Sáng kiến kinh nghiệm: Một số phương pháp giải phương trình nghiệm nguyên bậc hai, hai ẩn
lượt xem 3
download
Trong khi giải phương trinh bậc hai hai ẩn học sinh thường lúng túng không rõ phương pháp giải. Qua quá trình giảng giải tôi xin đưa ra một số phương pháp giải “phương trình nghiệm nguyên bậc hao hai ẩn”. Việc giải phương trình này còn giúp học sinh có kỹ năng tìm giá trị nhỏ nhất của một biểu thức bậc hai hai ẩn và phân tích đa thức thành nhân tử, đồng thời cũng biết được cách giải một số phương trình nghiệm nguyên bậc hai hai ẩn.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Sáng kiến kinh nghiệm: Một số phương pháp giải phương trình nghiệm nguyên bậc hai, hai ẩn
- Một số phương pháp giải phương trình nghiệm nguyên bậc hai, hai ẩn. Một số phương pháp giải phương trình nghiệm nguyên bậc hai, hai ẩn. I.LÝ DO CHỌN ĐỀ TÀI: Trong khi giải phương trinh bậc hai hai ẩn học sinh thường lúng túng không rõ phương pháp giải. Qua quá trình giảng giải tôi xin đưa ra một số phương pháp giải “phương trình nghiệm nguyên bậc hao hai ẩn”. Việc giải phương trình này còn giúp học sinh có kỹ năng tìm giá trị nhỏ nhất của một biểu thức bậc hai hai ẩn và phân tích đa thức thành nhân tử, đồng thời cũng biết được cách giải một số phương trình nghiệm nguyên bậc hai hai ẩn. II.NỘI DUNG A. Xét phương trình a1 x 2 + a2 xy + a3 x + a4 y + a5 y 2 + a6 = 0 .Trong đó a1 ≠ 0 hoặc a2 ≠ 0 , a5 ≠ 0 B. Các phương pháp giải. a.Phương pháp thứ nhất Viết vế trái thành tổng các bình phương A = 0 Dạng 1. A + B + C = 0 ⇔ B = 0 2 2 2 C = 0 Ví dụ; giải phương trình nghiệm nguyên: 5 x 2 + 2 y 2 + 4 xy + 9 y − 8 x + 14 = 0(1) Lưu ý: Để viết vế traí thành tổng các bình phương nhất là bình phương của một tam thức cần có cách tách hợp lý. Ta biết hang tử có bình phương thì hệ sổ là số chính phương, do đó 5x2 = 4 x2 + x2 2 y2 = y2 + y2 Phương trình (1) ⇔ 4x 2 + x 2 + y 2 + y 2 + 4 xy − 4 x − 4 x + 9 y + 14 = 0 Ta coi bình phương của một tam thức (a + b + c) 2 = ((a + b) + c)2 là bình phương của nhị thức với biểu thức thử nhất là (a+b) và bểu thức thứ hai là c. Vậy (1) ⇔ 4x 2 + x 2 + y 2 + y 2 + 4 xy − 4 x − 4 x + 9 y + 14 = 0 Phan Thị Nguyệt - Trường THCS Thị Trấn Thanh Chương 1 PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com
