
+ 2 s
+ s
= 20 0
fi -1 -1
K 1 b
fi + 1
0
2
-2 -2
+
2
-3 -3
b =
= -
= 4.3 K K
s *
s s j
= 20 3.15
+ s + 3.15
1
2
-4 -4 fi
0.215
34
= K 2
-5 -4 -2 -6 0 -4 -2 0 fi -5 -6 sites.google.com/site/ncpdhbkhn
Parameter Design by the Root Locus Method (5)
( )R s
( )Y s
=
G s ( )
K 1 + s s (
2)
( )-
( )-
=
( )H s
K s 2
Ex. Design the system to satisfy the following specifications: 1. Steady – state error for a ramp input is less than 35% of input slope. 2. The damping ratio ζ ≥ 0.707. 2. The settling time is less than 3 seconds.
=
=
20;
K
0.215
K 1
2
5
+
*s
=
=
0.315 0.35
sse
20 0.215 2 20
4 s 1 s 2 3 · £ 2
z =
0.707
1
z =
0.707
0
-1
-2
=
=
=
<
1.27 3 seconds
T
-3
settling
4 s
4 3.15
-4
sites.google.com/site/ncpdhbkhn
35
-5 -6 -4 -2 0
The Root Locus Method
1. The Root Locus Concept 2. The Root Locus Procedure 3. Parameter Design by the Root Locus Method 4. Sensitivity and the Root Locus 5. PID Controllers 6. Negative Gain Root Locus 7. The Root Locus Using Control Design
Software
sites.google.com/site/ncpdhbkhn
36
Sensitivity and the Root Locus (1)
=
=
S The logarithmic sensitivity:
T K
¶ ¶
ln ln
T K
T T / K K /
¶ ¶
=
=
S The root sensitivity:
ir K
¶ ¶ D »
r i ln
K
r i K K /
r i K K /
sites.google.com/site/ncpdhbkhn
37
¶ ¶ D
( )R s
( )Y s
=
G s ( )
K +
b
s s (
)
Sensitivity and the Root Locus (2) a b + s
b + s K
= = 0
= « 0
+ 2 s
+ 2 s
Ex. + 1
( )-
b
K +
s s (
a
= a
a
) b
b
=
b
,
0
0
0.8
b = fi + 1 1
0
0
s 1 s 2
K +
= 1)
0.6
=
– D – D
0.5
0.5
j
0.5
K
0.1 1r 1r
s s ( = - r 1,2
0.1
0.4
K = K = K =
0.6 0.5 0.4
1r -
=
fi –
K
0.6 (20%)
0.5
j
0.59
= - 0.1 r 1,2
0.2
fi –
=
= - 0.1
K
0.4 (20%)
0.5
j
0.39
0
- fi –
r 1,2 + ( 0.5
j
0.59)
+ ( 0.5
j
0.5)
=
=
S
+
r 1 K
-0.2
D - - -
r 1 K K /
0.1/ 0.5
o
=
=
D
-0.4
j
0.45 0.45 90
2r -
0.1 2r
—
-0.6
+ ( 0.5
j
0.39)
+ ( 0.5
j
0.5)
K = K = K =
0.4 0.5 0.6
0.1 2r
=
=
S
D - - -
r 1 K
r 1 K K /
0.1/ 0.5
-0.8
= -
=
- D
o 0.55 0.55 ( 90 )
j
-1
-0.8
-0.6
-0.4
0
sites.google.com/site/ncpdhbkhn
-0.2 38
— -
( )R s
( )Y s
=
G s ( )
K +
b
s s (
)
Sensitivity and the Root Locus (3) a b + s
b + s K
= = 0
= « 0
+ 2 s
+ 2 s
Ex. + 1
( )-
K +
b
s s (
= a
a
a
) b
b
=
b
,
1
– D – D
b
b
+D -D
0
0 = fi 1
+ + D 2 s (1
0 + = a ) s
fi + 1
0
0.8
0
( 2
b ) s = a + + s
s
bD = -
0.2
2
b
+ D
b
a
b D b
0.6
- + D (1
)
)
4
=
r 1,2
bD =
0
bD = +
0.4
0.2
bD = +
– -
0.2 (20%)
0.6
j
0.37
0.2
bD = -
= -
fi –
0.2 (20%)
0.4
0.58
(1 2 = - r 1,2 r 1,2
0
fi –
j + ( 0.5
+ ( 0.6
j
0.37)
j
0.5)
=
=
r Sb 1
+
-0.2
D - - -
r 1 b b /
0.2 /1
-0.4
=
D
o 0.82 ( 127.6 )
-0.6
— -
+ ( 0.4
j
0.58)
+ ( 0.5
j
0.55)
=
=
r Sb 1
D - - -
r 1 b b /
0.2 /1
-0.8
o
=
- D
-1
0.64 38.7
-1
-0.8
-0.6
-0.4
-0.2
sites.google.com/site/ncpdhbkhn
0 39
—
Sensitivity and the Root Locus (4)
Ex.
( )R s
( )Y s
=
G s ( )
K +
b
s s (
)
( )-
o
=
=
S
j
0.45 0.45 90
+
= -
=
—
S
o 0.55 0.55 ( 90 )
j
r 1 K r 1 K
=
— - -
S
o 0.82 ( 127.6 )
r 1 b
+
o
=
— -
S
0.64 38.7
r 1 b
sites.google.com/site/ncpdhbkhn
40
— -
The Root Locus Method
1. The Root Locus Concept 2. The Root Locus Procedure 3. Parameter Design by the Root Locus Method 4. Sensitivity and the Root Locus 5. PID Controllers 6. Negative Gain Root Locus 7. The Root Locus Using Control Design
Software
sites.google.com/site/ncpdhbkhn
41
PID Controllers (1)
2
+
K s D
P
I
=
+
+
=
PID controller:
K
G s ( ) c
P
K s D
K I s
+ K s K s
P
I
=
+
=
PI controller:
K
G s ( ) c
P
K I s
+ K s K s
=
+
PD controller:
K
G s ( ) c
P
K s D
sites.google.com/site/ncpdhbkhn
42
PID Controllers (2)
Ex. 1
2
( )R s
( )Y s
+
+
2
s
10
+
+
s
10
K
D
+
+
K
1 2)(
(
s
s
4)
D
s 6 s
+
+
( )-
1 2)(
4)
=
T s ( )
2
+
s ( 10
s
+
1
K
D
+
4)
2
+ +
=
+ 3 s
(
6)
+ 2 s
(6
+ 8) s
10
0
+ K D
+ K D
= K D
3
+ +
+
+
s 6 s + s 6 s K s ( D + 2 s 6)
( s s 6 K (6
s 1 2)( s 10) + 8)
s
10
K
s
(
K
D
D
D
2
s
1
s
1.5
2
s
3
1
0.5
0
-0.5
-1
-1.5
-2
-5
-4.5
-3.5
-2.5
-1.5
-2
-3
-1
-0.5
0
-4 sites.google.com/site/ncpdhbkhn
43
fi
PID Controllers (3)
zw
1
2
2
1
= -
zw
w
z
=
w nt
z
j
1
y t ( )
e
sin(
+ 1
z t
cos
)
s 1,2
n
n
n
2
( )y t
z
1
1.6
- - – - fi - -
ptM
final value
ptM
=
Percent overshoot
100%
1.4
final value
2
Overshoot
zp
-
z / 1
=
e 100
1.2
1.0 d+
1
0.9
1.0 d-
0.8
0.6
p
=
Peak time pT
2
w
z
- -
0.4
1n
4
=
Settling time sT
zw
n
0.2
Rise time rT 1rT
0.1
t
0
0
5
0.5
1
1.5
2
2.5
3
3.5
4
4.5
-
PID Gain
Percent Overshoot
Settling Time
Steady – State Error
Increases
Minimal impact
Decreases
Increasing KP
Increases
Increases
Zero steady – state error
Decreases
Decreases
No impact
Increasing KI Increasing KD
sites.google.com/site/ncpdhbkhn
44
PID Controllers (4)
Ex. 2
( )R s
( )Y s
+
+
K
P
K s D
+
1 + s s b s )( (
zw 2
K I s
( )-
b
=
=
w
)n =
z 10,
0.707,
4.
n
Step response with K
= 0
= 885.5, K I
= 0, and K D
P
2
1.5
e d u t i l
1
p m A
0.5
0
0
0.5
1
1.5
2
3
3.5
4
4.5
5
2.5 Time (s)
= 0
Root locus with K I
= 0, and K D
10
885.5
PK =
s
1
5
s
2
0
s
3
-5
-10
-15
-5
0
-10 sites.google.com/site/ncpdhbkhn
45
PID Controllers (4)
Ex. 2
( )R s
( )Y s
+
+
K
P
K s D
+
1 + s s b s )( (
zw 2
K I s
( )-
b
=
=
w
)n =
z 10,
0.707,
4.
n
= 0
Step response with K I
= 0, and K D
2
= 885.5
K
P
1.8
= 442.75
K
P
1.6
= 370
K
P
1.4
1.2
e d u
t i l
1
p m A
0.8
0.6
0.4
0.2
0
0
0.5
1
1.5
2
3
3.5
4
4.5
5
2.5 Time (s)
sites.google.com/site/ncpdhbkhn
46
PID Controllers (5)
Ex. 2
( )R s
( )Y s
+
+
K
P
K s D
+
1 + s s b s )( (
zw 2
K I s
( )-
b
=
=
w
)n =
z 10,
0.707,
4.
n
= 370
Root locus with K I
= 0, and K P
25
20
15
s 1 s 2 s 3
10
2
zp
z / 1
=
Percent overshoot
100
e
5
0
4
=
Settling Time
zw
-5
n
-10
-15
-20
-25
-14
-10
-4
-2
0
- -
-12 PID Gain
-8 -6 Percent Overshoot
Settling Time
Decreases
Decreases
Increasing KD
sites.google.com/site/ncpdhbkhn
47
PID Controllers (6)
Ex. 2
( )R s
( )Y s
+
+
K
P
K s D
+
1 + s s b s )( (
zw 2
K I s
( )-
b
=
=
w
)n =
z 10,
0.707,
4.
n
60
t
40
o o h s r e v O
t
20
n e c r e P
0
2
zp
10
20
30
40
50
0
z / 1
=
Percent overshoot
100
e
K
D
4
4
=
Settling Time
zw
n
i
3
e m T
g n
2
i l t t e S
1
0
10
20
30
40
50
K
D
- -
PID Gain
Percent Overshoot
Settling Time
Decreases
Decreases
Increasing KD
sites.google.com/site/ncpdhbkhn
48
PID Controllers (7)
Ex. 2
( )R s
( )Y s
+
+
K
P
K s D
+
1 + s s b s )( (
zw 2
K I s
( )-
b
=
=
w
)n =
z 10,
0.707,
4.
n
= 0
Root locus with K P
= 370, K D
100
80
60
)
1 -
40
20
2
zp
z / 1
=
Percent overshoot
100
e
i
0
-20
4
s d n o c e s ( s x A y r a n
=
i
Settling Time
zw
-40
n
g a m
I
-60
-80
-100
-120
-100
-80
-60
-40
-20
0
20
40
60
Real Axis (seconds-1)
- -
Percent Overshoot
Settling Time
Increases
Increases
PID Gain Increasing KI
sites.google.com/site/ncpdhbkhn
49
PID Controllers (8)
Ex. 2
( )R s
( )Y s
+
+
K
P
K s D
+
1 + s s b s )( (
zw 2
K I s
( )-
b
=
=
w
)n =
z 10,
0.707,
4.
n
90
t o o h s r e v O
80
70
t n e c r e P
60
2
zp
z / 1
=
Percent overshoot
100
e
I
50 - - 100 200 400 500 600 0 300 K
4
=
Settling Time
zw
20
n
i
e m T
15
g n
i l t t
e S
10
5
I
0 0 100 200 400 500 600 300 K
Percent Overshoot
Settling Time
Increases
Increases
PID Gain Increasing KI
sites.google.com/site/ncpdhbkhn
50
PID Controllers (9)
Ex. 2
( )R s
( )Y s
+
+
K
P
K s D
+
1 + s s b s )( (
zw 2
K I s
( )-
b
=
=
w
)n =
z 10,
0.707,
4.
n
4
60
3
i
40
e m T
t o o h s r e v O
2
g n
20
i l t t e S
1
t n e c r e P
0
0
0
20
40
60
20
40
60
0
K
K
D
D
20
90
15
80
i
t o o h s r e v O
10
70
e m T g n
i l t t e S
5
60
t n e c r e P
0
50
0
0
200
400
600
200
400
600
K
K
I
I
sites.google.com/site/ncpdhbkhn
51
PID Controllers (9)
Ex. 2
( )R s
( )Y s
+
+
K
P
K s D
+
1 + s s b s )( (
zw 2
K I s
( )-
b
=
=
w
)n =
z 10,
0.707,
4.
n
= 60
Step response with K P
=370, K I
= 100, and K D
1.4
1.2
1
0.8
e d u t i l
p m A
0.6
0.4
0.2
0
0
1
2
3
4
6
7
8
9
10
5 Time (s)
sites.google.com/site/ncpdhbkhn
52
PID Controllers (10)
Ziegler-Nichols PID Controller Gain Tuning Using Closed-loop Concepts
Controller Type
KI
KD
P
PI
PID
KP 0.5KUltimate 0.45KUltimate 0.6KUltimate
0.54KUltimate/TUltimate 1.2KUltimate/TUltimate
0.6KUltimateTUltimate/8
sites.google.com/site/ncpdhbkhn
53
PID Controllers (11)
Ex. 2
( )R s
( )Y s
+
+
K
P
K s D
+
1 + s s b s )( (
zw 2
K I s
( )-
b
=
=
w
)n =
z 10,
0.707,
4.
n
Step response with K
= 0
= 885.5, K I
= 0, and K D
P
2
T =
0.83s
1.5
e d u t i l
1
p m A
0.5
0
0
0.5
1
1.5
2
3
3.5
4
4.5
5
2.5 Time (s)
= 0
Root locus with K I
= 0, and K D
10
885.5
PK =
s
1
5
s
2
0
s
3
-5
-10
-15
-5
0
-10 sites.google.com/site/ncpdhbkhn
54
PID Controllers (12)
Ex. 2
( )R s
( )Y s
+
+
K
P
K s D
+
1 + s s b s )( (
zw 2
K I s
( )-
=
=
885.5;
0.83
K U
T U
b
=
=
w
)n =
z 10,
0.707,
4.
n
Ziegler-Nichols PID Controller Gain Tuning Using Closed-loop Concepts
Controller Type
KI
KD
P
PI
PID
KP 0.5KUltimate 0.45KUltimate 0.6KUltimate
0.54KUltimate/TUltimate 1.2KUltimate/TUltimate
0.6KUltimateTUltimate/8
=
=
K
0.6
= 0.6 885.5 531.3
P
K U
=
=
=
K
1.2
1.2
1280.2
I
885.5 0.83
K U T U
·
=
=
=
K
0.6
0.6
55.1
D
K T U U 8
885.5 0.83 8
sites.google.com/site/ncpdhbkhn
55
·
PID Controllers (13)
Ex. 2
( )R s
( )Y s
+
+
K
P
K s D
+
1 + s s b s )( (
zw 2
K I s
( )-
b
=
=
w
)n =
z 10,
0.707,
4.
n
1.6
Step response with the manual tuning Step response with the Ziegler - Nichols PID tuning
1.4
1.2
1
e d u
t i l
0.8
p m A
0.6
0.4
0.2
0
0
0.5
1
1.5
2
3
3.5
4
4.5
5
2.5 Time (s)
sites.google.com/site/ncpdhbkhn
56
The Root Locus Method
1. The Root Locus Concept 2. The Root Locus Procedure 3. Parameter Design by the Root Locus Method 4. Sensitivity and the Root Locus 5. PID Controllers 6. Negative Gain Root Locus 7. The Root Locus Using Control Design
Software
sites.google.com/site/ncpdhbkhn
57
Negative Gain Root Locus
Ex.
+
=
1
K
0
2
s +
-
s
20 s
5
50
)
Root Locus
1 -
20
10
i
0
-10
i
-20
s d n o c e s ( s x A y r a n g a m
-20
-10
0
10
20
30
40
50
I
)
Real Axis (seconds-1) Root Locus
1 -
20
K = -
5.0
K = -
2.5
10
i
0
-10
i
-20
s d n o c e s ( s x A y r a n g a m
-20
-10
0
10
20
30
40
50
I
Real Axis (seconds-1)
sites.google.com/site/ncpdhbkhn
58
-
The Root Locus Method
1. The Root Locus Concept 2. The Root Locus Procedure 3. Parameter Design by the Root Locus Method 4. Sensitivity and the Root Locus 5. PID Controllers 6. Negative Gain Root Locus 7. The Root Locus Using Control Design
Software
sites.google.com/site/ncpdhbkhn
59
The Root Locus Using Control Design Software (1)
Ex. 1
20
+
=
1
K
0
2
- + s + 5
s
s
50
• rlocus • rlocfind
sites.google.com/site/ncpdhbkhn
60
-
The Root Locus Using Control Design Software (2)
Ex. 1
+
=
=
G s ( )
0
2
s +
5
20 + s
s
20
• step • impulse
sites.google.com/site/ncpdhbkhn
61

