Sáng kiến kinh nghiệm THCS: Phương pháp sử dụng máy tính cầm tay trong giải toán 9
lượt xem 4
download
Đề tài này nghiên cứu với một mục đích duy nhất là nhằm trang bị cho Học sinh những kĩ năng cơ bản cần thiết để các em có thể sử dụng thành thạo Máy tính cầm tay hỗ trợ cho việc học toán lớp 9. Nâng cao hiệu quả hướng dẫn học sinh sử dụng máy tính cầm tay để giải các bài toán số học, đại số và các bài toán liên quan khác.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Sáng kiến kinh nghiệm THCS: Phương pháp sử dụng máy tính cầm tay trong giải toán 9
- PHÒNG GIÁO DỤC THỊ XÃ BUÔN HỒ TRƯỜNG THCS NGUYỄN TRƯỜNG TỘ TÊN ĐỀ TÀI : “Phương pháp sử dụng máy tính cầm tay trong giải toán 9” Giáo viên: Nguyễn Lê Hà Tổ : Toán Tin Năm học 2018 2019 1
- 2
- I. PHẦN MỞ ĐẦU 1. Lý do chọn đề tài: Cùng với việc đổi mới phương pháp dạy học nhằm mục đích nâng cao chất lượng dạy học, kích thích ham muốn học hỏi tìm tòi khám phá trong học tập và áp dụng vào trong thực tế cuộc sống, việc hướng dẫn học sinh trung học cơ sở nói riêng và học sinh nói chung sử dụng máy tính cầm tay để hỗ trợ tính toán là việc làm cần thiết trong dạy học. Hiện nay đa số học sinh khi đến trường học đều trang bị cho mình một chiếc máy tính điện tử cầm tay để cho tiện trong việc tính toán khi làm bài tập. Đa số học sinh dùng máy tính để tính toán thông thường như cộng , trừ , nhân , chia , lũy thừa, căn thức , …. Đối với các loại toán khác, hầu như các em hoàn toàn không biết dùng máy tính giải như thế nào, khi kết quả của bài toán có nhiều hơn 10 chữ số ( tràn màn hình) thì học sinh không biết xử lý. Mặt khác trong chương trình cải cách sách giáo khoa mới lượng bài tập nhiều và có rất nhiều bài tập cần phải sử dụng đến máy tính cầm tay. Trong khi lí thuyết trình bày trong một tiết dạy nhiều, phần lớn không được chứng minh mà công nhận là chủ yếu, các thuật toán để giải một số dạng toán không được trình bày đầy đủ; trong sách giáo khoa các nội dung về sử dụng máy tính điện tử cầm tay thường chỉ được trình bày ở phần “Bài đọc thêm”. Vấn đề đặt ra là làm thế nào để học sinh khai thác được hết tính năng của chiếc máy tính cầm tay trong việc giải các bài toán đơn giản, các bài toán có thuật toán, các bài toán có qui luật như dăy số, chuỗi …. Trong các kì thi ở cấp 3 hoặc đại học bộ môn toán, các đề thi toàn bộ là đề trắc nghiệm, nếu học sinh sử dụng thành thạo máy tính sẽ có lợi rất nhiều. Trong quá trình giảng dạy tôi nhận thấy nếu trình bày cho các em các phương pháp sử dụng máy tính cùng với thuật giải để giải các bài toán ngay trong các bài học của sách giáo khoa sẽ giúp cho học sinh hứng thú học tập hơn, tiếp cận tốt với chương trình toán đổi mới một cách nhanh chóng hơn. Với ý tưởng như trên tôi xin nêu ra một giải pháp “Phương pháp sử dụng máy tính cầm tay trong giải toán 9”. 2. M ục tiêu, nhiệm vụ của đề tài: 2.1. Mục tiêu: a) Học sinh: Biết sử dụng thành thạo các loại máy tính cầm tay CASIO, VINACAL. Biết dùng các loại máy tính trên, giải được các bài toán thuộc phạm vi chương trình toán lớp 9 từ đơn giản đến nâng cao b) Giáo viên : Nâng cao kiến thức, có thêm kinh nghiệm dạy học . 3
- 2.2. Nhiệm vụ chính: Đề tài này nghiên cứu với một mục đích duy nhất là nhằm trang bị cho Học sinh những kĩ năng cơ bản cần thiết để các em có thể sử dụng thành thạo Máy tính cầm tay hỗ trợ cho việc học toán lớp 9. Nâng cao hiệu quả hướng dẫn học sinh sử dụng máy tính cầm tay để giải các bài toán số học, đại số và các bài toán liên quan khác. a) Đối với giáo viên: Có được nội dung ôn tập cho học sinh khi lồng ghép các tiết giảng dạy với sự hỗ trợ của máy tính cầm tay và đặc biệt cho đội tuyển đạt hiệu quả hơn. Định hướng được các dạng toán cũng như các phương pháp giải các bài toán về đa thức bằng máy tính cầm tay. b) Đối với học sinh: Nắm được cơ sở lý luận của phương pháp giải các bài toán về đại số và lượng giác. Vận dụng linh hoạt, có kĩ năng thành thạo. 3. Đối tượng nghiên cứu: Đối tượng: Học sinh khối 9 Thời gian áp dụng: Năm học 2017 – 2018 4. Giới hạn phạm vi đề tài: Nghiên cứu môn lớp 9 5. Phương pháp nghiên cứu: 5.1. Phương pháp quan sát: Thông qua việc giảng dạy để tìm hiểu đưa ra những phương pháp và hình thức tổ chức dạy học phù hợp, gây được hứng thú nhằm phát huy tính tích cực của học sinh trong tiết học. Dựa vào khả năng tiếp thu kiến thức của học sinh qua các bài học trên lớp, qua các bài kiểm tra. 5.2. Phương pháp trò chuyện: Trao đổi với giáo viên dạy toán khác và học sinh để tham khảo ý kiến nhằm rút ra phương pháp dạy học tích cực và cách thức dạy học đạt kết quả cao. 5.3. Phương pháp nghiên cứu tài liệu: Đọc và tìm hiểu các tài liệu trình bày về phương pháp dạy học tích cực, cách thức tổ chức hoạt động nhận thức của học sinh nhằm tham khảo các vấn đề lý luận cũng như cách tiến hành các hoạt động dạy và học. 5.4. Phương pháp thực nghiệm: 4
- Áp dụng một số phương pháp dạy học và hình thức tổ chức hoạt động dạy và học vào một số tiết học từ đó rút kinh nghiệm để đưa ra những phương pháp dạy và học phù hợp. Tận dụng tối đa các buổi học thực hành để các em được làm quen và luyện tập thật tốt các bài học lý thuyết. Đan xen việc giải toán trên MTCT trong các tiết dạy( đưa thêm một số bài tập có số phức tạp, kết hợp nhiều phép tính,…) Giờ học thêm tại trường THCS Nguyễn Trường Tộ II. PHẦN NỘI DUNG: 1. Cơ sở lý luận: Mỗi môn học đều góp phần hình thành và phát triển những cơ sở ban đầu rất quan trọng của nhân cách con người. Riêng môn toán có một tầm quan trọng đặc biệt vì: Các kiến thức, kỹ năng của môn Toán có nhiều ứng dụng trong đời sống, cần lao động, cần để hỗ trợ cho việc học các môn học khác, cần để học lên. Môn toán giúp học sinh biết những mối quan hệ về số lượng, về hình dạng không gian của sự vật, nhờ đó mà có phương pháp nhận thức một số mặt của thế giới xung quanh và biết cách hoạt động có hiệu quả. Việc suy luận cách sử dụng phương pháp nào để tính đó là rèn luyện phương pháp suy luận, phát triển thông minh, cách suy nghĩ độc lập, linh hoạt sáng tạo và hình thành được những phẩm chất của người lao động. Việc hướng dẫn cách sử dụng máy tính bỏ túi hi vọng sẽ giúp học sinh vượt qua khó khăn trong việc giải quyết các bài toán . 2. Thực trạng vấn đề nghiên cứu: 1. Thực trạng công việc trong năm qua trước khi nghiên cứu chuyên đề. * Kết quả đầu năm học 2017 – 2018 Trong năm này tôi được phân công giảng dạy môn toán lớp 9A4, 9A5, 9A6 và 9A7 Trong năm qua bên cạnh một số kết quả đạt được trong chuyên môn thì tỉ lệ học sinh yếu, kém ở bộ môn toán còn rất cao. Dựa vào kiểm tra chất lượng đầu năm về phần tính toán chỉ có khoảng 40% học sinh có thể đổi và tính được chính xác kết quả của đề bài toán và trong đó chỉ khoảng 29% số em học sinh biết các phương pháp giải nhanh. 2. Nguyên nhân. a) Nguyên nhân v ề giáo viên 5
- Thường trong các tiết học để cho học sinh biết các quy tắc đổi hoặc tính toán, giáo viên thường không cho các em sử dụng máy tính cầm tay, kể các các bài toán yêu cầu giải nhanh. Việc làm này tốn rất nhiều thời gian cho các em. b) Nguyên nhân v ề học sinh. Hỗng kiến thức và ít thực hành, lười học bài. Không chuẩn bị sẳn đầy đủ dụng cụ học tập. nhiều em không có hoặc sử dụng những máy tính cầm tay cũ ít chức năng. Nhiều em học sinh có tư tưởng máy tính nhiều chức năng chỉ dùng khi nào lên cấp ba hoặc đi thi học sinh giỏi. Trong thực tế khi giảng dạy cho học sinh một số các bài toán đòi hỏi phải có kĩ năng tính toán hoặc suy luận ở mức độ cao và yêu cầu hoàn thành trong khuôn khổ thời gian hạn hẹp thì phần lớn học sinh thường có tâm lí căng thẳng hoặc không có hứng thú học tập, bởi lí do là các em ngại tính toán. Vì vậy để giúp học sinh tính toán nhanh và đơn giản hơn và đỡ lãng phí tốn thời gian đồng thời kích thích sự tập trung cao độ của học sinh vào việc giải toán ta nên hướng dẫn học sinh cách sử dụng Máy tính cầm tay hỗ trợ các hoạt động tính toán trong khi học. Vì những khó khăn trên nên trong quá trình dạy học giáo viên phải có sự chuẩn bị tốt, phân loại các kiến thức mà các em cần thu nhập qua từng chương để hướng dẫn các em cách sử dụng đúng lúc máy tính cầm tay. 3. Nội dung và hình thức giải pháp: a) Mục tiêu của giải pháp: *Mục tiêu: Qua nghiên cứu vấn đề này, bản thân tôi mong muốn được truyền đạt đến học sinh khả năng ứng dụng MTCT vào việc giải toán có hiệu quả hơn. Khi trình bày về vấn đề này tôi cũng rất mong được quý đồng nghiệp trao đổi, góp ý nhằm tìm ra các cách giải ngắn hơn, phong phú hơn. b) Nội dung, cách thức thực hiện gi ải pháp: * Nội dung: Sau đây tôi xin giới thiệu các phương pháp giải các bài toán trong các chương của phần đại số lớp 9 bằng máy tính thông dụng nhất mà học sinh dang sử dụng CASIO 570ES và có bổ sung phương pháp giải bằng máy tính mới nhất VINACAL 570ES PLUS II. b.1. Sơ lược về cách sử dụng máy b.1.1. Các phím chức năng trên máy * Phím chức năng chung Phím Chức năng 6
- On Mở máy Shift off Tắt máy ∆ Di chuyển con trỏ đến vị trí dữ liệu < > 0; 1; 2…; 9 Nhập các số từ 0;…;9 . Nhập dấu ngăn cách phần nguyên, phần phân của số TP + ; ; x ; ÷ ; = Nhập các phép toán AC Xóa hết dữ liệu trên máy tính (không xóa trên bộ nhớ) DEL Xóa kí tự nhập () Nhập dấu trừ của số nguyên âm CLR Xóa màn hình 7
- * Khối phím nhớ Phím Chức năng STO Gán, ghi váo ô nhớ RCL Gọi số ghi trong ô nhớ A, B , C , D, Các ô nhớ E, F, X ,Y, M M+ Cộng thêm vào ô nhớ M M− Trừ bớt từ ô nhớ * Khối phím đặc biệt Phím Chức năng Shift Di chuyển sang kênh chữ vàng Alpha Di chuyển sang kênh chữ đỏ Mode Ấn định kiểu,trạng thái,loại hình tính,loại đơn vị đo ( ) Mở, đóng ngoặc EXP Nhân với lũy thừa 10 với số mũ nguyên Π Nhập số pi o '" Nhập hoặc đọc độ, phút, giây, chuyển sang chế độ thập phân DRG Chuyển đổi giữa độ, Radian, grad nCr Tính tổ hợp chập r của n n Pr Tính chỉnh hợp chập r của n * Khối phím hàm Phím Chức năng sin −1 , cos1 , tan 1 Tính tỉ số lượng giác của một góc Tính góc khi biết tỉ số lượng giác x 10 , e x Hàm mũ cơ số 10, cơ số e x 2 , x3 Bình phương, lập phương của x , 3 , x Căn bậc hai, căn bậc 3, căn bậc x x 1 Nghịch đảo của x Mũ x! Tính giai thừa của x % Tính phần trăm ab / c Nhập hoặc đọc phân số, hỗn số, đổi phân số, hỗn số ra số 8
- thập phân hoặc ngược lại d /c Đổi hỗn số ra phân số và ngược lại ENG Chuyển kết quả ra dạng a.10n với n giảm dần suuuu ENG Chuyển kết quả ra dạng a.10n với n tăng RAN Nhập số ngẫu nhiên * Khối phím thống kê Phím Chức năng DT Nhập dữ liệu xem kết quả S − Sum Tính x 2 tổng bình phương của các biến lượng x tổng các biến lượng n tổng tần số S − VAR Tính: x giá trị trung bình cộng của các biến lượng σ n độ lệch tiêu chuẩn theo n σ n −1 độ lệch tiêu chuẩn theo n1 CALC Tính giá trị của biểu thức tại các giá trị của biến b.2. Các thao tác sử dụng máy * Thao tác chọn kiểu Phím Chức năng Mode 1 Kiểu Comp: Tính toán cơ bản thông thường Mode 2 Kiểu SD: Giải bài toán thống kê Mode Mode 1 Kiểu ENQ: Tìm ẩn số Mode Mode Mode 1 Kiểu Deg: Trạng thái đơn vị đo góc là độ Mode Mode Mode 2 Kiểu Rad: Trạng thái đơn vị đo góc là radian Mode Mode Mode 3 Kiểu Grad: Trạng thái đơn vị đo góc là grad Mode Mode Mode Mode 1 Kiểu Fix: Chọn chữ số thập phân từ 0 đến 9 Mode Mode Mode Mode 2 Kiểu Sci: Chọn chữ số có nghĩa ghi ở dạng a.10n (0; 1; …;9) Mode Mode Mode Mode 3 Kiểu Norm: Ấn 1 hoặc 2 thay đổi dạng kết quả thông thường hay khoa học. Mode Mode Mode Mode Mode 1 Kiểu ab/c; d/c: Hiện kết quả dạng phân số hay hỗn số 9
- Mode Mode Mode Mode Mode 1 > Kiểu Dot, Comma: chọn dấu ngăn cách phần nguyên, phần thập phân; ngăn cách phân định nhóm 3 chữ số. * Thao tác nhập xóa biểu thức Màn hình tối đa 79 kí tự, không quá 36 cặp dấu ngoặc. Viết biểu thức trên giấy như bấm phím hiện trên màn hình. Thứ tự thực hiện phép tính: { [ ( ) ] } lũy thừa Phép toán trong căn nhân nhân chia cộng trừ. * Nhập các biểu thức Biểu thức dưới dấu căn thì nhập hàm căn trước, biểu thức dưới dấu căn sau Lũy thừa: Cơ số nhập trước rồi đến kí hiệu lũy thừa. Đối với các hàm: x2; x3; x1; o ' " ; nhập giá trị đối số trước rồi phím hàm. Đối với các hàm ; 3 ; cx; 10x; sin; cos; tg; sin1; cos1; tg1 nhập hàm trước rồi nhập các giá trị đối số. Các hằng số: π; e, Ran, ≠ và các biến nhớ sử dụng trực tiếp. Với hàm x nhập chỉ số x trước rồi hàm rồi biểu thức. VD: 4 20 4 x 20 n Có thể nhập: x a n = a x 4 2 VD: Tính 4 Ấn: 4 4 x2 = 2 1 Hoặc 4 42 = 4 4 = 4 2 =>Ấn: 4 ( 1 : 2 ) = * Thao tác xóa, sửa biểu thức Dùng phím < hay > để di chuyển con trỏ đến chỗ cần chỉnh. Ấn Del để xóa kí tự dạng nhấp nháy (có con trỏ). Ấn Shift Ins con trỏ trở thành (trạng thái chèn) và chèn thêm trước kí tự đang nhấp nháy. Khi ấn Del , kí tự trước con trỏ bị xóa. Ấn Shift Ins lần nữa hoặc = ta được trạng thái bình thường (thoát trạng thái chèn). Hiện lại biểu thức tính: + Sau mỗi lần tính toán máy lưu biểu thức và kết quả vào bộ nhớ. Ấn V màn hình cũ hiện lại, ấn V , màn hình cũ trước hiện lại. + Khi màn hình cũ hiện lại ta dùng > hoặc < để chỉnh sửa và tính lại. 10
- + Ấn > , con trỏ hiện ở dòng biểu thức. + Ấn AC màn hình không bị xóa trong bộ nhớ. + Bộ nhớ màn hình bị xóa khi: . Ấn On . Lập lại Mode và cài đặt ban đầu ( Shift Clr 2 = ). . Đổi Mode. . Tắt máy. * Thao tác với phím nhớ. * Gán giá trị vào biểu thức. Nhập giá trị: Shift STO biến cần gán. VD: 5 Shift STO A Cách gọi giá trị từ biến nhớ: RCL + Biến nhớ * Xóa biến nhớ 0 Shift STO biến nhớ. Shift 9 3 = = * Mỗi khi ấn = thì giá trị vừa nhập hay kết quả của biểu thức được tự động gán vào phím Ans Kết quả sau “=” có thể sử dụng trong phép tính kế tiếp. Dùng trong các hàm x2, x3, x1,x!, +,, … Đối với máy VINACAL 570ES PLUS II: kết quả trước được gán vào phím PreAns ( Shift Ans ) b.2. Áp dụng và từng của phần Toán học 9 Dạng 1. Tính nhanh kết quả đưa thừa số ra ngoài dấu căn. Định hướng giải: + Đối với dạng toán này giáo viên thường hướng dẫn cho học sinh: Phân tích số trong căn bậc hai thành tích của một số chính phương. Viết số chính phương thành bình phương của một số. Đưa thừa số ra ngoài dấu căn. Bài toán cụ thể: Đưa thừa số ra ngoài dấu căn 845 *Cách giải: Nhập căn bậc hai vào máy tính 845 , Ấn phím = . Kết quả: 13 5 11
- Hướng dẫn học sinh trình bày: 845 = 169.5 = 132.5 = 13 5 Chú ý: Chỉ khuyến khích học sinh sữ dụng phương pháp này khi đã nắm rõ quy tắc đưa thừa số ra ngoài dấu căn. + Phương pháp này rất hiệu quả giúp học sinh có thể nhẩm nhanh kết quả. + Ngoài ra các máy tính casio 570 hiện nay còn có thể thực hiện tính giá trị tuyệt đối, khử mẫu của biểu thức lấy căn, trục căn thức ở mẫu,.... giúp học sinh có thể dể dàng kiểm tra kết quả. Dạng 2. Tính giá trị của căn thức: Định hướng giải: + Đối với dạng toán này trong SGK chủ yếu là những bài toán thực hiện sử dụng hằng đẳng thức để thu gọn rồi tính toán, nhưng đối với những bài toán không đặc biệt có thể cho học sinh sử dụng phương pháp sau Hướng dẫn cho học sinh cách nhập đa thức vào máy. Chú ý biến x được nhập bằng tổ hợp phím ALPHA ( . Sử dụng phím gán CALC . Bài toán cụ thể: Tính giá trị của các căn thức sau: a) 4 ( 1 + 6x + 9x 2 ) Tại x = − 2 . 2 b) 9a 2 ( b 2 + 4 − 4b ) tại a = 2 và b = − 3 . Cách giải : Sử dụng chức năng gán CALC a) Nhập biểu thức 4 ( 1 + 6x + 9x 2 ) vào máy tính 2 ấn phím CALC máy sẽ hiện x ? ấn − 2 = máy sẽ hiện kết quả 24,029... b) Tương tự : Nhập biểu thức 9A 2 ( B 2 + 4 − 4 B ) vào máy tính ấn phím CALC máy sẽ hiện A ? ấn 2 = máy sẽ hiện B ? ấn − 3 = kết quả 14,92.... Trong phương pháp này, việc nhập đúng căn thức vào máy cực kì quan trọng, giáo viên cần nhấn mạnh việc làm này. Các Ẩn được ấn bằng phím ALPHA và chữ tương ứng Dạng 3. Thu gọn căn thức có dạng A B C : Định hướng giải: + Đối với dạng toán này trong SGK chủ yếu là những bài toán thực hiện biến đổi biểu thức thành dạng bình phương của một tổng hoặc hiệu, rồi vận dụng hằng đẳng thức A2 = A . Hướng dẫn học sinh xác định các giá trị A, B, C. 12
- Hướng dẫn cho học sinh cách nhập vào máy tính.. Sử dụng chức năng giải phương trình bậc hai để giải. ( ) 2 Chú ý : A B C = x1 x2 = x1 x2 Để giải các bài toán này ta cần áp dụng hệ thức Vi – Et : TH1 : BM2 x1 + x2 = A 1 ( ) 2 x1.x2 = B C 4 1 ( ) 2 x1 ; x2 là nghiệm của phương trình : x 2 − Ax + B C =0 4 TH2 : B M2 Giải phương trình x 2 − 2 Ax + ( B C ) = 0 2 Bài toán cụ thể: Thu gọn : a) P = 3 + 2 2 b) Q = 12 − 3 15 1 ( ) 2 a) Cần tìm x1 ; x2 là nghiệm của phương trình : x 2 − 3x + 2 2 =0 4 Cách ấn: MODE 5 3 (giải phương trình bậc 2) 1= 3= 1 4 ( 2 2 = ) => b) Cần tìm x1 ; x2 là nghiệm của phương trình : x 2 − 2.12 x + ( 3 15 ) = 0 2 � x1 = 15; x2 = 9 15 − 3 1 ( ) 2 Q = 12 − 3 15 = 15 − 9 = 2 2 Nếu nhập các biểu thức này vào trong máy tính thì máy chỉ cho ra kết quả là số thập phân. Các căn thức có các giá trị A, B, C lớn thì việc biến đổi thông thường rất khó và mất thời gian, nhưng cách giải này luôn có hiệu có hiệu quả cao. Dạng 4. Giải phương trình hệ phương trình: Định hướng giải: 13
- + Đối với dạng toán này trong sách giáo khoa có rất dạng bài tập cần phải giải nhanh nghiệm như những bài toán giải phương trình, giải bài toán bằng cách giải hệ phương trình, tìm hai số biết tổng và tích, ...... + Cách giải: Sử dụng tổ hợp phím MODE 5 1 để giải hệ phương trình hai ẩn. MODE 5 3 để giải phương trình bậc hai. Bài toán cụ thể: −2 x +6y = 5 a) Giải hệ PT : 3x − y = 4 b) Giải phương trình −2x 2 +6x +5 =0 . Cách giải: a) Ấn tổ hợp phím MODE 5 1 để giải hệ phương trình Chọn vào ô a1 ấn 2 = ô b1 ấn 6 = ô c1 ấn 5 = Chọn vào ô a2 ấn 3 = ô b2 ấn 1 = ô c2 ấn 4 = 19 x= 16 Máy sẽ hiện: −7 y= 16 b) Tương tự ấn tổ hợp phím MODE 5 3 Chọn vào ô a ấn 2 = ô b ấn 6 = ô c ấn 5 = 3 + 19 x1 = 2 Máy sẽ hiện: 3 − 19 x2 = 2 Chú ý : + Ấn dấu bằng liên tiếp để hiện ra các nghiệm tiếp theo + Máy VINACAL 570 còn có chức năng gán nghiệm bằng tổ hợp phím SHIFT 6 +Ngoài ra máy tính casio còn giúp tính giá trị lớn nhất của đa thức bậc hai 19 3 y = −2x 2 +6x +5 Yvalue Maximum= khi Xvalue Maximum = . 2 2 14
- + Đối với dạng toán này, điều quan trọng là phải hướng dẫn cho học sinh xác định được hệ số a, b, c trong đa thức. +Yêu cầu học sinh phải đọc kỹ yêu cầu của đề bài là tìm biến x hay tìm giá trị. + Ngoài ta tổ hợp phím MODE 5 2 để giải hệ phương trình ba ẩn. MODE 5 4 để giải phương trình bậc ba. Dạng 5. Tìm tỉ số lượng giá của các góc: Đối với bài toán này học sinh thường phải sử dụng máy tính đối với tính tỉ số lượng giác của các góc không đặc biệt đối với các tỉ số sin, cosin, tang thì máy tính có thể tính được, có thể hướng dẫn cho học sinh như sau: Định hướng giải: Nhập vào máy tính các tỉ số sin, cosin, tang trước góc cần tính rồi ấn dấu = máy tính sẽ tính ra kết quả Chú ý: + Khi nhập số đo góc không cần ấn độ của góc. + Nếu chỉ tính các tỉ số sin, cosin, tang bình thường thì không cần đóng ngoặc tỉ số, nhưng khi chia cá số cho tỉ số lượng giác thì cần phải đóng ngoặc tỉ số lượng giác đó sau góc thì máy mới có thể tính được + Tỉ số cotang trên máy tính không có nên khi tính tỉ số lượng giác của một góc cần đưa về tỉ số tang hoặc nghịch đảo của tang. + Các số đo độ, phút, giây đề dùng chung là phím , ấn lần thứ nhất máy sẽ hiểu là độ, ấn lần thứ hai là phút, ấn lần thứ ba là giây. Bài toán cụ thể: Tính a) tan(17 036 ' 28'') b) cot(17036 ' 28'') Cách giải: a) Quy trình ấn phím : tan( 17 o ''' 36 o ''' 28 o ''' = kết quả : tan(90o − 17 036 ' 28'') b) cot(17036 ' 28'') = 1 0 cot(17 36 '28'') 1 Quy trình ấn phím : tan( 90 − 17 o ''' 36 o ''' 28 o ''' = hoặc tan( 17 o ''' 36 o ''' 28 o ''' = 15
- kết quả : hoặc Dạng 6. Tìm góc biết tỉ số lượng giác của góc đó: Đối với bài toán này phải sử dụng máy tính đối với tính tỉ số lượng giác của các số không đặc biệt đối với các tỉ số sin, cosin, tang thì máy tính có thể tính được, có thể hướng dẫn cho học sinh như sau: Định hướng giải: Sử dụng tổ hợp phím SHIFT sin( ( cos( tan( ) giá trị của tỉ số lượng giác rồi ấn dấu = máy tính sẽ tính ra kết quả đưới dạng góc là các số thập phân Bài toán cụ thể: Tính a) sin x = 0, 235 b) cot x = 1,325 Cách giải: a) Quy trình ấn phím : SHIFT sin( 0,325 = kết quả : tan(90o − 17 036 ' 28'') b) cot(17036 ' 28'') = 1 0 cot(17 36 '28'') 1 Quy trình ấn phím : tan( 90 − 17 o ''' 36 o ''' 28 o ''' = hoặc tan( 17 o ''' 36 o ''' 28 o ''' = kết quả : hoặc 16
- * Cách thức thực hiện: Giáo viên cứu tài liệu, chon lọc các dạng toán. Tìm ra các phương pháp giải dẻ hiểu ngắn gọn. Áp dụng trong các giờ luyện tập, hoặc trong những tiết học có nội dung ngắn. Đầu tiên tôi sẽ giới thiệu cho học sinh về loại máy tính, chức năng, cách sử dụng. Ưu khuyết điểm của nó. Cho học sinh nghiên cứu kỹ phần hướng dẫn sử dụng đính kèm với máy khi mua. Phân dạng cụ thể dẩn dắt học sinh tìm ra phương pháp giải cho đúng dạng toán. Để làm được điều này tôi luôn yêu cầu phải nắm vững lí thuyết và cách giải toán trên giấy. Đây là nhiệm vụ mà tôi cho là cần thiết nhất. Nhắc nhở học sinh và Tham mưu với giáo viên chủ nhiệm, giáo viên bộ môn quản lí việc sử dụng máy tính của các em. 17
- ối quan hệ giữa các biện pháp: c. M Đối với các phương pháp giải toán trên nếu giáo viên hướng dẫn tốt cho học sinh nhập đa thức với biến tốt thì tất cả các phương pháp trên học sinh sẽ giải và tiếp thu các phương pháp khác rất nhanh rất nhanh. Qua thực tế dạy – học về sử dụng MTCT để giải toán, thầy và trò cần nắm vững chu trình tổng quát : Muốn đạt được kết quả cao khi giải các bài toán đa thức bằng MTCT chúng ta cần nắm vững một số vấn đề: Tính năng của các phím, chủng loại máy, Dạng bài, kiểu bài, … định hướng đi. Các phép biến đổi, thuật toán,… Dãy lệnh cho máy. Trình bày bài làm(lộ trình đối với những bài tập yêu cầu viết qui trình hoặc kết quả). 18
- d. Kết quả khảo nghiệm, giá trị khoa học, phạm vị và hiệu quả * Kết quả khảo nghiệm. Được sự phân công của ban giám hiệu trong năm học 2017 2018. Tôi đã được phân công dạy 4 lớp 9A4, 9A5, 9A6 và 9A7 tại trường THCS Nguyễn Trường Tộ phường Thống Nhất thị xã Buôn Hồ. Học sinh lớp 9A4 và 9A7 là hai lớp học tốt, nhiều em đạt học sinh khá giỏi. Còn lớp 9A5 và 9A6 hai lớp yếu. Qua bài kiểm tra chất lượng đầu năm tôi nhận thấy về kết quả . Điểm Sĩ số Giỏi Khá T. Bình Yếu Lớp 9A4 28 8 29% 12 43% 6 21% 2= 7% 9A5 23 5 22% 10 43% 4 17% 4 17% 9A6 30 6 20% 13 43% 7 23% 4 13 % 9A7 29 9 31% 13 45% 6 21 % 1 3% Sau khi thực nghiệm đề tài tại trường tôi thấy học sinh có khả năng học toán tốt hơn hơn được thể hiện qua kết quả qua bài kiểm tra một tiết và bài kiểm tra học kỳ: Điểm Sĩ số Giỏi Khá T. Bình Yếu Lớp 9A4 28 10 36% 13 46% 4 14% 1= 4% 9A5 23 7 30% 13 57% 2 9% 1 4% 9A6 30 8 27% 14 47% 6 20% 2 6 % 9A7 29 11 38% 13 45% 4 14 % 1 3% * Giá trị khoa học, ph ạm vị và hiệu quả : 1. Đối với giáo viên Dễ củng cố bài học. Rèn luyện được khả năng tính toán chính xác và kiểm tra kết quả của học sinh. Tiết kiệm thời gian tính toán, tăng cường được thời gian giảng bài. Mở rộng được cho học sinh các bài toán có tính qui luật. 2. Đối với học sinh Khái thác tốt hơn các chức năng của máy tính bỏ túi trong việc tính toán. Rèn luyện được khả năng tính toán chính xác và khả năng kiểm tra kết quả giải bài tập. Định hướng giải bài toán nhanh. 19
- 20
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Sáng kiến kinh nghiệm: Các phương pháp dạy tiết ôn tập đạt hiệu quả trong môn Địa lý THCS
17 p | 344 | 50
-
Sáng kiến kinh nghiệm THCS: Đổi mới phương pháp quản lý hồ sơ sổ sách trong trường THCS
16 p | 340 | 22
-
Sáng kiến kinh nghiệm THCS: Phương pháp vận dụng kiến thức tích hợp liên môn trong giảng dạy môn Lịch sử - Địa lí 6 ở trường THCS
25 p | 24 | 13
-
Sáng kiến kinh nghiệm THCS: Một vài kinh nghiệm sử dụng phương pháp trò chơi vào tiết luyện tập môn Hóa học ở trường THCS
24 p | 169 | 11
-
Sáng kiến kinh nghiệm THCS: Phương pháp gây hứng thú tập luyện thể dục thể thao cho học sinh THCS
18 p | 81 | 10
-
Sáng kiến kinh nghiệm THCS: Phương pháp huấn luyện học sinh giỏi môn chạy nhanh
17 p | 73 | 8
-
Sáng kiến kinh nghiệm THCS: Phương pháp làm bài nghị luận văn học lớp 9
15 p | 26 | 8
-
Sáng kiến kinh nghiệm THCS: Phương pháp dạy học trực quan và việc vận dụng kênh hình trong dạy học Sinh học 7 ở trường THCS
19 p | 31 | 8
-
Sáng kiến kinh nghiệm THCS: Phương pháp tập luyện nhằm nâng cao thành tích môn nhảy xa cho học sinh nữ lớp 9
18 p | 86 | 7
-
Sáng kiến kinh nghiệm THCS: Phương pháp nhận biết các chất vô cơ
36 p | 28 | 7
-
Sáng kiến kinh nghiệm THCS: Phương pháp sử dụng trò chơi trong dạy học môn Hóa học ở trường THCS
15 p | 29 | 7
-
Sáng kiến kinh nghiệm THCS: Phương pháp dạy học, khai thác chất nhạc trong thơ cho học sinh Trung học cơ sở
12 p | 9 | 6
-
Sáng kiến kinh nghiệm THCS: Phương pháp giảng dạy và huấn luyện chạy cự li trung bình, dài ở trường THCS
17 p | 43 | 6
-
Sáng kiến kinh nghiệm THCS: Phương pháp dạy một bài ngữ pháp dễ hiểu
14 p | 18 | 5
-
Sáng kiến kinh nghiệm THCS: Phương pháp dạy một bài viết hiệu quả
15 p | 20 | 5
-
Sáng kiến kinh nghiệm THCS: Phương pháp giải bài tập Nhiệt học 8
15 p | 18 | 5
-
Sáng kiến kinh nghiệm THCS: Phương pháp giới thiệu ngữ liệu mới đạt hiệu quả cao
19 p | 36 | 5
-
Sáng kiến kinh nghiệm THCS: Phương pháp giảng dạy bài âm nhạc thường thức lớp 6: Sơ lược về một số nhạc cụ dân tộc phổ biến
10 p | 41 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn