Nguyễn Công Phương

CONTROL SYSTEM DESIGN

The Root Locus Method

Contents

Introduction

I. II. Mathematical Models of Systems III. State Variable Models IV. Feedback Control System Characteristics V. The Performance of Feedback Control Systems VI. The Stability of Linear Feedback Systems VII.The Root Locus Method VIII.Frequency Response Methods IX. Stability in the Frequency Domain X. The Design of Feedback Control Systems XI. The Design of State Variable Feedback Systems XII. Robust Control Systems XIII.Digital Control Systems

sites.google.com/site/ncpdhbkhn

2

The Root Locus Method

1. The Root Locus Concept 2. The Root Locus Procedure 3. Parameter Design by the Root Locus Method 4. Sensitivity and the Root Locus 5. PID Controllers 6. Negative Gain Root Locus 7. The Root Locus Using Control Design

Software

sites.google.com/site/ncpdhbkhn

3

The Root Locus Concept (1)

( )R s

( )Y s

( )G s

K

=

=

T s ( )

( )-

Y s ( ) R s ( )

KG s ( ) + KG s ( )

1

+

1

KG s

= ( ) 0

= - ( ) KG s

1

o

KG s ( )

= — ( )] 1 180 KG s

[

=

KG s ( )

1

fi —

=

KG s

+ o ( )] 180

[

k

o 360 ;

= k

0, 1, 2,...

  

The root locus is the path of the roots of the characteristic equation traced out in the s-plane as a system parameter varies from zero to infinity.

sites.google.com/site/ncpdhbkhn

4

fi — – –

The Root Locus Concept (2)

Ex. 1

( )R s

( )Y s

K

1 s s + (

2)

( )-

+

= +

=

1

KG s

( ) 1

0

K +

s s (

2)

2

2

+

=

+

=

= ( ) s

s

+ 2

+ s K s

zw 2

w s

0

n

2 n

2

zw

z

fi D

1

w z 1

1

= - s 1,2

w n

- = - 2 n

n

fi – – -

Ex. 2

( )R s

( )Y s

10

)

1 s s a+ (

( )-

sites.google.com/site/ncpdhbkhn

5

The Root Locus Concept (3)

N

= - ( ) 1 s

...

+ L n

L L n m

+ L L L n m p

= 1

n

,

n m , nontouching

n m p , nontouching

= + 1

( )F s

D -

= fi s ( ) 0

= - ( ) F s

1

+

3

=

F s ( )

+ s +

+ +

K s ( + s (

)( z 1 s )(

z p

+ s )( 2 + s )(

)...( s s )...(

) )

2

p 1

z p 3

z M p n

+

2

=

=

F s ( )

1

+ s +

D

K s + s

z p

... ...

2

o

o

+

+

=

F s ( )

= — + ( [

s

(

s

z

)

— + ...]

[

)

(

s

)

+ ...] 180

k

360

   — 

z 1 p s 1 + — + z ) 1

2

+ — + ( p s 1

p 2

sites.google.com/site/ncpdhbkhn

6

-

The Root Locus Method

1. The Root Locus Concept 2. The Root Locus Procedure 3. Parameter Design by the Root Locus Method 4. Sensitivity and the Root Locus 5. PID Controllers 6. Negative Gain Root Locus 7. The Root Locus Using Control Design

Software

sites.google.com/site/ncpdhbkhn

7

The Root Locus Procedure (1)

1. Prepare the root locus sketch. 2. Locate the open – loop poles and zeros of P(s) in the s

– plane with selected symbols.

3. The loci proceed to the zeros at infinity along asymptotes centered at σA and with angle ϕA.

4. Determine the points at which the locus crosses the

imaginary axis (if it does so).

5. Determine the breakaway point on the real axis (if

any).

6. Determine the angle of locus departure from complex poles and the angle of locus arrival at complex zeros, using the phase criterion.

7. Complete the root locus sketch.

sites.google.com/site/ncpdhbkhn

8

£ £ ¥

The Root Locus Procedure (2) Step 1 = + ( ) 0 F s 1 = ( ) KP s

0, 0

K

fi + 1 M

+

(

s

) z i =

fi + 1

K

0

= 1 i n

+

(

s

p

)

(cid:213)

j

= 1

j

M

n

+

=

(cid:213)

+ ( s

+ ( s

K

(

s

p

)

(

s

) 0

+ ) p j

= « z ) 0 i

j

z i

1 K

= 1

i

= 1

j

n + = 1

j

M + = 1

i

n

=

fi (cid:213) (cid:213) (cid:213) (cid:213)

K

0

+ ( s

p

= ) 0 j

= 1

j

M

+

fi (cid:213)

K

= s

(

z

) 0

j

= 1

j

The locus of the roots of the characteristic equation 1 + KP(s) = 0 begins at the poles of P(s) and ends at the zeros of P(s) as K increases from zero to infinity.

sites.google.com/site/ncpdhbkhn

9

fi ¥ fi (cid:213)

The Root Locus Procedure (3)

1. Prepare the root locus sketch. 2. Locate the open – loop poles and zeros of P(s) in the s – plane with selected symbols: the root locus on the real axis always lies in a section of the real axis to the left of an odd number of poles and zeros

3. The loci proceed to the zeros at infinity along asymptotes

centered at σA and with angle ϕA.

4. Determine the points at which the locus crosses the

imaginary axis (if it does so).

5. Determine the breakaway point on the real axis (if any). 6. Determine the angle of locus departure from complex poles and the angle of locus arrival at complex zeros, using the phase criterion.

7. Complete the root locus sketch.

sites.google.com/site/ncpdhbkhn

10

The Root Locus Procedure (4) Step 2

Ex. 1

+

=

1

K

0

+ +

2( s s s (

2) 4)

2

s + 1

1s

0

4-

2-

2s

1s

4

s + 1

The locus of the roots of the characteristic equation 1 + KP(s) = 0 begins at the poles of P(s) and ends at the zeros of P(s) as K increases from zero to infinity.

- -

The number of separate loci is equal to the number of poles. The root loci must be symmetrical with respect to the horizontal real axis.

sites.google.com/site/ncpdhbkhn

11

The Root Locus Procedure (5)

1. Prepare the root locus sketch. 2. Locate the open – loop poles and zeros of P(s) in the s

– plane with selected symbols.

3. The loci proceed to the zeros at infinity along asymptotes centered at σA and with angle ϕA. 4. Determine the points at which the locus crosses the

imaginary axis (if it does so).

5. Determine the breakaway point on the real axis (if

any).

6. Determine the angle of locus departure from complex poles and the angle of locus arrival at complex zeros, using the phase criterion.

7. Complete the root locus sketch.

sites.google.com/site/ncpdhbkhn

12

M

The Root Locus Procedure (6) Step 3 +

(

s

)

z i

+

= +

=

(cid:213)

1

KP s

( ) 1

K

0, 0

K

= i 1 n

+

(

s

p

)

£ £ ¥

j

= 1

j

n

M

(cid:213)

(

(

p

)

)

j

z i

poles of

P s ( )

zeros of

P s ( )

= 1

j

= 1

s

=

=

A

- - - -

∑ n M

i n M

+

f

=

=

- -

o 180 ,

k

0,1, 2,..., (

n M

1)

A

2 k 1 n M

sites.google.com/site/ncpdhbkhn

13

- - -

The Root Locus Procedure (7) Step 3

Ex. 2

+

=

+

0

1

K

2

( +

s 2)(

1) + s

4)

poles of

P s ( )

zeros of

P s ( )

( s s ∑

s

=

A

-

∑ n M

-

[( 2)

- + - + - ( 4)

( 4)]

( 1)

=

= -

3

- -

4 1

0

+

4-

2-

1-

f

=

=

-

o 180 ,

k

0,1, 2,..., (

n M

1)

A

k 1 2 n M

+

o

=

=

+

=

180

(2

k

o 1)60 ,

k

0,1, 2.

- - -

k 2 1 4 1

o

k

60

o

k

= fi 0 = fi 1

180

o

k

= fi 2

300

f = A = f A = f A

sites.google.com/site/ncpdhbkhn

14

-

The Root Locus Procedure (8)

1. Prepare the root locus sketch. 2. Locate the open – loop poles and zeros of P(s) in the s

– plane with selected symbols.

3. The loci proceed to the zeros at infinity along asymptotes centered at σA and with angle ϕA.

4. Determine the points at which the locus crosses the

imaginary axis (if it does so).

5. Determine the breakaway point on the real axis (if

any).

6. Determine the angle of locus departure from complex poles and the angle of locus arrival at complex zeros, using the phase criterion.

7. Complete the root locus sketch.

sites.google.com/site/ncpdhbkhn

15

D

The Root Locus Procedure (9) Step 5 = = fi ( ) ( ) 0 p s s

K

=

breakaway point :

0

dp s ( ) ds

Ex. 3

+

+

=

1

K

0

+

s ( + 2)(

1) s

3)

s s (

+ s s (

+ s

3) =

= K

p s ( )

2)( + 1

s

+ 3

- fi

+ s s (

+ s

2

s

+ s

6

3) =

10 2

+ 2 +

dp = ds

d dt

2)( + 1

s

s 8 s (

1)

= -

- fi

= fi 0

+ 3 s

2

+ 2 s

8

10

+ = fi s

6 0

= - 2.46 ,

0.77

j

0.79

s 1

s 2,3

dp ds

sites.google.com/site/ncpdhbkhn

16

The Root Locus Procedure (10)

1. Prepare the root locus sketch. 2. Locate the open – loop poles and zeros of P(s) in the s – plane with

selected symbols.

3. The loci proceed to the zeros at infinity along asymptotes centered

at σA and with angle ϕA.

4. Determine the points at which the locus crosses the imaginary axis

(if it does so).

5. Determine the breakaway point on the real axis (if any). 6. Determine the angle of locus departure from complex poles and the angle of locus arrival at complex zeros, using the phase criterion: The angle of locus departure from a pole is the difference between the net angle due to all other poles and zeros and the criterion angle of ±180°(2k + 1).

7. Complete the root locus sketch.

sites.google.com/site/ncpdhbkhn

17

The Root Locus Procedure (11) Step 6

q

1

q

3

0

The angle of locus departure from a pole is the difference between the net angle due to all other poles and zeros and the criterion angle of ±180°(2k + 1).

q

2

o

+ q

q

+

=

q o

q

180

q 180

+ (

)

1

q 2

3

= 1

2

3

sites.google.com/site/ncpdhbkhn

18

fi -

The Root Locus Procedure (12)

5

1p

=

4

Ex. 2 +

0

1

4

3

2

+

+

s

12

s

128

s

K + 64

3

0

fi + 1

+

s K + + 4

s

j

4)(

s

+ - 4

= 4)

j

2

( s s = - + 4

4)( 4

j

= -

1

j

4

p 1 p

4

2

3p

4p

= -

p

4

3

- 0

0

-1

= p 4 (cid:1)(cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1)(cid:1)

1. 2.

-2

3.

-3

2p

4.

-4

5.

-5 -7 -6 -5 -2 -1 0 1 -4 -3

poles of

P s ( )

zeros of

P s ( )

s

=

6.

A

-

∑ n M

-

4 4

4 4

j

4

=

= -

3

7.

Prepare the root locus sketch. Locate the open – loop poles and zeros of P(s) in the s – plane with selected symbols. The loci proceed to the zeros at infinity along asymptotes centered at σA and with angle ϕA. Determine the points at which the locus crosses the imaginary axis (if it does so). Determine the breakaway point on the real axis (if any). Determine the angle of locus departure from complex poles and the angle of locus arrival at complex zeros, using the phase criterion. Complete the root locus sketch.

- - -

- + j 4 0

sites.google.com/site/ncpdhbkhn

19

-

The Root Locus Procedure (13)

5

1p

=

4

Ex. 2 +

0

1

4

3

2

+

+

s

12

s

s

128

s

K + 64

3

+

=

f

=

o 180 ,

k

0,1, 2,..., (

n M

1)

A

2 k 1 n M

2 - - - 1

+

=

=

o 180 ,

k

0,1, 2, 3

3p

4p

0

k 2 1 4 0

- -1

1. 2.

-2

(cid:1)(cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1)(cid:1)

3.

-3

2p

4.

-4

5.

o

45

k

-5 -7 -3 -2 -1 0 1 -6

6.

o

135

k

o 225

k

= fi 1 = fi 2

7.

Prepare the root locus sketch. Locate the open – loop poles and zeros of P(s) in the s – plane with selected symbols. The loci proceed to the zeros at infinity along asymptotes centered at σA and with angle ϕA. Determine the points at which the locus crosses the imaginary axis (if it does so). Determine the breakaway point on the real axis (if any). Determine the angle of locus departure from complex poles and the angle of locus arrival at complex zeros, using the phase criterion. Complete the root locus sketch.

o

315

k

= fi 3

sites.google.com/site/ncpdhbkhn

20

-5 = fi 0

-4 f = A = f A = f A = f A

The Root Locus Procedure (14)

5

1p

4

Ex. 2 +

=

1

0

4

3

2

+

+

s

12

s

s

128

s

K + 64

3

2

1

3p

4p

64 128 K 0

K 0 0 0

0

1 12 1b 1c K

-1

1. 2.

-2

4s 3s 2s 1s 0s (cid:1)(cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1)(cid:1)

3.

-3

2p

(cid:1)(cid:1)(cid:1)(cid:1)

4.

-4

5.

-5 -7 -6 -5 -4 -3 -2 -1 0 1

K

=

=

=

53.33;

c 1

b 1

6.

53.33 128 12 53.33

568.89

> fi 0

12 64 128 12 < K

c 1

2

7.

Prepare the root locus sketch. Locate the open – loop poles and zeros of P(s) in the s – plane with selected symbols. The loci proceed to the zeros at infinity along asymptotes centered at σA and with angle ϕA. Determine the points at which the locus crosses the imaginary axis (if it does so). Determine the breakaway point on the real axis (if any). Determine the angle of locus departure from complex poles and the angle of locus arrival at complex zeros, using the phase criterion. Complete the root locus sketch.

+

568.89

= fi 0

3.27

s 53.33

j

= – s 1,2

sites.google.com/site/ncpdhbkhn

21

· - · -

The Root Locus Procedure (15)

q

1

5

4

Ex. 2 +

=

1

0

4

3

2

1p

+

+

s

12

s

s

128

s

K + 64

3

4

3

2

= - K

+ ( s

+ 12 s

+ 64 s

= 128 ) s

p s ( )

2 fi

3

2

+ (4 s

+ 36 s

+ 128 s

128)

q

q

4

1 fi

3p

3 4p

0

= fi 0

1.58 ;

3.71 2.55

= - s 1

= - s 2,3

– -1

1. 2.

-2

q

dp = - ds dp ds (cid:1)(cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1)(cid:1)

3.

-3

2 2p

4.

-4

5.

o

+ q

q

+

+

=

180

1

q 2

4

-5 -6 -5 -4 -3 -2 -1 0 1

(cid:1)(cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1)(cid:1)

6.

o

+

-7 q 3

180

+ q (

)

= q 1

q 2

q 3

4

o

o

Prepare the root locus sketch. Locate the open – loop poles and zeros of P(s) in the s – plane with selected symbols. The loci proceed to the zeros at infinity along asymptotes centered at σA and with angle ϕA. Determine the points at which the locus crosses the imaginary axis (if it does so). Determine the breakaway point on the real axis (if any). Determine the angle of locus departure from complex poles and the angle of locus arrival at complex zeros, using the phase criterion. Complete the root locus sketch.

7.

=

+ o

fi -

(90

+ o 135

= - o 90 )

= o 135

180 sites.google.com/site/ncpdhbkhn

225 22

-

The Root Locus Procedure (16)

5

4

Ex. 2 +

=

1

0

4

3

2

1p

+

+

s

12

s

s

128

s

K + 64

3

2

1

3p

4p

0

-1

1. 2.

-2

(cid:1)(cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1)(cid:1)

3.

-3

2p

4.

-4

5.

(cid:1)(cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1)(cid:1) (cid:1)(cid:1)(cid:1)(cid:1)

6.

7.

Prepare the root locus sketch. Locate the open – loop poles and zeros of P(s) in the s – plane with selected symbols. The loci proceed to the zeros at infinity along asymptotes centered at σA and with angle ϕA. Determine the points at which the locus crosses the imaginary axis (if it does so). Determine the breakaway point on the real axis (if any). Determine the angle of locus departure from complex poles and the angle of locus arrival at complex zeros, using the phase criterion. Complete the root locus sketch.

(cid:1)(cid:1)(cid:1)(cid:1)

sites.google.com/site/ncpdhbkhn

23

-5 -7 -6 -5 -4 -3 -2 -1 0 1

The Root Locus Procedure (17)

Ex. 2 +

=

fi + 1

0

1

0

4

3

2

+

+

s s (

4)(

s

K + + 4

= 4)

j

j

4)(

s

s

12

s

K + 64

s

128

s

+ 5

+ - 4

4

1p

3

2

1

0

3p

4p

s 1 s 2 s 3 s 4

-1

-2

-3

-4

2p

-5

-7

-6

-5

-3

-2

-4

0

1

-1 sites.google.com/site/ncpdhbkhn

24

The Root Locus Procedure (18)

Ex. 3

=

+

0.

1

2

3

4

+

+

K Given the characteristic Find K so that s = –1 + j2? + s 64

128

12

s

s

s 5

j

4

1

+ + s 1 4

+

s s (

4)(

s

j

4)(

s

+ - 4

K + + 4

= - 4)

j

1p

4

+ = K s s

+ + 4 s

4

j

4

+ - s

4

j

4

3 fi

2

+

=

2

2 3

3.61

s + = 1 4

1s

2

1

4

s + 1

1 s

2

+ +

=

+

=

j

4

2 3

2 6

6.71

s 1 4

3

3p

4p

j

4

s 0 s

+ - 1 4 s

4

+ 2

= 4

j

2

= 2 3

3.61

+ - 1 4 s

s -1

+

=

2 1

2 2

2.24

-2

s = 1

-3

3.61 6.71 3.61 2.24

K =- + 1 s

-4 fi · · ·

= 2 j =

2p -3

195

sites.google.com/site/ncpdhbkhn

25

-5 -7 -6 -5 -4 -2 -1 0 1 2 4 3

The Root Locus Procedure (19)

Ex. 4

2

+

K s (

113)

=

+ Given the characteristic equation . Find K so that:

0

1

+ 2

s

(

s 16 + s 16)

1. The damping ratio ζ = 0.5. 2. The settling time is less than 2 seconds.

zw

2

+

+

=

s

zw 2

w s

0;

= fi ( ) 1 r t

= - ( ) 1

y t

e

q wb nt sin(

t

)

n

2 n

+ n

1 b

1.8

1.6

1.4

1.2

z = 0.1 z = 0.2 z = 0.5 z = 0.7 z = 1.1 z = 2.0

1

0.8

0.6

0.4

0.2

0

-0.2

0

0.5

1.5

2

2.5

3

1 sites.google.com/site/ncpdhbkhn

26

-

The Root Locus Procedure (20)

Ex. 4

2

+

K s (

113)

=

+ Given the characteristic equation . Find K so that:

1

0

+ 2

s

(

s 16 + s 16)

1. The damping ratio ζ = 0.5. 2. The settling time is less than 2 seconds.

K s (

+ - 8

j

7)

+

=

1

0

8

+ + 8 2 s

j 7)( + s (

s 16)

6

poles of

P s ( )

zeros of

P s ( )

s

=

A

4

-

-

2

(0 16)

[( 8

( 8

j

7)]

=

- - - -

∑ n M + - + j 7) 3 2

0

-2

+

f

=

=

-

o 180 ,

k

0,1,..., (

n M

1)

A

-4

0= k 1 2 n M +

-6

1

2

f

=

=

o 180 ,

k

0

A

k 1

-8

o

=

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

180

sites.google.com/site/ncpdhbkhn

27

- - -

The Root Locus Procedure (21)

Ex. 4

2

+

K s (

113)

=

+ Given the characteristic equation . Find K so that:

1

0

+ 2

s

(

s 16 + s 16)

1. The damping ratio ζ = 0.5. 2. The settling time is less than 2 seconds.

8

16 0

q

6

1

4

3s 2s 1s 0s

2

4,q q

3

1 0 1b 1c 1 16

=

q

b 1

5

0

0

1 0

0

3

2

+

-2

= -

K

p s ( )

2

s +

s

16

16 s = + 113 s

-4

=

1

-6

q

2

o

-8

dp ds q

q +

+

q +

+

1

q 2

q 3

4

= 5 180

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

-

o 90

q = 3

sites.google.com/site/ncpdhbkhn

28

The Root Locus Procedure (22)

Ex. 4

2

+

K s (

113)

=

+ Given the characteristic equation . Find K so that:

1

0

+ 2

s

(

s 16 + s 16)

1. The damping ratio ζ = 0.5. 2. The settling time is less than 2 seconds.

2

+

+

=

s

zw 2

w s

0

n

2 n

s

8

1

2

s

zw

w

2

z j

1

*s

= - s 1,2

n

n

6

s

3

4

2

w

fi – -

1

n

=

=

=

k

1

1 2

2

z zw

z

s Im{ } 1 s Re{ } 1

n

0

z =

0.5

fi = k

1.73

-2

-4

- -

= - * s

+ 4.5

j 8.0

-6

4 =

-8

T

0.89 second

= settling

zw

4 = 4.5

n

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

sites.google.com/site/ncpdhbkhn

29

The Root Locus Method

1. The Root Locus Concept 2. The Root Locus Procedure 3. Parameter Design by the Root Locus

Method

4. Sensitivity and the Root Locus 5. PID Controllers 6. Negative Gain Root Locus 7. The Root Locus Using Control Design

Software

sites.google.com/site/ncpdhbkhn

30

+

£ £ ¥

Parameter Design by the Root Locus Method (1) = 0, 0

KP s ( )

K

1

n

n

1

+

=

a

s

+ + ...

0

a s n

n

1

+ a s a 1

0

fi + 1

0

- -

n

n

2

+

+

a

s

a s 1 + + 1 ...

= a

a s n

n

1

a s 2

0

3

2

+

+

+ a

=

s

s

sb

0

a

*

a

a

+ 3 s

+ = fi + 2 s 0

1

0

2

s

(

s

*

b

fi + *

- -

+ 3 s

+ 2 s

+ a s

1

b 0

3

+

= fi + 1) b s = fi + a * 2

 = fi b 0    a  

s

s

sites.google.com/site/ncpdhbkhn

31

Parameter Design by the Root Locus Method (2)

( )R s

( )Y s

=

G s ( )

K 1 + s s (

2)

( )-

( )-

=

( )H s

K s 2

Ex. Design the system to satisfy the following specifications: 1. Steady – state error for a ramp input is less than 35% of input slope. 2. The damping ratio ζ ≥ 0.707. 2. The settling time is less than 3 seconds.

2

+

+

=

=

=

E s ( )

2

R s s

s + (

2)

( K K 1 2 + K K 1

2

2) + s K 1

+

1

+

2)

2/ R s ( ) G s G s H s ( ) ( )

1

+

1

+

1

K s 2

R s / K 1 + s s ( K 1 + s s (

2)

+

+

+

2

=

=

=

=

s

R

e

steady state

2

e t lim ( ) t

sE s lim ( ) s

0

lim s 0

R s

K K 2 1 K

s + (

2)

s

1

K K ( 2 1 + K K 1

2

2) + s K 1

+

2

fi ¥ fi fi

0.35

0.35

sse R

K K 1 2 K 1

sites.google.com/site/ncpdhbkhn

32

£ fi £

Parameter Design by the Root Locus Method (3)

( )R s

( )Y s

=

G s ( )

K 1 + s s (

2)

( )-

( )-

=

( )H s

K s 2

Ex. Design the system to satisfy the following specifications: 1. Steady – state error for a ramp input is less than 35% of input slope. 2. The damping ratio ζ ≥ 0.707. 2. The settling time is less than 3 seconds.

2

2

+

+

w

s

zw 2

w s

= fi 0

j

1

n

2 n

= - zw s 1,2

z n

n

z =

0.707

2

w

– -

1

n

=

=

=

k

1

1 2

z zw

z

s Im{ } 1 s Re{ } 1

n

1.33

z ‡

- -

0.707

1k

4

=

=

s

zw

fi £

T

3

1.33

settling

n

zw

n

sites.google.com/site/ncpdhbkhn

33

£ fi ‡

Parameter Design by the Root Locus Method (4)

( )R s

( )Y s

=

G s ( )

K 1 + s s (

2)

( )-

( )-

=

( )H s

K s 2

2

+

+

=

0

(

s

2

5 5 s

Ex. Design the system to satisfy the following specifications: 1. Steady – state error for a ramp input is less than 35% of input slope. 2. The damping ratio ζ ≥ 0.707. 2. The settling time is less than 3 seconds. + s K 1 a =

1

K K 1 + 2 s

2) sb +

+ 2 s

0

2

b

= fi 0

+ = a 2 s

0

*s

fi 4 4 s s 1 s 2 3 3

fi + 1

0

2 2

z =

+ 2 s a +

0.707

= 2)

s s (

1 1

a

=

=

b

0 0

20

+ 2 s

+ 2 s

+ s

= 20 0

fi -1 -1

K 1 b

fi + 1

0

2

-2 -2

+

2

-3 -3

b =

= -

= 4.3 K K

s *

s s j

= 20 3.15

+ s + 3.15

1

2

-4 -4 fi

0.215

34

= K 2

-5 -4 -2 -6 0 -4 -2 0 fi -5 -6 sites.google.com/site/ncpdhbkhn

Parameter Design by the Root Locus Method (5)

( )R s

( )Y s

=

G s ( )

K 1 + s s (

2)

( )-

( )-

=

( )H s

K s 2

Ex. Design the system to satisfy the following specifications: 1. Steady – state error for a ramp input is less than 35% of input slope. 2. The damping ratio ζ ≥ 0.707. 2. The settling time is less than 3 seconds.

=

=

20;

K

0.215

K 1

2

5

+

*s

=

=

0.315 0.35

sse

20 0.215 2 20

4 s 1 s 2 3 · £ 2

z =

0.707

1

z =

0.707

0

-1

-2

=

=

=

<

1.27 3 seconds

T

-3

settling

4 s

4 3.15

-4

sites.google.com/site/ncpdhbkhn

35

-5 -6 -4 -2 0

The Root Locus Method

1. The Root Locus Concept 2. The Root Locus Procedure 3. Parameter Design by the Root Locus Method 4. Sensitivity and the Root Locus 5. PID Controllers 6. Negative Gain Root Locus 7. The Root Locus Using Control Design

Software

sites.google.com/site/ncpdhbkhn

36

Sensitivity and the Root Locus (1)

=

=

S The logarithmic sensitivity:

T K

¶ ¶

ln ln

T K

T T / K K /

¶ ¶

=

=

S The root sensitivity:

ir K

¶ ¶ D »

r i ln

K

r i K K /

r i K K /

sites.google.com/site/ncpdhbkhn

37

¶ ¶ D

( )R s

( )Y s

=

G s ( )

K +

b

s s (

)

Sensitivity and the Root Locus (2) a b + s

b + s K

= = 0

= « 0

+ 2 s

+ 2 s

Ex. + 1

( )-

b

K +

s s (

a

= a

a

) b

b

=

b

,

0

0

0.8

b = fi + 1 1

0

0

s 1 s 2

K +

= 1)

0.6

=

– D – D

0.5

0.5

j

0.5

K

0.1 1r 1r

s s ( = - r 1,2

0.1

0.4

K = K = K =

0.6 0.5 0.4

1r -

=

fi –

K

0.6 (20%)

0.5

j

0.59

= - 0.1 r 1,2

0.2

fi –

=

= - 0.1

K

0.4 (20%)

0.5

j

0.39

0

- fi –

r 1,2 + ( 0.5

j

0.59)

+ ( 0.5

j

0.5)

=

=

S

+

r 1 K

-0.2

D - - -

r 1 K K /

0.1/ 0.5

o

=

=

D

-0.4

j

0.45 0.45 90

2r -

0.1 2r

-0.6

+ ( 0.5

j

0.39)

+ ( 0.5

j

0.5)

K = K = K =

0.4 0.5 0.6

0.1 2r

=

=

S

D - - -

r 1 K

r 1 K K /

0.1/ 0.5

-0.8

= -

=

- D

o 0.55 0.55 ( 90 )

j

-1

-0.8

-0.6

-0.4

0

sites.google.com/site/ncpdhbkhn

-0.2 38

— -

( )R s

( )Y s

=

G s ( )

K +

b

s s (

)

Sensitivity and the Root Locus (3) a b + s

b + s K

= = 0

= « 0

+ 2 s

+ 2 s

Ex. + 1

( )-

K +

b

s s (

= a

a

a

) b

b

=

b

,

1

– D – D

b

b

+D -D

0

0 = fi 1

+ + D 2 s (1

0 + = a ) s

fi + 1

0

0.8

0

( 2

b ) s = a + + s

s

bD = -

0.2

2

b

+ D

b

a

b D b

0.6

- + D (1

)

)

4

=

r 1,2

bD =

0

bD = +

0.4

0.2

bD = +

– -

0.2 (20%)

0.6

j

0.37

0.2

bD = -

= -

fi –

0.2 (20%)

0.4

0.58

(1 2 = - r 1,2 r 1,2

0

fi –

j + ( 0.5

+ ( 0.6

j

0.37)

j

0.5)

=

=

r Sb 1

+

-0.2

D - - -

r 1 b b /

0.2 /1

-0.4

=

D

o 0.82 ( 127.6 )

-0.6

— -

+ ( 0.4

j

0.58)

+ ( 0.5

j

0.55)

=

=

r Sb 1

D - - -

r 1 b b /

0.2 /1

-0.8

o

=

- D

-1

0.64 38.7

-1

-0.8

-0.6

-0.4

-0.2

sites.google.com/site/ncpdhbkhn

0 39

Sensitivity and the Root Locus (4)

Ex.

( )R s

( )Y s

=

G s ( )

K +

b

s s (

)

( )-

o

=

=

S

j

0.45 0.45 90

+

= -

=

S

o 0.55 0.55 ( 90 )

j

r 1 K r 1 K

=

— - -

S

o 0.82 ( 127.6 )

r 1 b

+

o

=

— -

S

0.64 38.7

r 1 b

sites.google.com/site/ncpdhbkhn

40

— -

The Root Locus Method

1. The Root Locus Concept 2. The Root Locus Procedure 3. Parameter Design by the Root Locus Method 4. Sensitivity and the Root Locus 5. PID Controllers 6. Negative Gain Root Locus 7. The Root Locus Using Control Design

Software

sites.google.com/site/ncpdhbkhn

41

PID Controllers (1)

2

+

K s D

P

I

=

+

+

=

PID controller:

K

G s ( ) c

P

K s D

K I s

+ K s K s

P

I

=

+

=

PI controller:

K

G s ( ) c

P

K I s

+ K s K s

=

+

PD controller:

K

G s ( ) c

P

K s D

sites.google.com/site/ncpdhbkhn

42

PID Controllers (2)

Ex. 1

2

( )R s

( )Y s

+

+

2

s

10

+

+

s

10

K

D

+

+

K

1 2)(

(

s

s

4)

D

s 6 s

+

+

( )-

1 2)(

4)

=

T s ( )

2

+

s ( 10

s

+

1

K

D

+

4)

2

+ +

=

+ 3 s

(

6)

+ 2 s

(6

+ 8) s

10

0

+ K D

+ K D

= K D

3

+ +

+

+

s 6 s + s 6 s K s ( D + 2 s 6)

( s s 6 K (6

s 1 2)( s 10) + 8)

s

10

K

s

(

K

D

D

D

2

s

1

s

1.5

2

s

3

1

0.5

0

-0.5

-1

-1.5

-2

-5

-4.5

-3.5

-2.5

-1.5

-2

-3

-1

-0.5

0

-4 sites.google.com/site/ncpdhbkhn

43

PID Controllers (3)

zw

1

2

2

1

= -

zw

w

z

=

w nt

z

j

1

y t ( )

e

sin(

+ 1

z t

cos

)

s 1,2

n

n

n

2

( )y t

z

1

1.6

- - – - fi - -

ptM

final value

ptM

=

Percent overshoot

100%

1.4

final value

2

Overshoot

zp

-

z / 1

=

e 100

1.2

1.0 d+

1

0.9

1.0 d-

0.8

0.6

p

=

Peak time pT

2

w

z

- -

0.4

1n

4

=

Settling time sT

zw

n

0.2

Rise time rT 1rT

0.1

t

0

0

5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-

PID Gain

Percent Overshoot

Settling Time

Steady – State Error

Increases

Minimal impact

Decreases

Increasing KP

Increases

Increases

Zero steady – state error

Decreases

Decreases

No impact

Increasing KI Increasing KD

sites.google.com/site/ncpdhbkhn

44

PID Controllers (4)

Ex. 2

( )R s

( )Y s

+

+

K

P

K s D

+

1 + s s b s )( (

zw 2

K I s

( )-

b

=

=

w

)n =

z 10,

0.707,

4.

n

Step response with K

= 0

= 885.5, K I

= 0, and K D

P

2

1.5

e d u t i l

1

p m A

0.5

0

0

0.5

1

1.5

2

3

3.5

4

4.5

5

2.5 Time (s)

= 0

Root locus with K I

= 0, and K D

10

885.5

PK =

s

1

5

s

2

0

s

3

-5

-10

-15

-5

0

-10 sites.google.com/site/ncpdhbkhn

45

PID Controllers (4)

Ex. 2

( )R s

( )Y s

+

+

K

P

K s D

+

1 + s s b s )( (

zw 2

K I s

( )-

b

=

=

w

)n =

z 10,

0.707,

4.

n

= 0

Step response with K I

= 0, and K D

2

= 885.5

K

P

1.8

= 442.75

K

P

1.6

= 370

K

P

1.4

1.2

e d u

t i l

1

p m A

0.8

0.6

0.4

0.2

0

0

0.5

1

1.5

2

3

3.5

4

4.5

5

2.5 Time (s)

sites.google.com/site/ncpdhbkhn

46

PID Controllers (5)

Ex. 2

( )R s

( )Y s

+

+

K

P

K s D

+

1 + s s b s )( (

zw 2

K I s

( )-

b

=

=

w

)n =

z 10,

0.707,

4.

n

= 370

Root locus with K I

= 0, and K P

25

20

15

s 1 s 2 s 3

10

2

zp

z / 1

=

Percent overshoot

100

e

5

0

4

=

Settling Time

zw

-5

n

-10

-15

-20

-25

-14

-10

-4

-2

0

- -

-12 PID Gain

-8 -6 Percent Overshoot

Settling Time

Decreases

Decreases

Increasing KD

sites.google.com/site/ncpdhbkhn

47

PID Controllers (6)

Ex. 2

( )R s

( )Y s

+

+

K

P

K s D

+

1 + s s b s )( (

zw 2

K I s

( )-

b

=

=

w

)n =

z 10,

0.707,

4.

n

60

t

40

o o h s r e v O

t

20

n e c r e P

0

2

zp

10

20

30

40

50

0

z / 1

=

Percent overshoot

100

e

K

D

4

4

=

Settling Time

zw

n

i

3

e m T

g n

2

i l t t e S

1

0

10

20

30

40

50

K

D

- -

PID Gain

Percent Overshoot

Settling Time

Decreases

Decreases

Increasing KD

sites.google.com/site/ncpdhbkhn

48

PID Controllers (7)

Ex. 2

( )R s

( )Y s

+

+

K

P

K s D

+

1 + s s b s )( (

zw 2

K I s

( )-

b

=

=

w

)n =

z 10,

0.707,

4.

n

= 0

Root locus with K P

= 370, K D

100

80

60

)

1 -

40

20

2

zp

z / 1

=

Percent overshoot

100

e

i

0

-20

4

s d n o c e s ( s x A y r a n

=

i

Settling Time

zw

-40

n

g a m

I

-60

-80

-100

-120

-100

-80

-60

-40

-20

0

20

40

60

Real Axis (seconds-1)

- -

Percent Overshoot

Settling Time

Increases

Increases

PID Gain Increasing KI

sites.google.com/site/ncpdhbkhn

49

PID Controllers (8)

Ex. 2

( )R s

( )Y s

+

+

K

P

K s D

+

1 + s s b s )( (

zw 2

K I s

( )-

b

=

=

w

)n =

z 10,

0.707,

4.

n

90

t o o h s r e v O

80

70

t n e c r e P

60

2

zp

z / 1

=

Percent overshoot

100

e

I

50 - - 100 200 400 500 600 0 300 K

4

=

Settling Time

zw

20

n

i

e m T

15

g n

i l t t

e S

10

5

I

0 0 100 200 400 500 600 300 K

Percent Overshoot

Settling Time

Increases

Increases

PID Gain Increasing KI

sites.google.com/site/ncpdhbkhn

50

PID Controllers (9)

Ex. 2

( )R s

( )Y s

+

+

K

P

K s D

+

1 + s s b s )( (

zw 2

K I s

( )-

b

=

=

w

)n =

z 10,

0.707,

4.

n

4

60

3

i

40

e m T

t o o h s r e v O

2

g n

20

i l t t e S

1

t n e c r e P

0

0

0

20

40

60

20

40

60

0

K

K

D

D

20

90

15

80

i

t o o h s r e v O

10

70

e m T g n

i l t t e S

5

60

t n e c r e P

0

50

0

0

200

400

600

200

400

600

K

K

I

I

sites.google.com/site/ncpdhbkhn

51

PID Controllers (9)

Ex. 2

( )R s

( )Y s

+

+

K

P

K s D

+

1 + s s b s )( (

zw 2

K I s

( )-

b

=

=

w

)n =

z 10,

0.707,

4.

n

= 60

Step response with K P

=370, K I

= 100, and K D

1.4

1.2

1

0.8

e d u t i l

p m A

0.6

0.4

0.2

0

0

1

2

3

4

6

7

8

9

10

5 Time (s)

sites.google.com/site/ncpdhbkhn

52

PID Controllers (10)

Ziegler-Nichols PID Controller Gain Tuning Using Closed-loop Concepts

Controller Type

KI

KD

P

PI

PID

KP 0.5KUltimate 0.45KUltimate 0.6KUltimate

0.54KUltimate/TUltimate 1.2KUltimate/TUltimate

0.6KUltimateTUltimate/8

sites.google.com/site/ncpdhbkhn

53

PID Controllers (11)

Ex. 2

( )R s

( )Y s

+

+

K

P

K s D

+

1 + s s b s )( (

zw 2

K I s

( )-

b

=

=

w

)n =

z 10,

0.707,

4.

n

Step response with K

= 0

= 885.5, K I

= 0, and K D

P

2

T =

0.83s

1.5

e d u t i l

1

p m A

0.5

0

0

0.5

1

1.5

2

3

3.5

4

4.5

5

2.5 Time (s)

= 0

Root locus with K I

= 0, and K D

10

885.5

PK =

s

1

5

s

2

0

s

3

-5

-10

-15

-5

0

-10 sites.google.com/site/ncpdhbkhn

54

PID Controllers (12)

Ex. 2

( )R s

( )Y s

+

+

K

P

K s D

+

1 + s s b s )( (

zw 2

K I s

( )-

=

=

885.5;

0.83

K U

T U

b

=

=

w

)n =

z 10,

0.707,

4.

n

Ziegler-Nichols PID Controller Gain Tuning Using Closed-loop Concepts

Controller Type

KI

KD

P

PI

PID

KP 0.5KUltimate 0.45KUltimate 0.6KUltimate

0.54KUltimate/TUltimate 1.2KUltimate/TUltimate

0.6KUltimateTUltimate/8

=

=

K

0.6

= 0.6 885.5 531.3

P

K U

=

=

=

K

1.2

1.2

1280.2

I

885.5 0.83

K U T U

·

=

=

=

K

0.6

0.6

55.1

D

K T U U 8

885.5 0.83 8

sites.google.com/site/ncpdhbkhn

55

·

PID Controllers (13)

Ex. 2

( )R s

( )Y s

+

+

K

P

K s D

+

1 + s s b s )( (

zw 2

K I s

( )-

b

=

=

w

)n =

z 10,

0.707,

4.

n

1.6

Step response with the manual tuning Step response with the Ziegler - Nichols PID tuning

1.4

1.2

1

e d u

t i l

0.8

p m A

0.6

0.4

0.2

0

0

0.5

1

1.5

2

3

3.5

4

4.5

5

2.5 Time (s)

sites.google.com/site/ncpdhbkhn

56

The Root Locus Method

1. The Root Locus Concept 2. The Root Locus Procedure 3. Parameter Design by the Root Locus Method 4. Sensitivity and the Root Locus 5. PID Controllers 6. Negative Gain Root Locus 7. The Root Locus Using Control Design

Software

sites.google.com/site/ncpdhbkhn

57

Negative Gain Root Locus

Ex.

+

=

1

K

0

2

s +

-

s

20 s

5

50

)

Root Locus

1 -

20

10

i

0

-10

i

-20

s d n o c e s ( s x A y r a n g a m

-20

-10

0

10

20

30

40

50

I

)

Real Axis (seconds-1) Root Locus

1 -

20

K = -

5.0

K = -

2.5

10

i

0

-10

i

-20

s d n o c e s ( s x A y r a n g a m

-20

-10

0

10

20

30

40

50

I

Real Axis (seconds-1)

sites.google.com/site/ncpdhbkhn

58

-

The Root Locus Method

1. The Root Locus Concept 2. The Root Locus Procedure 3. Parameter Design by the Root Locus Method 4. Sensitivity and the Root Locus 5. PID Controllers 6. Negative Gain Root Locus 7. The Root Locus Using Control Design

Software

sites.google.com/site/ncpdhbkhn

59

The Root Locus Using Control Design Software (1)

Ex. 1

20

+

=

1

K

0

2

- + s + 5

s

s

50

• rlocus • rlocfind

sites.google.com/site/ncpdhbkhn

60

-

The Root Locus Using Control Design Software (2)

Ex. 1

+

=

=

G s ( )

0

2

s +

5

20 + s

s

20

• step • impulse

sites.google.com/site/ncpdhbkhn

61