- Một số phương pháp giải phương trình nghiệm nguyên bậc hai, hai ẩn. ⇔ ((2 x) 2 + 2.2 x( y − 1) + ( y − 1) 2 ) + ( x − 2) 2 + ( y − 3) 2 = 0 ( 2 x + y − 1) + ( x − 2 ) + ( y − 3) =0 2 2 2 ⇔ (2 x + y − 1) 2 + ( y + 3) 2 + ( x − 2) 2 = 0 2 x + y − 1 = 0 ⇔ y + 3 = 0 x − 2 = 0 x = 2 ⇔ y = −3 Bài tập: giải các phương trình nghiệm nguyên: 1, 2 x 2 + 5 y 2 + 14 − 4 xy − 8 y − 4 x = 0 2, 5 x 2 + 2 y 2 + 14 + 4 xy − 4 y + 8 x = 0 3, 5 x 2 + 10 y 2 + 3 − 12 xy + 8 y − 2 x = 0 4, 10 x 2 + 5 y 2 + 38 − 12 xy + 16 y − 36 x = 0 5, 10 x 2 + 4 y 2 + 34 − 12 xy + 20 y − 36 x = 0 Giải: 1, 2 x 2 + 5 y 2 + 14 − 4 xy − 8 y − 4 x = 0 ⇔ x 2 + x 2 + 4 y 2 + y 2 − 4 xy − 8 y − 4 x + 14 = 0 ⇔ ( x − 2 y + 1) + ( x − 3) + ( y − 2 ) = 0 2 2 2 x − 2 y +1 = 0 ⇔ x − 3 = 0 y − 2 = 0 x = 3 ⇔ y = 2 2, 5 x 2 + 2 y 2 + 14 + 4 xy − 4 y + 8 x = 0 ⇔ 4 x 2 + x 2 + y 2 + y 2 + 4 xy + 8 x − 4 y + 14 = 0 ⇔ ( 2 x + y + 1) + ( x + 2 ) + ( y − 3) = 0 2 2 2 2 x + y + 1 = 0 ⇔ x + 2 = 0 y −3 = 0 x = −2 ⇔ y = 3 3, 5 x 2 + 10 y 2 + 3 − 12 xy + 8 y − 2 x = 0 ⇔ 4 x 2 + x 2 + 9 y 2 + y 2 − 12 xy − 2 x + 8 y + 3 = 0 Phan Thị Nguyệt - Trường THCS Thị Trấn Thanh Chương 2 PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com
- Một số phương pháp giải phương trình nghiệm nguyên bậc hai, hai ẩn. ⇔ ( 2 x − 3 y − 1) + ( x + 1) + ( y + 1) = 0 2 2 2 2 x − 3 y − 1 = 0 ⇔ x +1 = 0 y +1 = 0 x = −1 ⇔ y = −1 4, 10 x 2 + 5 y 2 + 38 − 12 xy + 16 y − 36 x = 0 ⇔ x 2 + 9 x 2 + 4 y 2 + y 2 + 38 − 12 xy + 16 y − 36 x = 0 ( ) ( ) ⇔ (( 3x ) − 2.3 x. ( 2 y + 5 ) + ( 2 y + 5) ) + x 2 − 6 x + 9 + y 2 − 4 y + 4 = 0 2 2 ⇔ ( 3 x − 2 y − 5 ) + ( x − 3) + ( y − 2 ) = 0 2 2 2 3x − 2 y − 5 = 0 ⇔ x − 3 = 0 y − 2 = 0 x = 3 ⇔ y = 2 5, 9 x 2 + x 2 + 4 y 2 + 34 − 12 xy + 20 y − 36 x = 0 ⇔ ( 3 x + 2 y − 5 ) + ( x − 3) = 0 2 2 3x + 2 y − 5 = 0 ⇔ x − 3 = 0 x = 3 ⇔ y = −2 A = ±m Dạng 2. A + B + C + ... = m + n + p + ... ⇔ B = ± n 2 2 2 2 2 2 C = ± p và các hoán vị của chúng. Ví dụ: Giải phương trình: x2 − x − 6 + y 2 = 0 ⇔ 4 x 2 − 4 x − 24 + 4 y 2 = 0 ⇔ (2 x − 1) 2 + (2 y )2 = 25 = 32 + 42 = 02 + 52 Phan Thị Nguyệt - Trường THCS Thị Trấn Thanh Chương 3 PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com
- Một số phương pháp giải phương trình nghiệm nguyên bậc hai, hai ẩn. 2 x − 1 = 3 x = 2; −1 Do 2x-1 lẻ nên 2 y = 4 ⇔ y = ±2 2 x − 1 = 5 x = 3; −2 ⇔ Hoặc 2 y = 0 y = 0 Phương trình đã cho có nghiệm: (x,y) = (2,2), (3,0), (-1,-2),(-3,0);(2;-2);(-1;2);(-2;0) Bài tập: Giải các phương trình nghiệm nguyên dương: 1, x 2 = 100 + 6 xy − 13 y 2 2, x 2 − 4 xy + 5 y 2 = 169 Giải: 1, x 2 = 100 + 6 xy − 13 y 2 ⇔ x 2 − 6 xy + 9 y 2 + 4 y 2 = 100 ⇔ x − 3 + 2 y = 100 = 62 + 82 = 02 + 102 2 2 x − 3 = 6 ⇔ x = 9 2 y = 8 ⇔ y = 4 x − 3 = 8 x = 11 Hoặc 2 y = 6 ⇔ y = 3 x − 3 = 10 x = 13 Hoặc 2 y = 0 ⇔ y = 0 x − 3 = 0 x = 3 Hoặc 2 y = 10 ⇔ y = 5 Vậy phương trình đã cho có nghiệm: ( x, y ) = {( 9; 4 ) (11;3)( 3;5 ) } 2, x 2 − 4 xy + 5 y 2 = 169 ⇔ x 2 − 4 xy + 4 y 2 + y 2 = 169 ⇔ x − 2 y 2 + y 2 = 169 = 12 2 + 52 = 0 2 + 132 Phan Thị Nguyệt - Trường THCS Thị Trấn Thanh Chương 4 PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com
- Một số phương pháp giải phương trình nghiệm nguyên bậc hai, hai ẩn. x − 2 y = 12 ⇔ x = 22 y = 5 ⇔ y = 5 x − 2 y = 5 x = 19 hoặc y = 12 ⇔ y = 12 x − 2 y = 0 x = 26 hoặc y = 13 ⇔ y = 13 Vậy phương trình đã cho có nghiệm: ( x, y ) = {( 22;5) (19;12 )( 26;13) } b.Phương pháp thứ hai: Phân tích vế trái thành nhân tử A = 0 Dạng 1. A.B.C =0 ⇔ B = 0 C = 0 Dạng 2. A.B.C... = m.n.p... (Với m, n,p là các số nguyên) A = m ⇔ B = n C = p và các hoán vị của chúng. Ví dụ: Giải phương trình nghiệm nguyên dương: 3 x 2 + 10 xy + 8 y 2 = 96 ⇔ 3x 2 + 6 xy + 4 xy + 8 y 2 = 96 ⇔ ( x + 2 y )(3x + 4 y ) = 96 = 16.6 = 12.8 = 24.4 Do x,y là các số nguyên dương nên (3 x + 4 y ) > ( x + 2 y ) ≥ 3 2 x + 4 y = 16 x = 4 ⇒ ⇔ x + 2 y = 6 y =1 2 x + 4 y = 12 x = −4 Hoặc ⇔ (loại) x + 2 y = 8 y = 6 2 x + 4 y = 24 x = 16 Hoặc ⇔ (loại) x + 2 y = 4 y = −6 Vậy phương trình đã cho có nghiệm: ( x, y ) = ( 4;1) Bài tập: Giải các phương trình nghiệm nguyên: 1, y 2 = x 2 + x + 6 Phan Thị Nguyệt - Trường THCS Thị Trấn Thanh Chương 5 PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com
- Một số phương pháp giải phương trình nghiệm nguyên bậc hai, hai ẩn. 2, x 2 − 25 = y ( y + 6 ) 3, x 2 − 6 xy + 5 y 2 = 121 4, 5 ( x + y ) = 3xy − 2 5, x 2 − x − xy + 3 y − 6 = 0 Giải: 1, y 2 = x 2 + x + 6 ⇔ 4 y 2 = 4 x 2 + 4 x + 24 ⇔ (2 y )2 − (4 x 2 + 4 x + 1) = 23 ⇔ (2 y )2 − (2 x + 1) 2 = 23 ⇔ ( 2 y − 2 x − 1)( 2 y + 2 x + 1) = 23 = 1.23 = (−1).(−23) = 23.1 = (−23).(−1) ( 2 y + 2 x + 1) = 23 ∗ y = 6 ( 2 y − 2 x − 1) = 1 ⇔ x = 5 ( 2 y + 2 x + 1) = 1 y = 6 ∗ ⇔ ( 2 y − 2 x − 1) = 23 x = −6 ( 2 y + 2 x + 1) = −23 ∗ y = −6 ( 2 y − 2 x − 1) = − 1 ⇔ x = −6 ( 2 y + 2 x + 1) = −1 ∗ y = −6 ( 2 y − 2 x − 1) = −23 ⇔ x = 5 Vậy phương trình đã cho có nghiệm nguyên: ( x, y ) = {( 5; 6 ) , ( −6; 6 ) , ( −6; −6 ) , ( 5; −6 )} 2, x 2 − 25 = y ( y + 6 ) ( ⇔ x 2 − y 2 + 6 y + 9 = 16 ) ⇔ x2 −(y 2 + 6 y + 9 ) = 16 ⇔ ( x ) − ( y + 3) = 16 2 2 ⇔ ( x − y − 3)( x + y + 3) = 16 Do ( x − y − 3) ≤ ( x + y + 3) Và ( x − y − 3) ; ( x + y + 3) cùng tính chẵn lẻ nên ( x − y − 3)( x + y + 3) = 2.8 = 4.4 = ( −8 )( −2 ) = ( −4 )( −4 ) x − y − 3 = 2 x = 5 ∗ ⇔ x + y + 3 = 8 y = 0 Phan Thị Nguyệt - Trường THCS Thị Trấn Thanh Chương 6 PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com
- Một số phương pháp giải phương trình nghiệm nguyên bậc hai, hai ẩn. x − y − 3 = 4 x = 4 ∗ ⇔ x + y + 3 = 4 y = −3 x − y − 3 = −8 x = −5 ∗ ⇔ x + y + 3 = −2 y = 0 x − y − 3 = −4 x = −4 ∗ ⇔ x + y + 3 = −4 y = −3 Vậy phương trình đã cho có nghiệm nguyên: ( x, y ) = {( 5; 0 ) ( −5; 0 )( 4; −3)( −4; −3)} 3, x 2 − 6 xy + 5 y 2 = 121 ⇔ x 2 − 6 xy + 9 y 2 − 4 y 2 = 121 ⇔ ( x − 3 y ) − ( 2 y ) = 121 2 2 ( ⇔ x − 3y + 2 y )( x − 3 y − 2 y ) = 121 Do ( x − 3 y + 2 y ) ≥ ( x − 3 y − 2 y ) Và ( x − 3 y + 2 y ) ; ( x − 3 y − 2 y ) cùng tính chẵn lẻ nên ( x − 3 y + 2 y ) = 121 x − 3 y = 61 x − 3 y = 61 ∗ ⇔ ⇔ ( x − 3 y − 2 y ) = 1 2 y = 60 y = ±30 Nếu y = 30 Thì x − 90 = 61 ⇒ x = 151; 29 Nếu y = −30 Thì x + 90 = 61 ⇒ x = −151; −29 ∗ ( ) x − 3 y + 2 y = 11 x − 3 y = 11 ⇔ x = ±11 ⇔ ( ) x − 3 y − 2 y = 11 2 y = 0 y = 0 Vậy phương trình đã cho cónghiệm nguyên: ( x, y ) = {( 29;30 ) , (151;30 ) , ( −29; −30 ) , ( −151; −30 ) , (11;0 ) , ( −11;0 )} 4, 5 ( x + y ) = 3xy − 2 ⇔ 5 ( x + y ) − 3xy = −2 ⇔ 15 ( x + y ) − 9 xy = −6 ⇔ 15 x − 9 xy = −6 ⇔ 3 x ( 5 − 3 y ) − 5 ( 5 − 3 y ) + 25 = −6 ⇔ ( 3 x − 5 )( 3 y − 5 ) = 31 Không mất tính tổng quát giả sử x ≤ y ⇒ 3x − 5 ≤ 3 y − 5 Phan Thị Nguyệt - Trường THCS Thị Trấn Thanh Chương 7 PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com
- Một số phương pháp giải phương trình nghiệm nguyên bậc hai, hai ẩn. 3 x − 5 = 1 x = 2 ∗ ⇔ 3 y − 5 = 31 y = 12 4 x = 3x − 5 = −1 3 ∗ ⇔ (loại) 3 y − 5 = −31 y = −26 3 Vậy phương trình đã cho có nghiệm nguyên: ( x, y ) = {( 2;12 ) (12; 2 ) } 5, x 2 − x − xy + 3 y − 6 = 0 ⇔ x 2 − 3x − xy + 3 y + 2 x − 6 = 0 ⇔ x ( x − 3) − y ( x − 3) + 2 ( x − 3) = 0 ⇔ ( x − 3)( x − y + 2 ) = 0 x = 3; y ∈ Z ⇔ y = x + 2; x ∈ Z c.Phương pháp thứ ba: Dùng công thức nghiệm của phương trình bậc hai Ta coi phương trình bậc hai hai ẩn là phương trình bậc hai một ẩn còn ẩn kia là hằng số.Chẳng hạn f ( x , y ) = 0 ta coi y hằng số. Dạng 1. nếu ∆ y = ay 2 + by + c có hệ số a < 0. hoặc ∆ y = by + c có hệ số b < 0. Để phương trình f( x , y ) = 0 có nghiệm thì ∆ y ≥ 0 từ đó tìm được một nghiệm là y và suy ra nghiệm còn lại x. Ví dụ: giải phương trình nghiệm nguyên: (3 x 2 + xy + y 2 ) = x + 8 y ⇔ 3x 2 + (3 y − 1) x + 3 y 2 − 8 y = 0 Coi phương trình này là phương trinh bậc hai ẩn x. Ta có ∆ y = −27 y 2 + 9 y + 1 . ∆ y = −27 y 2 + 9 y + 1 ≥ 0 Để pt đã cho có nghiệm thì ⇔ −0, 01 ≤ y ≤ 3,3; y ∈ Z y ∈ {0,1, 2,3} Thay vào ta được Nếu y = 0 ⇒ 3x 2 − x = 0 1 x= ⇔ 3x − x = 0 ⇒ 2 3 x = 0 Nếu y = 1 ⇒ 3x 2 + 2 x − 5 = 0 Phan Thị Nguyệt - Trường THCS Thị Trấn Thanh Chương 8 PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com
- Một số phương pháp giải phương trình nghiệm nguyên bậc hai, hai ẩn. x = 1 ⇔ 3x 2 + 2 x − 5 = 0 ⇒ x = −5 3 Nếu y = 2 ⇒ 3x + 5 x − 4 = 0 2 ∆ = 25 + 48 = 73 (không phải là số chính phương) Nếu y = 3 ⇒ 3x 2 + 8 x + 3 = 0 ∆ / = 16 − 9 = 7 (không phải là số chính phương) pt đã cho có 2 nghiệm:(x,y) =(0,0);(1,1) Bài tập: Giải các phương trình nghiệm nguyên: 1, x 2 + xy + y 2 − 2 x − y = 0 2, x 2 − xy + y 2 = x + y Giải: 1, x 2 + xy + y 2 − 2 x − y = 0 ⇔ x 2 + x ( y − 2 ) + y 2 + y = 0 ∆ = y2 − 4 y + 4 − 4 y2 + 4 y ∆ = 4 − 3y 2 Để phương trình đã cho có nghiệm nguyên thì 4 − 3 y 2 ≥ 0 ⇔ y 2 ≤ 1 ⇔ −1 ≤ y ≤ 1 Nếu y = −1 ⇒ x 2 − x + 1 − 2 x + 1 = 0 x = 2 ⇔ x 2 − 3x + 2 = 0 ⇒ x =1 Nếu y = 0 ⇒ x 2 − 2 x = 0 x = 2 ⇔ x2 − 2x = 0 ⇒ x = 0 Nếu y = 1 ⇒ x + x + 1 − 2 x − 1 = 0 2 x = 0 ⇔ x2 − x = 0 ⇒ x = 1 Vậy phương trình đã cho có nghiệm nguyên: ( x, y ) = {(1; −1) , ( 2; −1) , ( 0; 0 ) , ( 2; 0 ) , (1;1) , ( 0;1)} 2, x 2 − xy + y 2 = x + y ⇔ x 2 − x ( y + 1) + y 2 − y = 0 ∆ = y 2 + 2 y + 1 − 4 y 2 + 4 y = −3 y 2 + 6 y + 1 Để phương trình đã cho có nghiệm nguyên thì ∆ ≥ 0 ⇔ −3 y 2 + 6 y + 1 ≥ 0 ⇔ −0,154 ≤ y ≤ 2,154 y ∈ {0;1; 2} Phan Thị Nguyệt - Trường THCS Thị Trấn Thanh Chương 9 PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com
- Một số phương pháp giải phương trình nghiệm nguyên bậc hai, hai ẩn. Nếu y = 0 ⇒ x 2 − x = 0 x = 1 ⇔ x2 − x = 0 ⇒ x = 0 Nếu y = 1 ⇒ x 2 − 2 x = 0 x = 2 ⇔ x2 − 2x = 0 ⇒ x = 0 Nếu y = 2 ⇒ x 2 − 3 x + 2 = 0 x = 2 ⇔ x 2 − 3x + 2 = 0 ⇒ x =1 Vậy phương trình đã cho có nghiệm nguyên: ( x, y ) = {( 0; 0 ) , (1;0 ) , ( 0;1) , ( 2;1) , (1; 2 ) , ( 2; 2 )} Dạng 2. Nếu ∆ y = ay 2 + by + c có hệ số a là một số chính phương Để phương trình f( x , y ) = 0 có nghiệm thì ∆ y = m 2 từ đó tìm được một nghiệm là y và suy ra nghiệm còn lại x. Ví dụ : giải phương trình nghiệm nguyên: 1, x 2 + 2 y 2 + 3xy − 2 x − y = 6 ⇔ x 2 + (3 y − 2) x + 2 y 2 − y − 6 = 0 Coi phương trình này là phương trinh bậc hai ẩn x. ∆ y = y 2 − 8 y + 16 + 12 Để pt đã cho có nghiệm thì ∆ y = m 2 ∆ y = y 2 − 8 y + 16 + 12 = m2 ⇔ m 2 − ( y − 4) 2 = 12 (m − y + 4)(m + y − 4) = 12 = 2.6 = −2.(−6) Vì(m+y-4) ≥ (m-y+4)Và chúng có cùng tính chẵn lẻ.Nên m − y + 4 = 2 m = 4 ⇔ Thay y=6 vào pt đã cho ta có: m + y − 4 = 6 y = 6 x 2 + 72 + 18 x − 2 x − 12 = 0 ⇔ x 2 + 16 x + 60 = 0 Pt này vô nghiệm. m − y + 4 = −6 m = −4 ⇔ m + y − 4 = −2 y = 6 Pt đ ã cho vô nghiệm 2, xy − 2 y − 3x + x 2 = 6 ⇔ x 2 − x ( y − 3) − 2 y − 6 = 0 Coi phương trình này là phương trinh bậc hai ẩn x. ∆ y = y 2 − 6 y + 9 + 24 Phan Thị Nguyệt - Trường THCS Thị Trấn Thanh Chương 10 PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com
- Một số phương pháp giải phương trình nghiệm nguyên bậc hai, hai ẩn. Để pt đã cho có nghiệm thì ∆ y = m 2 ∆ y = y 2 + 2 y + 1 + 32 = m 2 ⇔ m 2 − ( y + 1)2 = 32 ( ⇔ m + y +1 )( m − y + 1 ) = 32 Do ( m + y + 1 ) ≥ ( m − y + 1 ) Và ( m + y + 1 ) ; ( m − y + 1 ) có cùng tính chẵn lẻ, ( m + y + 1 ) ≥ 0 nên ( m − y + 1 ) ≥ 0 .Ta có m − y +1 = 2 m = 9 m = ±9 ∗ ⇔ ⇔ + y + 1 = 16 y + 1 = 7 y = 6; −8 m m − y +1 = 4 m = 6 m = ±6 ∗ ⇔ ⇔ m + y +1 = 8 y + 1 = 2 y = 1; −3 Nếu y = 6 ⇒ x 2 − 3x − 12 + 6 x − 6 = 0 ⇔ x 2 + 3x − 18 = 0 −3 + 9 −3 − 9 ∆ = 9 + 4.18 = 81 ⇒ x1 = = 3 ; x2 = = −6 2 2 Nếu y = −8 ⇒ x 2 − 3x + 16 − 8 x − 6 = 0 ⇔ x 2 − 11x + 10 = 0 phương trinh có nghiệm: x1 = 1; x2 = 10 Nếu y = 1 ⇒ x 2 − 3 x − 2 + x − 6 = 0 ⇔ x 2 − 2 x − 8 = 0 ∆ / = 1 + 8 = 9 ⇒ x1 = 1 + 3 = 4 ; x2 = 1 − 3 = −2 Nếu y = −3 ⇒ x 2 − 3 x + 6 − 3x − 6 = 0 ⇔ x 2 − 6 x = 0 ⇒ x1 = 0 ; x2 = 6 Vậy phương trình đã cho có nghiệm nguyên: ( x, y ) = {( 3;6 ) , ( −6;6 ) , (10; −8) , (1; −8 ) , ( 4;1) , ( −2;1)( 0; −3)( 6; −3)} 3, x 2 + xy + y 2 − x 2 y 2 = 0 ( ) ⇔ x 2 1 − y 2 + xy + y 2 = 0 Coi phương trình này là phương trinh bậc hai ẩn x. ( ) ∆ y = y2 − 4 y2 1 − y2 = y2 − 4 y2 + 4 y4 = 4 y4 − 3 y2 = y2 4 y2 − 3 ( ) Để pt đã cho có nghiệm thì ∆ y là số chính phương ⇒ 4 y 2 − 3 = m2 ⇔ 2 y − m = 3 ⇔ 2 y − m 2 2 ( )( 2y + m ) = 3 2 y − m = 1 2 y = 2 y = ±1 ∗ ⇔ ⇔ 2 y + m = 3 m = 1 m = ±1 Phan Thị Nguyệt - Trường THCS Thị Trấn Thanh Chương 11 PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com
- Một số phương pháp giải phương trình nghiệm nguyên bậc hai, hai ẩn. Nếu y = 1 ⇒ x 2 + x + 1 − x 2 = 0 ⇔ x + 1 = 0 ⇔ x = −1 Nếu y = -1 ⇒ x 2 − x + 1 − x 2 = 0 ⇔ − x + 1 = 0 ⇔ x = 1 Vậy phương trình đã cho có nghiệm nguyên: ( x, y ) = {( −1;1) , (1; −1) } d.Phương pháp thứ tư: dùng tính chất của số chính phương: Nếu phương trình f( x , y ) = 0 có dạng A2( x , y ) = B( x ) hoặc A2( x, y ) = B( y ) Thì B( x ) = m2 B( y ) = m 2 hoặc B( x ) ≥ 0 B( y ) ≥ 0 Ví dụ: Tìm nghiệm nguyên dương của phương trình; x 2 + ( x + y ) 2 = ( x + 9)2 ⇔ ( x + y − 9) 2 = 9(9 − 2 y ) Do 18-2y chẵn và18-2y
- Một số phương pháp giải phương trình nghiệm nguyên bậc hai, hai ẩn. Vậy phương trình đã cho có nghiệm nguyên: ( x, y ) = {( −2; −1) , ( 3; −1) , ( 2;1) , ( −3;1) , ( −1; −2 ) , ( 3; −2 )(1; 2 )( −3; 2 )( −1;3)( −2;3)(1; −3)( 2; −3)} III. KẾT LUẬN: Qua giảng dạy rút ra cho học sinh những phương pháp giải cụ thể cho từng loại toán thì học sinh có thói quen nhận dạng và sử dụng phương pháp giải thích hợp và phát huy khả năng tư duy của học sinh. Tuy nhiên bài viết có thể có nhiều sai sót mong quý bạn đọc góp ý giúp đỡ. Tôi xin chân thành cảm ơn. Ngày 30 tháng 5 năm 2008 Người viết: Phan Thị Nguyệt. Phan Thị Nguyệt - Trường THCS Thị Trấn Thanh Chương 13 PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Sáng kiến kinh nghiệm: Một số kinh nghiệm nâng cao công tác chủ nhiệm học sinh lớp 5
14 p | 2595 | 686
-
Sáng kiến kinh nghiệm: Một số biện pháp nâng cao chất lượng dạy học môn học vần cho học sinh lớp 1 trường tiểu học Mỹ Phước D
50 p | 2696 | 408
-
Sáng kiến kinh nghiệm: Một số biện pháp giúp học sinh lớp 2 học tốt môn tập làm văn
10 p | 2125 | 376
-
Sáng kiến kinh nghiệm: Một số biện pháp rèn kĩ năng học tốt môn tập làm văn ở lớp 5
11 p | 1175 | 281
-
Sáng kiến kinh nghiệm: Một số biện pháp chỉ đạo giáo dục kỹ năng sống cho học sinh đầu cấp
28 p | 778 | 213
-
Sáng kiến kinh nghiệm: Một số giải pháp nhằm nâng cao hiệu quả thảo luận nhóm trong dạy học môn Toán lớp 3 - Bùi Thị Giao Thủy
20 p | 660 | 121
-
Sáng kiến kinh nghiệm: Một số biện pháp giúp học sinh lớp 5 đọc đúng, đọc diễn cảm
24 p | 572 | 119
-
Sáng kiến kinh nghiệm: Một số biện pháp quản lý hoạt động dạy và học môn Tiếng Việt lớp 2 phân môn kể chuyện
20 p | 589 | 112
-
Sáng kiến kinh nghiệm: Một số kinh nghiệm rèn kỹ năng kể chuyện cho học sinh lớp 2 trong phân môn Tiếng Việt
11 p | 596 | 100
-
Sáng kiến kinh nghiệm: Một số giải pháp quản lý công tác giáo dục đạo đức học sinh trường tiểu học
9 p | 436 | 80
-
Sáng kiến kinh nghiệm: Một số kinh nghiệm giúp giáo viên khối 1 nâng cao chất lượng dạy môn Tiếng Việt
15 p | 613 | 74
-
Sáng kiến kinh nghiệm: Một số kinh nghiệm giải bài toán BĐT
25 p | 309 | 70
-
Sáng kiến kinh nghiệm: Một số kinh nghiệm khai thác triệt để mô hình để giảng dạy môn Sinh học lớp 7
17 p | 384 | 69
-
Sáng kiến kinh nghiệm: Một số biện pháp rèn kỹ năng học tốt môn tập làm văn ở lớp 5
13 p | 360 | 66
-
Sáng kiến kinh nghiệm: Một số kinh nghiệm dạy hát dân ca cho học sinh tiểu học
18 p | 699 | 60
-
Sáng kiến kinh nghiệm: Một số phương pháp giải phương trình mũ – phương trình Logarit
29 p | 352 | 42
-
Sáng kiến kinh nghiệm: Một số sai lầm thường gặp của học sinh khi giải phương trình lượng giác cơ bản
13 p | 298 | 29
-
Sáng kiến kinh nghiệm: Một số kinh nghiệm giảng dạy lồng ghép giáo dục dân số - sức khỏe sinh sản vị thành niên thông qua tác phẩm Chiếc thuyền ngoài xa – Nguyễn Minh Châu - Môn Ngữ Văn - Lớp 12 chương trình chuẩn
51 p | 273 | 24
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn