i{.-i ' i'.i:,}P"./' i. i
BO GrAO DUC VA DAO TAO * HOr TOAN HOC vrET NAM
RA HANG TUAXC
q
ac
4
?
a
4
+.1 -
"-.--
--!--.
7
0-3 At!'?t
;* wffi F{#T ffiNr{ €HffiT Ttr{tr rf$ (ffiffi ffiilffiffi w{roNffi m xAy DIJNG e0ruCI TF{uc rfrurt nQ nru TRUnTG TTJyEN M UwE DUI\tg n Cf cytfiy nywr E ror Wy m BlilH ffGHIffi B Bu#$rs (ffi${r( Trqoffie ffimT prlfirss BFr$* m BE rHt QU0G SIA SH$r.I H$C Srr'Ilt Gror rm $ obd/tl x,g@ lsss - tes6
cDodn ngdj sinfi Xac dinh tam duon6 tron
NhCrng doy s6 ki lo
Ldp 12T bddng chuyAn LA Khidt, Qud.ng Ngdi ndm hoc 1995 - 1996
ToAN HQC VA TUbI TRE MATHEMATICS AND YOUTH
MUC LUC
Trang
o Ddnh cho cric ban Trung hoc co sb.
1
For Lower Secondary School Leuel Friends LA Qudc Hd.n - Vd mQt tinh chdt tht vi ctia hinh vudng.
e Gidi hdi ki trudc
Tdng biAn tdP : NcuvsN cANH roeN Ph6 tdngbi6n fiP : NGO DAT TU HoANG cIlfNG
2
Solution of Problems in Prouious Issue Cdcbdi eias6229
c Db ra ki ndy
8
nOl oOruc etEH rAP :
e D6 Nhu Ngq, - Xdy dung c6ng thrlc tinh
I
dO dai trung tuydn tam gi6c
c Dinh cho cric ban chudn bi thi vdo dqi hac
For College and UniversitY Entrance Exam PrePaPers
o Nguydn. Thanh Giang - Uttg dgng tich phin
10
tinh gi6i h4n
o Nguydn Tltrtc Hd'o - Dlnh nghia 3 drrdng c6nic
12
trong m[t phing a{in
o Nguydn Htu Thd.o - Dd thi qudc gia chon
Problems in This Issue Tu233,..., T10/233,LU233,L21233
o Gidi tri todn hac
Nguy6n CAnh Todn, Hodng Chring, Ng6 Dat Ttl, LO Khdc BAo, Nguy6n HuY Doan, Nguy5n Vict Hai, Dinh Quang HAo, Nguy6n XuAn HuY, Phan Huy KhAi, Vfl Thanh Khidt, L0 Hai Khoi, Nguy6n VEn M{u, HoingLO Minh, NguY6n KhSc Minh, Trdn V6n Nhung, Nguy6n Ding Phdt, Phan Thanh Quang, Ta Hdng QuAng, Dang Htng Th5ng, Vr1 Duong Thuy, Trdn Thdnh Trai, LO 86 Kh6nh Trinh, Ng6 Vi6t Trung, D+ng Quan Vi6n.
Fun with Mathem'atics .Binh phuong - Gi6ri d6p bdi : Do6n ngdLy sinh Bia 4 Va Kim HuQ - X6c dinh tdm dtrdng trbn Thanh Tud.ru - Nhirng deY s6 ki 14.
"- --'
- DT: 8213786 BiAn tQp uit. lri sy: vu KIM THIrY irirn oav , QU6c sbNc
Trq. sd tda soqn : 45B Hlrng chu6i, Ha Noi 2Bl Nguy6n vrn Cil:?;'h Chi Minh DT: 885G111
hoc sinh gi6i tornn ldp 9 ntrm hoc 1995 - 1996 14
Ddnh clro cdcbgn fH6
,\l
u( ful
ryrT[rrytt ffimTTtt$u$ c*m ,m]]*Huu0r$G
lE oudc HAN (Nsh? An) tll
Trong srich gi6o khoa hinh hoc l6p 8 dE n6u l6n c6c tinh chdt co bAn cria hinh vu6ng. Trong bni brio niy, chring t6i xin n6u th6m m6t tin[ chdt khric ctia hinh vu6ng vd c6c rlng dung phong phri ctla nri.
tY
P unns
Gi6i: Goi P t Ii didm d6i " xingciaMqua 0 o thi P thu6c canh BC. Tt N k6 NI{ t MP vit l6y tr6n dudng th8ng NI/ m6t didm Q sao cho NQ = MPthlQ, thu6c eanh AO (xem hinh 3). ,A Gqi ^E li didm d6i xrlng cria Q qua O vdl ld chdn dudng vu6ng g.rg ha tit O xudng EN.Ldy B vd C tr6n dtrdng thing.EN sao cho : .IB = IC = IO.Ldy A vd. D ddi xrlng v6i C vi B qua O thl ABCD li hinh vu6ng phAi dung.
tlPc' Illnh 1
K6t qu6 sau d6y li su tdng qu6t htia cria bii
Bhi torin I z Cho hinh uu6ng ABCD uit. cd.c d:6y M, N, P, q tuong ilng tr€n cd.c dudng t!*"19;,1.c; A r,t fi CD, DA, ChTNg m.inh rd.ng : MP = NQ khiudchi K khi MP.r NQ. Gi6,i: Dd chrlng minh ta ,A K6 MH II AD, NK ll AB rdi chrlng minh hai 0 tam giric vu6ng MHP vd NKQ bing nhau (xem hinh 1).
to6n 1.
BAy gid, ta hiy 6p dung kdt quA crja bdi to6n
1 dd giai crnc bii to6n sau :
Blri to6n l' : Cho hinh chit nhet ABCD c6 AB = a, BC = b ud. cd,c didm M, N, p, e nd.m tr€n cd,c duimg thd.ng AB, BC, CD, DA. Cfulng ruinh MP a NQ khi utr. cni nhiffi:I
Blri to6n 2 z Cho hinh uu6ng ABCD eanh bdng a ud. mQt didm M chuydn d.6ng ffAn canh BC. Phdn gid.c crta g6c DAM cat CD tqi N.
Chtng minh AN < Z . MN. D&ng thtte xa.y I
ra hhi ndo ?
Chring minh bii to6n 1' tuong tu nhrr crich chrlng minh bni to6n 1, xin dinh cho ban doc. Blri todn 4z Chofi giacABCD. Dung hinh chit nhQt MNPQ ngoai tidp fi giat ABCD d6, bidt tt s6 crta hai canh hb nhau bd.ng h (k td, s6 duong cho trudc)
/Y :.,I
D
1
Iltnh'2 1, ttAN t Ml,tacd AN = MI =
^,IH
a
fc
Htnh 4
Gi6i: GiA A, B-,9,D theo thrl tg nim tr6n c6c cgnh MN, NP, PQ, QM (xem hinh 4) " vd,MN1NP = ^ K,KAAH T p DB, AE k6o ddi cdtPQ tei E thi theo k6t
quibiitodn 1',tacdffi = ffi= f nenFhoen todn x6c dinh, tr) dri xdc dlnh dugc c6c dinh cria hinh chfr nh |MNPQ.
Giii: Dudng th&ng kd tr) M vu6ng gdc vdi AN citANtaoH vi cdt drrdng thing AD tat L OGq hinh 2) S DAN = NAM n6n NH=HI=;AN . Theo bdi to6n > Z. MN. D&ng thtlc x6y ra khi vi chi khi ff = tf <+ CM = 7@ DN = alL).Ban doch6ychrlngminh ta! q9{ 1-ay (Dua vdo su dong d4ng crla c6c tam $6e ADN, NCM vd ANM). - BAi todn 3 z D4tng hinh uu6ng ABCD bidt ui ti tam O cila hinh uu6ng uit. ui-tri hai didm M, N theo thtl ttt nd.m, tr€n hai cgnh AB uit. BC.
(xem ti€p tang7)
l,l
tsdi TZl22g. Tim nghiQm. nguYAn cia
phuong tinh
x2 +f +i +f :27144a
Ldi gi6i : .c:iua Nguydn Hdi Hd,9b, Chuy6n
BidiTVzLg Cho x > 0, ! > 0, z > 0 Chilng ntinh (xyz + D (;++).:.; +L > x *y * z * 6
Thay x2 = 122 vio phttong trinh ta thdy
Van - Torin Ung Hda, Hd TAY. x2 +F +xa +f = 277440 (t) +x27x2 + 1)(x + t) = 24 .92 .s . lg . _29 Tt (1) ta suy ra ngay nghiQm r phAi I6n hon L vd x2Id udc chinh phttong ctra 271440' Cdc rioc chinh phrrong ctiZlt{qo c
\r-'yl
* (* + tl(6+ 1) < 122 $22 +D $2+1) = 27L440
,v,,x,
+ -) > 2x.
Dd.ng thtlc xd.y ra khi nin ? Ldi gini : (c{ra b4ri' Nguydn Hoqch Tnic Sinh, 8A. Qu6e hoc Quy Nhon). Ta cti vdtrr{i li A = ( nrf\+ /rv+I\ + (xzf\*! *+.+ \ zl x y z \--r' xl z Ap dsng bdt ding thrlc cQng ta a Y * i ' 2z , (xt *;) .- 2t , \xz
1
z
drfongv6ir=Y:z=1.
phuong trinh dugc nghiQm ding x21x2 +111x+1) = 122 $22 + 1) ( 12 + l) = 271440 YOix2 : (23)z = 62 tathdr
-:
VQyr : 12ln nghiQm duY nhdt. Nhin x6t : Hdu h6t cac ldi giai grli ddn d6u dring. Song ldp lufn ddi dbng. C6c b4n au dAy cO tai giai t6t : Hlr B,6rc : Nguydn Danh. Nann, Nguydi Hilng Cuitng, Trd.n Thi Hd Phuong, 9T, NK BEc Giang. Lho Cai : Nguydn Hbng Quang. Vinh Ph6 : NguYdn Dtc Minh, 8A, Chuy6n Tam Dtro ; Hd.Vd.n Son, 9T, ChuY6n Phri Thq. H}r Tey : D6 Anh Tud.n,9T, Thudng Tin; Nguydn. Mq.nh Hd, 9K, La Lqi, Hd' DOng' HDr NOi ; Diling NgQc Son, 9CT, Tit Liam' Qu6ng Ninh : Etrt Ann Dtc 8A, TD Uong Bi' Hii Phdng : D6 Thity Chi, 8Ar, Hdng Bdng' Ttranh H6a : Hd. Xudn Gid.p, 6Tr; Hoit'n'g Thi Hd, Hd Thi Phuong Thd.o, 8T, IIK gim Son. I0r6nh H6a : BitiThanhMai 9T, L0 QuyD6n, Nha Trang. TP Hd Chi Minh : Nguydn Cd'nt Thgch,8r, HdnBEing, QuQn 5,.
rd NcUYEN
BAi T3/229 " Gidi Phuong trinh :
@ -sr+2)(x2 * 15x *56) +8 = o
VOyA > ?'x +2y + 22 ** *1 +L = x I Y * xyz l, , , 1. 7, z+ (x *;) * (, *r) + (z +;) r,1y*z*6. y;, r, =!, Ddu bing xAy ra khi vi ctri kfri *y = '-, " =1. ,ru' niry tuong Nhan x6t : Bii to6n niy drrgc hing tr6m ban grli ldi giai d6n. Tuy6t d4i da s6 giAi dtng, batt nhtr tr-on. Chi cci mQt s6 it ban ngiriggn, Dinh giei h-i dii. Trong sd nhi6u ldi giei tdt c6 fuam Duong 9A NghQ An., Le Anh Tho,9-A Thanh H.6a, Trd.n NguY€n Thq I Hh Tinh, Nguydn Viet Hd 9 Hh B6c, D-d lhity Chi 8A H-ai f nang, Trd.n Luu Vd.n 8C Ngqc t>am, Bt4 Thanh Hilie 9H HA NOi, Yd Anh Tud.n,9T, Quing ginh, Nguydn. Tud.n. Trung 8T HII EA", Nguydn Thd.i Soz 9! Thanh H5a, Ngiydn"HiyVu, ST Ninh Binh, In lnhVinh sil, Ha, N[i, rvguydz Dtc Hdi 98 Vinh Ph(r,. Nguydn Thi Thi.FIa 8A Quing Ninh, La Thd fnd:ng 8H Hn NOi, Ld Trung Ki€n 9T }Jt6, Dinh-Trqng Quang 7C Hn NQi, Trdn Tq Dpt 8A, Ha NOi, Ha Thu Hibn Y6n Bdi'.'
B4n D6 Nggc Dtlc (6H Trttng vrronglld NQi) de phrnt bidu va chrlng minh bii to6ntd-ng.qu6t sau : Cho tu >- 3 at, an > 0. Chrtng minh ring
I'
,1
*
a2 %..*,+ al
a3
(at...an+l) (-+...*4) &r,
1 I ...
+
* ----:-- 7 ar* ...
d1..an_2 a2... an-l
"o
LA,i giai. Ta cci :
@2 - s, + 2)(x2 * 15x * 56) + I =
=x4+12f+fi*-fiBx+120=
= 1x4 t of - ts#1 + @f + 36P - eo) -
- (8r2 14Bx - 120) = x21x2 + 6x - 15) +
* 6x(x2 * 6x - 15) - 8(x2 * 6x - 15) =
= (x2 * 6x - 15\(x2 + 61c -8) = (r + 3 - 2r[6)
(r +3 + 2\[6)@ + 3 +{17) : o. vQY
-Phuong
irinh c6 4 nghi|m. lit. : x1= -3+2'[6;
xz = -3-2r[ 6,' rs = -3 + {I7 ; x4 : -B -'ln '
Nh$n x6t. C - 2 a4... anal
*an|2n. oANc suNc ruANc Nguy6n Hrru Quy6n (Vinh Ph(, 9T Chuy6n
Phri Tho), HdVdn Son (Vinh Phrl, 9T Chuy6n
Phri Tho), Nggc Bich Phuong (Tidn Giang, 9
Torin NK huy6n Cai LAy), Le Chi ThAnh (Hu4
9I Nguy6n Tri Phrrong), Nguy6n Hoach Tnic
Sinh (Binh Dinh, 8A Qudc Hgc Qui Nhon),
Nguy6n Minh QuAn (QuingNg6i,9T Chuy6n
Nghia HAnh), Nguy6n Hoing Chrtong (B6c
Th6i, 9 To6n THCS Ntrng Khi6u Tp Thrii
Nguy6n), Trdn Ngoc Cudng(Tp Hd Chi Minh,
BT, Nguy6n An Khuong, Ho oANcvrEN (Khr{nh Hda, 8 To6n L6 Quy' D6n, Nha Trang),
Nguydn D6 Thdi NguyAn (Vinh I.ong, 9T,
Chuy6n Nguy6n Binh Khi6m, Tk Vinh Long[
Ng4ydn Hbng Quang (Tx Lho Cai), Nguydn
Khanh Linh (Ha NQi, 9c THCS Ngoc LAm, Gia
L6m), Hdn Minh Trung (Thanh H6a, 6E
THCS Nang Khidu, Tp Thanh H6a),Vtt Mqnh
Cudng (V[nh Phti, 8A Chuy6n CII Tam DAo),
Dinh Trqng Hilng (Virng Tdu, 9T LO Quy D6n,
Tp Vung Tdu),'Nguydn Cd.nh Tod.n (Iuydn
Quang, 9 To6n Nang Khi6u Le Quy Ddn), ?a
Xuyan Hung (Y6n Bdi, 9T LO Hdng Phong),
Nguydn Ngoc Quang (Hi NOi, 9H THCS
TrungVrrong),Ld.m Manh Truisng (Cao Blng
9A THCS Hop Giang, Tx Cao Bing)./. BdiT4l229.Cho tam gidcABCu6i cdr cqnh
a = 5 ; b = 6 ; c = 7- Tinh khod.ng cd,ch gitta
td.n dutmg tritn nQi tidp uit. trqng tAm cfta tam
giac d6. Biri T5/229 : Tran mQt ph&.ng cho g6c xOy
c6 dinh ( xOy = 600). MQt tgpl Ldi gi6i vin
t6t: Gqi Mrld,tdm
vbng trdn ngo4i ti6p
LOAB, M) ld trung
didm cta -cung nh6 a
AB ct&a drrdng trdn
dd. Dd tim tAp M ta
cdn tim tAp
{MJ u {M2}. oANc vrEN Ldi giai. Gqi M
lA trung didm cria
AC vd G li trong
tinr tam g16c ABC,
ta c6 G nim tr6n
doat BM sao cho
GM:GB=1:1(1).
Goi O ld tAm drrdng
trbn n6i tidp tam
$ec ABC vi I lBr
giao didm clfr'a AC
v6i tia BO, AO lA cric ph6n giric clioa cdc g6c
tudng (tng ABC, BAC. Ap dung dinh li v6 tinh
chdt drrdng phdn gi6c (hinh hqc 8), ta cri ; (O, a) (6 ddy OM' t Oy, OM" t Ox OM'l,Jtflcphiavdi Oy so vli Ox OM" khrlc phia Ox so vdi Oy). 21 b) Tap {Mz} la
do4n MrM, trong dci
Mp M2 thuOc phAq
gtr6c Oz c$.a g6c xOy,
OMt - a, OMr= to,.
VOy tQp @didm
M ehinh ld. M'M".\)
MrMz' Nh$n x6t:
. MQt sd bpn chi tim drroc 1 trong? t4p Mr ho1cM, o C6c ban d6 giai t6t bii ndy :
Vinh Phri : Mai Thu Thd.o, Ilit.Vd,ru Son gT
Chuy6n Phri Tho, Nguydn Trung Lqp, 88
Chuy6n Vinh Lac. Hlr Tay : Nguydn Manh Hd, 9K', THCS Lo IABATIAIATT
IC: BC: E- AC= IA+rc= b+7 = 12'
YQy IA: 1AC :"L2 = 3,5. Vdi phAn gi6cAo,
. u Ar 3.5 1._ __
talarcd, OB=M= 7 :rQ).K6thqp(t)
v6i (1), ta cd GO /i IM (dinh li Tal6t dAo). V6y :
OGBG222
IM: B*: t, hay OG =1r*:; (IA_AM) =
= 5 (3,5 - 3) = I, ve khoAng e6ch cdn tim
i^1rdo'
d
Nhan x6t. Cd 96 bai giAi trong dcj crj 5 bdi
giAi sai. Nhi6u bdi trinh bdy dni ddng cri bdi
dtroc trinh bdy hdt bdn trang grdy ( !). Dec biet
cdban Hdn Minh Trunghgcldp 6E THCS Ndng
Khi6u Thdnh phd Thanh }jr6a c6ldi giAi tdi
cirng cric b4n sau ddy : Trdn Tdt Dat (He NOi,
8At PTCS Chu Vdn An), Trdn Thi He (Thanh
f,tr6a, B Torln Irlang khidu Bim Son), Phqm Thinh
NSU (Vinll Ph6, 9A, NK thi xa Vinh Y6n), Lqi, Hd D6ng. $t a) ?4p {Mr} :
Tgg2 OM, = M)A:' BM, - a.
MpA ( 90o, MrOBag0.
+M, thu6c cung nh6 M'M" cria drtlng trdn q6 Suy ra ring o = b. Vay Hmr. tdn tai. - Hdi. Her NOi z BiLi Mqnh Hitng, 9H Trung
Vrrong, Nguy 6n Minh COng, 9A Cflp II YOn Hba,
Tt Li6m.
Thanh H6a : IIiLn Ngqc Son, 8E Ndng
khidu Thi x5,, Cao Xudn Sinlt, 9T Nga Li6n,
Nga Son. Chuy6n Nghia Hinh, QuAng Ngei. TP Hd Chi Minh z Ch_uy.g Nhd,n Phti, STr Quing Binh : Trd,n Chi frdo PTNK D6ng
Quing Tri z Nguydn Hitu Nghi, gTL
Quing Ng6i : Nguydn Minh Qud.n, 9T,
Kh6nh Hda : Bil.i Thanh Mai, 9T, Va ThY
Dung Hba, Trd.n Tud.n Anh,8T, Le Quy D0n,
Nha Trang.
Nguy6n An Khuong,ro" *i*.*rMrHty Chuy6n L0 Quf Ddn. BidiTsdzg Cho dau s: { *n} tnao md.n L < Chri ), ringr,, . i,r"do dci a +b < | = S'
b) Trrong tU ndu r, ( r, t4.cring cri limrrrtdn
tai. Gqi gidi han ldA. Ta c6 A = t + a -* -
A={2.
Nhfn x6t : C6c b4n sau cd ldi gi6i tdt :
Neuven Ti6n Drlng 11 la NA-qg, Nguy6nPhric
Xfiairn 11 HAi Hung, Trdn Nam Dung 11CT
Neh6 An, Lo Hdnelia Vinh, D4ng Htru Thg,
Binh Dinh, Nguy6n Anh Hoa 11A Nant Ha,
Phan Anh fiuyliOa N6ng, Ph4m V-en Du 11
Thanh Hda,-Ddo Ngoc LuAn Hh NQi, Trdn
Hfru Luc 11 6uinE BInh. Cd khd nhi6u ldi giai
sai, kh&ng dirin aaf {rn} li tdng vi bi chen hoec
chrlng minh gi6i han ld i. oANc HUNG rnANc. tq.c ffan'
[0, 7], c6 dao hd,m trong (0, 1) uit. f(O) = f(l) =
0. Chilng ntinh rd.ng tbn tai mQt s6 c e. (0, L)
sao cho f(c) = 1.996f'(x). *r< Zud.xn*r= I +sn =Zoo > 1. Chtng minh
rd.ng day {xn} n\i fip uit. tim gi6i hqn c&a n6.
Ldi giAi: C6ch 1 (cria b4n Nguy6n Minh B,di T71229 : Cho hd'm sd f(x) li€n 3-(xn-l)2
Ta cd : rn+l" =
z
Tt dd bing quy nap d6 thdy 1 < xn < ZYn 1 ,l HOi hdt ludn cfia.biti tod'n c9 thary d6i hhdryg
ndu f(0) = f(1) = m,'udi m lit sd th1c khat 0 cho
trudc ?
Ldi giai : (cria La Quang Adry, LlCT -
DHKHfN - DHQG TP Hd chi Minh) ; cao
Thd Anh,11CT Qudc hgc Ilud ; Truon-g Vinh
Ld.n, 10CT PTNK Quing Binh ; N guydn N gsc
Phtic,12I PTTH sd 1 Dtlc Phd - Qunng Ng?-r ;
Trd.n'Ti,dn Dfi.ng,11T PTTH Amsterdam, Hh
NQi Trinh Httu Trung, 11T - LrT Son -
flranfr H6a ; Nguydn Tidn Dung, Phan Anlt.
Huy, LlA1, 12Ar PT"itI 1.6 Quf Don - Dn N6ng) : > 1. Khidd
l*,*r - ,lZl=;l(B - (%-1)1- G - (rl7-t;;21
= i.lr, - {Zl I ,[i - (2 - x,1l (1)
M 0 1 2 - *n < r/7 do dd_tt (1) suy ra lrn*, Suy ra 1 -_, T:2 1 - rlTl . *r*, -,-z1,{, = fr' t *n -,[21
lr"-rlzl . (#)'-' lxr-,El
' Vi lim (U^)"-' = 0 n6n suy ra lirnr,, = {2
Cdch 2 (ctra ban NguySn Nggc Hrtng 12?
Thanh Hda). Bingquynap d6 thdy I < xn< 2.
X6t hdm s6f(x) =- 1 *r - i.6 f'(x) = 1 -r < 0
Vr €
(1, 2) vhy fk) nghieh bidn trong (1, 2). Do dti
a) N6ur, > r, thiT'(r1 < flxr)'*xr< ro tidp tuc
nhrt vAy ta cd x, > x3 > x5 2 ...vd r, ( ,+ ( ...
Thnnh thtt hai d6y {rr*} vd {rr1* 1} hOi tu vn giAsito=limrr* b = limrru*r. .b2 qua gi6i h4n ta c6 a = 1+b - ,
b = l*a-T X6thim s6g(x) = ets%.f(x)x6cdlnht€n
[0,
11. Tt cdc gshthi6t d6i v6i hdm/(r) suy ra him
g(x)lilntgc trOn [0, 1], cd d4o hdm trong (0, 1)
"u S(O) = g(1) = 0. Bdi th6, theo dinh Ii
(0, 1) sao chog'(c) = O (l).
Lagrdng, tae6 :3c €
-xrlr
Md,: g'(x) = eGG L/(,) - re%/(')i vr e (0, 1), vd
-x
(0, 1) n6n tt (1) ta c6 f(e) -
ets% + 0 !r €
ir*- f(c) = 0hay f(c) = 1996f (c). (Dpcrn)'
Klii thay di6u kiQn f($ = flt) = 0 bdi di6u
kiQn 1'(0) =-fl1) = m (rn + 0 cho tru6c) thi k6't
lufn cta bdi torln s€ kh6ng cbn dring vdif(x) lit
him bdt ki th6a mdn di6u kiQnf(x) li6n tuc tr6n
[0, 1] vA c
*(a- b\(a+b - 4) = 0. 4 Phrrong 10A Hnng Vtrong Pht Thq). BAi Tgi229. Goi AA1, BB tlit hai dudn"g cao
cila tam giar nhgn ABC, M-uit M lh.n tuqt ld,
trung didm, crta cdt doan th&.ng AB ud. ArBr.
Duimg thd.ng CM c&t lai duimg trbn (ArBrC)Z
T ud, duirng thd.ng CM, cdt tgi duitig-trdn
(ABC) d T, Ch&ng mini rd,ng Trddi xilng u6i
T qua duimg th&ng AB. 2" Ngodi cdc ban dE n6u t6n trong phdn Ldi
gSdi, cac ban sau ddy crlng cd ldi giAi tdt : Lfirn
Ddng : Phan Thanh Hdi (l2T PTTH Th6ng
Long) ; Qu6ng Binh: Trb,n Dilc Thudn g}f
PTTH Ddo Duy Tt) ; Thanh Hria : L6 Vdn
Cuimg (11T' PTTH Lam Son) ; I.{am tl}r :
{€"y6? 7a1Q Hoa (11A PTTH L6 Hdng
Phong) ; Hn NQi z La Tudn Aruh (12ts PTCT:
DHKH?N, DHQG HN) NGUYEN K}IiC MINH Bhi T8i229. Tinr cd,t cd. cd,c sd thuc a > Z sao cho n t (1) t,
G_tz\dt
,t
|
'
-_
to#*at2+L 8 v- AB.M ; (1) vn do dti : AA Ldi giAi 1.
(Dtta theo ldi
gif,i cta Trdn
Tdn D4t, BA,
Chu Van An,
He NQi). ViAr
vd Br nim
tr6n drrUng
trbn dudng
kinh AB, tdm
M, n6n ta
drrgc : CArBr =
AtBrC - ABC; (2) 2-, (Ki hieu .^ chi ring hai tam gi6c nly ddng
dang nghich ('ddng a?ng nhtrng rlrq" hriOng)).
Lai vi 7 nim lrg\dudng trot u ,(ArB rC), n6n cri : (3) cArBr- CTBL, Tt (1) vd (3) suv ra : /'--1- -->i\ o . _.----- ^ _..---\ Giii (cria da sd c6e ban),
Dat r : -Y ^ thi dx - 2(l - P)dt
l+tz
(L+t1z
trqt-t21at 1l
Jot4+"tz+t=rl r*+*=
1
,rE4
:warclg-
Suy ra (l) <+arctg? : tr, Q)
v6iu =Y,
X6t hdm s6 f(u) - aretgu - i" , u > O.
Ta cri f(u) =
= Q<+4: -[; f'@t 1*u2 4
x--r - - MABr= CTBlvidoddA, M,T,Brcing
thu6c m6t drrdnE trbn : tt dri :
:---\\. /:
MAT = MB.T, hayli: BAT: MBrT; (4)
- Dttdng thingMtsrld tiSp tuydn tai B, cria
dqg trbn3lQ!,BrO va B!9,
MB{ = B:CT, hay ld : MB:T = ACM ; (5)
AA
Tt (2) suy ra CAtMz- CAM vi do dci :
-..,-\ _..,.-\ ^
ACM = MrCAl= T:CB
(G)
Cu6i cirng, vi ?, nim tr6n dr.rdng trbn dx (7) TrCB = TrAB
Tt (4), (5)r(Qva (7) suy ra : (8) BAT = T"AB u(ABC), n6n lgllrroc I .--.- (9) TBA: ABT, A,a V{y phggna trinh (2) cci nghiQm duy nhdt a Z),'qJ _ L :l.havrla=Z-laas-g.
2 Nhan x6t. * Ta thdy bni ndy thirc chdt lA bdiTglz2v. + CAc ban grli bai giei d6n d6u cho drip sd
dring. C
Tt (8) ve (9) suy ra : ABT : ABf vi do dd
?, vi ? d6i xrlng vdi nhau qua drrdng thEngAB
(d"p,c.m.). (Kt hiqu ; chi ring hai tarr gp6c
*{!iu*a'u{t?tf
$}1?"1'$?fl ,lff ghhb?#J;
11CT, Phan Bdi Chdu, NehQ An vi mQt sd ban
khrlc). 9o.! fz lir grao didm thd hai cria dudng
thing CM vli dudng tfinu(l&gL Cflngchfn!
minh nhutr6n, vi CMviCMi lihai trungtuydn xcuy,ru vAN naAu Chrlng minh tuongAta dtroc : tu.ing rlng cta hai tarn giSe ddng dang (ngh!ch)
ABC vb,ArBrC, u6n ta drrgc (6), cring trlc li : hay lA: , " *<*o + GB + GC + GD)z; {2)
M{t khric, ta la. i cd (theo bdt ding thric R2 - ocz {GA+GB+GC+GD)x vd ta dttgc : AT, = tsTz, BTL = ATz
(10)
M4t kh6c, chfng rninh ttlong tg nhu (1) ve
(3) 6 trcn, ta di ddn kdt luQn : MArldtifp tuydn
d A, cdra dudng trbn u L(A.B rC) vd do d
hfc.MT = M*l = MA.MB = MC.MTz {=
!fuIlur(ArBrc)). Tn dci suy ra: MT = MTz, da
ddf:ATF lh mOthinhbinhhinh vivi vdy:B?,
= AT vdATz = 8?; (11). " (# ** * ;e .fi1 ,,u (B)
TU (1), (2) ve (3) ta duoc (*), d.p.c.m.
Ddu ding thrlc x6y ra khi vdL chi khi : GA =
GB = GC = GD (= E), nghia li G : O,vdt$
dtQn ABCD ld gdn d6u (Cti thd chting minh di6u
nny blng phuong ph6p v6cto). Tt (10) vd (11) suy ra : AT, = AT, BT, = al A
BT, do i6'ABT : ABT vi ?1 = DAB(?). 20) B?n Phirng Drlc Tudn, ldp 10 -CT NhSn x6t : 10) Nhi6u ben nh0n xdt ring,
bdi torin ndy chinh Ie bai i'ndn T51211 cho
PTCS, dd ding tr6n t4p chi THvTT sd 211 ra
thring 0U199f (chi cd thay ddi cdch ph6t hidu
d6i chiit). Nhan x6t : 10) Kh6 d6ng c6c b4n tham gia
giai bei to6n tr6n vd d6u cho ldi giAi dring; tuy
nhi6n mQt sd b4n trinh bhy ldi giAi cbn rrldm ri'
PTNK
HAi Hrrng vA ban-Trdn C Hi, l6p 11 CT, PTNK
Ddng H6i, Qu&ng Binh da d6 xudt vd cho ldi
giAi -dfng bni todn tdng qurit hdn : "N6u G le
Irgng t6ilr cria h0 z didrn- {e,1i = 1,2,...,n)}
nim tr6n m4t cdu (O) vi cric dudng th&ng
AiG cfit lai (O) 6 A',i Q : 1,2, ..., n), thi ta cd
B.D.T. sau:
nll i=l 2") Ta vdn^cd k5t quA nhrt tr6n khi tam gi6c
ABC cd gde C tt. That vdy, st dgng g " Nhu vay, gla thidt tam g76c ABC phAi nhgn
ld kh6ng cdn thi6t, chi cdn gie thi6t tam gi6c
ABC kh6ng vu6ng d C mi th6i (dd At* B t).
NGUY6NOANCPU T , Hudng d6n girili. Phuong trlnh dao dQng Zce"rZce, ). Ddu d6ng thrlc d4t
i=r
duoc khi vh chi khi c =*0 uvEN oANc pn{r
B,diLllB?,g.M|t con ld,c ld xo c6 kh6i luqng
m = 200g ud dao d.Qng bdi chu ki T = 2s. fqj,
thdi di{m [ - 7s- con lfu c6 uLn t6c
u = -25,{2 n . L0-3 mls uir cd thd nang
wt = !25n2 . 10-6 J . Hd.y uidt phuong tinh dao
d,Qng cila con ldr ud. tinh ndng luong eila n6.
di6u hba ed d4ng ,,lt BAii Tl G/229. Gqi G ld. trqng ffi.nt efia til diQn
ABCD, nQi ti6p ntQt c&.u (O). Cd.c dudng thd.ng
AG, BG, CG uit DF cd.t lq.i (O) theo thrl ttl d
AyByCruit. Dr. Ck*ng ruinh rd.ng :
GAl+ G.ts1+ GC1+ GDr> GA + GB + GC + GD Prz ---t, xt
- -
4 . A = bcrn; g=
(cur). Lei giai. (ctanhidu b+n). GoiE laba- klrl
rn{t cdu (0), ihi ta cd : GA.GA. - GB.GB, =
- GC:GCr= GD .GDt=@l(O) - R2 -OGz
Do dd ta dugc : kN marZA^2 ,1 1 1 r =Asin(arf +g) (L), vdi o: , =tt vd
h=maT. Tir di6u kiQn da cho r= -2$[Z ru.10-3
m/s vi W,: 7 = l\1ttz ' 10-6 J, thay vio (1),
giAi ra ta drrgc
lt\
t
f = bsrn \", 'A
)
Nang lugng
w=wa+llrr=w** GAr+ GBt + GCl + GDr= (R2 - OC?) x
(i) crla con l6Le :
=-=--=22 + r
"(**cs*GC+GD);
L,ai cd :
-r
-* t +'^ -+ :++---'+-+ 1 = 250 "n2.t0-6J.
NhAn x6t" C6c ern cd lbi giAi dring : ?r&n
Quarug'Vinh, XZTa6n, trrldng Shuydn l;6_qryei!
Suank Nsei ; Hdn Vd,n Th6.rug, 1 1A6, TIICB
dao D-ny Tr), "fhanh EX6a; Va Mq.nh Hitng,
11E2, PTTE{ Eim Son, T'hanh I1[6a ; Trucng
Cao Cubng,12 Torin, tffBng chuydn Le Khidt,
Qtr*erg Ng',i. MAi,qr\iH -r
4(R2-OG\ = O.A2* Otsz+ ACz+ ODz- 4AC?
= tdc + &12 + @Z + GB)z + (oA + G-C1z a
+ @A + Gb\2 - 40# = GAz + GBz + GC2 +
+ GDz + zod GA + cFt + cc + cb1 = GN+
+Gts?+ GCz+ GDz>- *EA + Gts + GC + GD)z 8) C6si) : vbrvrErrirvn clr{r
(tidp theo tang 1) BAi L2l22g.
Cho m.qch d.i6n uE
dudi,
udi
x,*tr=48f/",di€n
kd G c\ri 0,BA; u6n
kdchi z4v. X.) Tinh dietu bd
g crta diqn kdud. gu Rt= 3on etia udtt hd. ),- 2) Tinh di€n
trd x trong 2
trudng hqp chuydn x. sang ll AB thi : I)EFGH in hinh vu6ng
2)St
_ W IO
EFGH
Blr! tori,n 2 : Dr.tng hinh vu6ne ABCD bi6t
to6n 2 : Dr
vi tri dinhA vi vi tritrirng didm N 6tra canh BC.
fl ulnnJt va vl Ert Erung crem.{v cua c4nh,6(_.
didfiM lf n&mfran naic+nti
p-!4.tam I ""a.h+i
ri t6.m O vihai didfrM. Nnim t"r6n haicanh
ddi di6n crla hinh vu6ng.
ddi di6n crla hinh vu6ns. Bgy gid,.c.r{c bqn hay dirng cric kdt guA tr6n
"_
oe glar cac bal tap sau :
. Bbi tfrrr I : Cho hinh wudno AtsAfl ennh
- Biri tflp I : Chc hinh '".uOne ABCD e-anh
N, P, q, li trune didm cta'c6r
bing o. GQi M, N, P, 0 la trunfdidm cta'c6c
*nfi AB; Ed:'cd.^iL Ua" fiit"?11ai,EaN.
canh A-8, BC, CD, DA. Cdc drr6ne thins AI/.
:D, DA. C6c drr6ne thins AI/,
q?,.Cq, qlq
nhau tao thinh tdsrilcdfiGfl
"$ nhau tao thinh ffi"s)6cEFG.L{.
Chrlnrminh rinc Bir! t96n-4 : Dgng,hinlr vudng ngoai ti6p
mQt trl gi6c eho trttdc (D6 thi vdo chuv6n toair
DHTH vA DHSP, 1972) a) Diin ffi kiun mqch dat 6ng sudt c49 dgi p r,*
b) Di€n
Eludarg d6n gi6i.
t') E = 1(r+r) +R2(I -I)+[JI-.>BA=4BI* +40(I -0,2E *24-->I = M *g Bhi torin 5 : Cho hlnh chtr nhdt ABCD vir
mOt didqM chuydn d6ng tr€n canh BC. Phdn
g76c DAM c6t canh -tsC tai N, Xric dinh w tri M
ia *3' "'# uu, gi6 tr! nh6 nhdt. UAB=R'z(I-tr)+tJv = 32V.-+s =ry -
tst=1oQ; (tidp theo tong 9) trd x dqt c6ng sudt cqc dq.i pon*. U, 7--++ = 600 Q. Rr=-;--=
lv U,. *r.;( fr +fr12 - lfr -fr111 1 - ABz + ACz +; @p _ CBz) UAB o\ D ld: Do dri Ap=g;+-ff,n^, *3= b2 +c2 az
2-7 DI .--'t*!+ b) CdEh 2 ; Goi f]d trung didm canh BC.
Ta c (r + R)t
3b 1 I -Is* R.
Z)Itas= I =32O.
a) Khi r chuydn sang lll-B thi mach ngodi
crf di6n tr6I = #vi
cri c6ng sudt p th6a
rwdn EI = rI2 + p. Tt dd L = E2 - 4rp > 0 -->
P** = h *t A = 0. So s6nh v6i bidu thric tdng
qurit p : ;:\,Y;,;tathdy khi c
Be" ; hay li u E,_[J v6i J uv Tt dd P, d4t cuc dai 'khi r = r' "-- 32r b) Gsi ,I' li dbng qua tr, I,o ii ddng qua doan
mach AB cci chrla R1, R2, g, R3, R. Ta crj
t, 7 - E-U
r =t-tz=--T--E;=
E,= 8o #vir,= # NhQr? x€t. Cdc ern crj lbi Biei dfing z Trd.n
Sy,ipon Ha, 1l Ct, P?THns.rrgkhidu, ere&aag
ffiinlr ; Phan Vdn il*c 1"L"{,, pTTi{ phan gOi
Cxr&u, Vimh, F$ghQ s^:e. h,{Ar A.NFi 48 -r = BZ +r --'r = 32O, v&do dtir = 16 = ACz +AB2 _;@Ap _Be)
suy ra AP=ry
^ b2+c2 e.2
ma= 2, - 4'
_ Q.dd.t_cfuph trinh ldy I t11 nhi6n vi cho th6y
16 ydu td cdn tim, cdn-c6ch trinh bdv 2 lai sfi
minh.mi iac tX gla
dung dring ki thya!
-chrlng
dE dirng trude dri ddi v6i-dinh li ham s6 c6sln.
Hon ntta cA 2 edch n6u tr6n dpu cd t6e dung
cring cd dinh nghla tich v6 hu6ng crta Z veet6
mA. crle tdc gie dA dt{a ra.
,_ Cu6i ctrngxin cd rnQt d$ r:gh! v6i c6c tr{e giA :
N6n cheng vi6c dua dlnh t{ h6m sd sir:" l6n tril6c,
g6n vi6c xAy dung dinh Ii hAm ed e6srn v6i vi6e
x6y durng cQng thdc tinli dO dei trung tuydn tam
gi6c erhtt thd tV d6 trinh bdy trong n}:Ung:rem
trutdc d6y"/. nx-1 NcuvBtl utuu otjc
*'*!: cho b) lim a, ,
n+*a thrlc
f{x) = xa + 4x3 - c2r2 - tzx + l' H6y tinh tdng
v6i n li sd nghi6m vd r, Id S = ! -: Bai T fi83 :
n 2r?+l
-
,!!r(xrt - 1)z
nghiQm cfia da thr3cf(r)' ooan rri6 pHrE..
(Nam Hd) Ehi T1/233 : Cho daY s6 nguY6n
an *z * a, - r = 2 {on n t * on) Yn > 1
Chtlng t6 ring tdn tai sd nguy6n M kh6ng { ""} ff = o th6a rndn : BAti T8/233 : Cho ba sd thrrc a, b, c th6a m6n
di6u kiQn az +b2 * c2 = 2. Chrlng minh ring : M *4an*r.an
ld sd chinh phr-tong Yn > 0 DOAN Q{JATG]4ANH 1)lo'rb*c-abcl<2
z)la3 +b3 +c3 -tubcl <2{2 ohu thu6c z sao cho :
' Bhi T21233 : Chrlng rninh ring n6u
") (a+c){a+b+c) < 0, thi (u - r)i;;+?,["of ' {IIdi Phdng) Bari T3/233 : Cric sd nguydn kh6ng dm, a, b, BAii T9/233: Cho tam glecABC cci c6c c4nh
A, iiii Artdng cao vi trlng tuydn trrong ring
l;-h;,;;,h;,-;;;,*u,rr,, diq"n tich s' clrng
",
rninh ring : c. d th6a min di6u ki6n :
' a)a*b*c>2W.'{S
b) tr.,.m.! + hu.nt! * n,".mf, > g {F's2'{s
t-ti6lc NcQc vu f"z + zbz + xcz + 4d2 = 36 (1)
lzoz +b2 -2d.2 = 6
(2)
ii* gia tri nh6 nhdt cirap= o21162l-"2162 '"fi##r'f" Bhi T10/233 : Ciro trl diQn ABCD vi mOt
didm P sao cho P A2 + BC2 + CD2 + DB2 :
i-*+ coz+ DA2+ AC= P G + Dfr + AB2+
+ BDz = P D2 + ABZ + BCz + CA2,
Ct riog minh ring tdn tai trong khdng gran m6t didm M th6a m6n BAi T4l233 : Cho tarn glilc ABC.tlhg+' Csi
(0,1) la drrdng trbn tam D, brin kinh bang 1
ngoai tidp tam g16c ABC.
- Chfn! minhrang : a *b * c > abc'
Ddu "=" xlY ra khi nno ? . N vAN TR6c (Qudng Ngai). AGr= BGz-- CGr= D6o
Trong dd G 1, G2, G3, G 4ldn lrrqt ld trgng tdm
cta oic trl d iC\tt'' MB c D, *1?*-T?fl"lMAB c' (Btnh Dinh)' ^ Bili T5/233 : Cho tam girie vudng ABC (
) = 9V ) drrdng cao AH, trung tpydn BM vir
pt ao eia'" CD d"dngguy-tai rnQt didm' Chrlng
{5 - 1
minh ring sinB =
z Tt dci suy racdchdtrngm6t tarn gi6c ccj tinh rnAN xuAN PANc
(Nan Hd) n vr oueic D,NG
(Bdc Thdi). cAc oii vAr li
BAi L1l2S3 : Tt 2 didm A vi B c6ch nhau
100m. xe 1 vi xe 2 cilng xudt phiit v6i ctr-ng vfln
;6;;': :,;= L0 m/s' x"e 1 di tLec hrrdnghop v6i
eS iAcOOl. niAt ring 2 xe so g?p nhau d C 'H,ey
x6c dinh :
--- cAc l6P TrIcE
Bei T6/233 : Cho m la s6 thgc duong'
Vdi m6i n nguY6n drrong daY sd thgc - ifuang chuydn dQng cria xe 2?
- Th,di didm 2 xe gAP nhau ?
- Tga do didrn c ?" I e,,,i\ f = 6 d,roc x6c dinh nhu sau : ,1 chdt n€u tr.n' an,o= ! on,i*t= an,i ('*;;o,,,r) l=0, lr...n-l
en,n2fi+fvdimoineZ+ BBi L2l233 : IvtOt diQn tich didm
o - *2. 10-s c drlns c6ch tdrn kim loai phing
irOt aat *6t Lt oang"o -= 3cm' H4v 16: dinh lgc
iJo"iiacsi,r" diQTr tich s. y? t6+ kim loai dd
khi dEt chd'ng trong chdn kh6ng i ltl - -z+ NCUYEN DUY TRUY
(:fhdt Btnh). pHau soNc ouYd,r.
(Hd N/,i) ooi i$ 2) Gie sil m > tr . Chring minh :
uj on.n. * 4 vdi mol rL e' &' ) 1)Provethatifnr. r g tl a ^ fi't u) on,r, < !.2x!+t
_ ,y
,4,r*r, ",'*:,,*=#'
T71233. Consider the poll.nomial
f(x) = xa +4F -2x2 - 12x I 1 .
Calculate the sum t :
Where n is the nurnber of roots and - "zi T'8/233. The real nurnbers o., b, c satisfy
a2 +b2 + c2 = 2. Prove that :
l)la+b*c-abcl <2,
z) I a3 +br + c3 -Sabcl < 2{2 .
T97233. Let h.u, h6, hr' and nzo, trl6, nL. be
respectively the altitudes and the medians of a
triangle with sides @, b, c and let S be its area.
Prove that : @N$Ill{il we" uQlL itst * ";is?#"a7nir*> 1 prove rhat:
n? * lfor every n e Z+
FOR LCIWER SECONDARY SChIOCILS
- T1/233. Let the sequence of integers
{ ""} ff :, satisfy
an + 2 * an _ I = 2(an + I * an),Vn >- l.
_ Pro_v-e that therq exists an integer M, not
depending on z, such that
is a nerfect =o,ru"J#BJ "h , a.
TZl233 Provd that if (a+c)(u+b+c)<0 then
(b - c)2 > 4aia +'b'+ c) .
T-8/2P3. Thg-non positive integers a, b, c, d
)", + 2b2 + Sc2 + 4d2 = 96
(1)
lzoz+b2-2d2=6
(2)
jz .
Find tile least value of P=a2+ 5za
T4l28e" The radius of the circumcircle of an
acuteangled triangle {BC equals 1. Prove that
a*b*c>abc.
When does eoualitv occur ?
T5/233. The'altitride AH. the median BM
and the4ngled-bisector CD of a right triangle
ABC (A=90o) are concurrent. Frove that
sinB : a)a*b*c22W{9,
b) homf + hrpt + h"mf; > s 1{3 s2 {s.
T10/239. Let be given a tetrahedron ABCD x; (i = 7 , 2 , ... , n) ate the roots of f(x). satisfy the conditions : ',1 5 - 1'
-,
triangle. FOR UPPER SECCINDARY $CHOOLS
T6/233, Let nr. be a positive real uumber.
For every positive iirteger n,let { a,,. il i: o ,1 Deduee from it the construction of such a be the sequence of real numbers defined by :
_1'
^
@n,o - tt
an,i: an,i+,(, *;non,i) Q = 0, 1,..', n-L). ffiA,* dure^gt e6a4t tituib
ffiffiffi@mfriilWffiffiffiffiT$Nffiffi o6 Nnrl NGec
*:no'n'":1' + +- + = (IA + IC12 + {IA + IC)z : 2IA2 + 2iC2
}eay bz + c2 = 2nlo +, (b'. su, ra cong thtlc d6i vbi m "
-- "-a
---- i- --- --> + and a point P such tlat
pA2 +BC2 +CD2 I rtg2 =pg2 +CD2 +DAz I 4C2 =
=P0 +DA2 +A824BDz - PD2 + AR2 +BC2 +CA2 .
Prove that there exists a point M in space
such that AG, = BGz = CGs: DG4, where
Gl , G2, Gj, G4 are respectively the centers of
gravity of the tetrahedra MBCD, MCDA,
MDAB, MABC. ..-t Trong phdn "H6 thrlc ktone trong Tam si6c"
cua srich-girio khoa l'dp 10 Ban l{hoa hbc Tu nfiion,
c?D tac gie de xAy dgng c6ng thric'tinn AO aai
dt.tdns truns tuv6n tam siric benp nhtronE ohd,o
vecto-(nhtr da tlm ddi vdi dinh iffibm s5?tisinl.
Day lh qich lArn ggn vi. d5 hidu. Tuy n-hi6n, cdn
ccf i:rich trinh bdylhric hop li hon. Trddc ti6u, dhring ta'iem c6c tdc giA vidt :
"Ggi.I l& trung didrrecanh BC.
+
-+
Tacri: CA=IA-IC
-..)
-+
BA=IA-IB
-t lry O dAy, theo t6i vi6c viSt CA, B$lh4lrrra trr
ub6a*"i hoc sinh thildng vi6t AC,AB ho4c
CA,AB (kidu ho6n vi vbng quanh). Mat khr4c,
muc dich li timmocbn b! "khudt". Theo tdi nghi,
cd thd trinh ba'y theo 1 fiong2 crich sau dAy : Qg dci :*
CAz +BAz =
4+^++
(rA - rc)2+ (rA - rc|t: (xem tidp trang 7) a) Cd.ch I :
Goi f lA trung didm canh BC. fheo $S t$1c
trung didm ctia doan th&ng :2 AI = AB + AC
-r8 *
4AIz : AB2 +ACz +2AB .AC = ABz + ACz + - codnfr cfro cdc 6aru cfrudh 0i tfri r.'do dai froa $ru$ $uru$ E{cm PHAH vfmrx un#r af,qn* t h Brr6c 3 : Kdt lu4n Lint Sn = [ 161ax a tt+ @' o Nhie lai : Dlnh nghia tich phAn (GT12)
Cho/(r) xde dinh tr6n [o, b]
1. Chia dogr [o, &] thenh z p]rdn b&ng nhau - trudnshqp 1- ,2, ,n, 2(b -a\ bdi (n + 1) didrntti",, 1i =ffi1nhu sJu '
xo:a;*l=a* .n
ls^zlr
f
\ I I ffo= a <.rl < x2 1 ...< xk< ,..4xn = b v6i
b -a
n ;o2:r*-,,,
= u -_ - drJ&"jIsJEalfI ll tl#fff,*+p
B"r.iAe 1: BidfrddiS,?thinh d?ng
s,=;[r(;) *r(;). nr(;) i=
,1.
- n.L-t \n l' b--a eua"d,=qii ra him /vd chring rninh f li6n tuc tr6n-[0, L] =6i=a*i-.Tinnf({,)=f I ...xn= a *n .*
2. Ldy Ei : xi e Lxi - 1, ri1 i = L,n
,
\o*i 3. LQp tdng NcuvEN TI{ANH GIANG
(Hdi ltwng) b-a,
" )
s, =) f(6i) (xi - xi - ,l = .Lr (a + i*) " l=I /! n2+12' n2+22'"'' n2+n2' \
b*a,
n I n L'\ Tilrh Limsn
n+*a Et
b-a b-a.
x-=-lflc*-\+
n
2(b-a\.
, b-a. *r (" +i::---2) *... *r (" *".7) ). f@)=i - ra cd : s.=:t:*.xet
,",=r 1* (;). tr6n [0. Ll + f(r) li6n tuc tr6n [0. 1l ( S, : Tdng tich phdn (tdng Rieman) eria
hnrn / rlng vdi phdn ho4ch d6u [o, b] rlng vdi
uich chgn Ei6budc2)
4. Ndt flx) li6n tqc tr6n La,bi tni fia \;)' r Khj dd : S, lh tdng tich phdn c,5,af\i) tren [0,
1l v6i ph6p chia [0, 1] thnnh z phdn bing nhau
bdi cric didm chiar , = f, G = on) raic6ch chgn
;_
€i= oelxi-1,x,i (i = 1z)tfclir:
q' = if(6'14' =i__+- :=
i: tl +
i: I
,
-1(
- tL.,/-. , i,; (o, =xi-xi-r=;) Lim Sn= [ Sg1ax.
"l**
tim sr6i han- tdls
Sn = ur * u, * ... * un (Lim S) phg thuQc vdo
n € N trong nhi6u trua#inrlp ta ari thd ddn ddn
d4ng tdng tich phdn ) ffeil { rdi tinh tich
phAn tuons rtns. gin&;;ch dnh tlch nh6n ta
tinh drroc fi6i h"an cdn"tim.
Bni torih : Clio S, : uI* u, * ... * zr" Tinh 'n d,x Lim Sn?
n+6 r1 7[
= arctsx l; = ?' Budc 3 : Kdt lu@n Lim Sn = { Y61ax.
o Sau day ta *gti?It i.au'o
VD1 : Cho Sr=-! ^+-2+...+-tt- Ngohi c6ch t{nh tr{c ti6p tdng S, nhd c6ng
thdc bidn ddi. (dac biet li c6ng thdc cdp sd cdng
(cdp sd nhdn) ia rrit 'gq, S, tEeo rz tii dri suy ra
Lim.Sn ta cei thd tinh gi6i h4n nhd tich phhn ir,'*X bu6c sau : f
,=,1 * \n)
o" uo!:Tj" = Jr u ",
VD2: Tinh
11
-1
,,':T*i#+dry**wffi)
Tacri:
* '- - n - 1
-r 1_-:
*
Dn - iTilry' {4:$4r'''' {TF:F ,\ n & . r -tjl
vtl
i ,
t s
-- "a*
h -n.'-
zL L,\
.t &-.s,. &*fi
3LJ_1 n.#-"\7t,) i___-_____*
i
tn; r -"-
I
LH - nZ Bu*c fi : Qli ra rra::r pvhlh{lng minh flii6n 'crirc tr6m [#, &], ItJ Hudc i ; Bi6h ddi S,, th&nh dang ;
b *a,
b*a
Sl.. = -"-- :" 1 f {a +1.:-:'r"r f {s +2." *
i +
,,
n
n /
/
&or,
+, "+/"i tt-t.tL.-- ) I = -- 5' I { cr r- j ,'-- g. . n+** VD4: TInh tr6n [0, 1]. i._ ; tdng :_t,
Ta ed
ttnl1 L + LimS, = J e.osttx * =Y li = ,.
**) (, * ?-l , F.*\*
,yT-l(r
D4t
,,='l(r.,*) (,n?.1 ?":\: vd
s,=rn Pn=i[* (r+) *...nr" (r+)]
X€t harn s6 y = f(x) = ln (l +r) li6n tsc
tr6n [0: 1]
IGi dd S- li tdne tich phdn ctia him f(il trfun
[0, 1] coi pH6p chiE [0, 1] thanh z.ph'dn'blng
nhau bdi cric didm chia x, = I vd ehgn
Ei = i e lxi - p x) (i = Ln) v6i Li = i. i-1
'1 71+*m o
11 Chia [0,.1] thdnh'z phdn blng nhau bdi c6e
didm ehia *i=* Q=7e. Tr6n m6i doan
x)ldy E, = * (i = Ln) ; t;=*;*;-r=1.
f*i
tich ph6n =l OO ' dx 1+*o eari= cosf, (, = [ E,t1)
+ dx = -%osirtt d.t 1 x : 0 =+ / : Do dd limsn= [tnql*1ax = rtr(.Itu)
l1 -
1,
- I # =rn2 - I a* * I # = 2tnz - 1
,+ lim P, : lim do = , JTJ" - e?tnz - L
n+*o
Ta x6t rl du *a him l6v t{ch phin x6e dinh [ ; * = t * - .xL
o _ zsrn
zsrn ,).
U
Do dti
Jt lt n tdn [a, a7 marig lt t0 ; 1] "
l- . xt
. xt
sln-
. I Sln-
"=+--+ Tinh tim\l
ln -'l I n-+&z lL *..#** , **7fu*
, fut
nsln- ++-fr1 zri','u - r '" -2sint dt 2-
'=;tu# = [o':'1*=Z-X:Z
,a
'^t^yT:"=t
\lDB : (D6 thi DHQG IIaNOi kh6i D - n6m t99b)
Tim Det s:fr'l ' n ' nill
1 *cossp2 o ,
. I sin{
n +
n *
"z lt +co*f, r +.oir%t ln Det ?n.2n .nnf Tn-n
nlnlnnrun -h,,T-t=-t._-.=--T--r 2n xL 0'-n,
*"'4 cos: +coff + co#) lT; (r +cos L +"n T. *.o,4o)
,,,:*(r +""i +.*3+...+"o r**):
7 / n-l
=n_\:': ." " Ltt
zxt
-
- +...+- _oLrn$ 1ao.&-
=*,2,'(T) Xdt f(x) = costtx, tr€n
Chia [0, 1] thinh z phdn blng nhau bdi crtc
(i=o;n-L) ,*"r[l
TXtt ..tL1t
4Stn-nn
^llxt
7 + cot-
n I , 0,n [0, tl Yi ': .. 1 =+'t'r(o+'+)
Kftf(x) =,ffiLi6n tsc tr6n [0, z] r?. ,r-r1
i
a4" "* .; = ; ( g6s
;o)=sn n-l
-)r"G) o, =
+ cosL+... + "orL- (xem tidp trang 13) 11 orem cnra xi=i(L=on) chgn €i= n
thu6c [r, - 1, xiTvdi i = I7 *,a a, = -L.
* I il]r1ilI ilrilrli $fiIlfiIft rfilfir;
I NcuYEN THUC HAo
@a Nai) @) Lx, a7 = -_r1ta,bll
[r, b] = Ela,b) l Ta suy ra (5) Ch* !. - Cdihd 62+q2=t
minh d6 ding ring
"n,frrg
OAt OB lh,hai b6n kinh li6n hop, trlc AA', BB'
td. tzai dubng h,inh tihn ho.p crta dubrug elip' Trong hiuh hgc phd th6ng, ngrrdi ta dlnh
nghia drrAng elip vd hypebol, vdi 2 ti6u didm F,
.F.1 ve fing Ai6u ki6n li tdng ho4c hi6u cta
kho&ng cacfr tt didm M ddn F vi .F''khdng ctdi'
Ndu ia tdng, qui tich ciaM ld drrdng elip ; ndn
l}r hiQu thi quy tich ciraM lA dirdng hypebol' Cbn
paratrol thi lb qu! tich didrn M ei'ch ddu mQt
Aldm cO dinh.F vA dridngth&ug cd dlnh A' Cflng
cbn cci dinh nghia chung cho 3 drrdng, vdi mQt
ti6u didm .F' va dribng chudn tudng rXng A' Di6u
kiQn det ra trh ti sdp cria khoAng c6ch trJ M ddn
F vi A ph6i Id hing s6. Quf tich c&aM li elip,.
hypebol hay parabol ld tny theo,u < l, lt > t,
hay li pr : l. II" Dinh nghla dudng h5rPebol
Ch.o ba d.idm. A, A, B kh\ng th&ng himg' Ta
s€ gqi tit hypebol qui tich didnt' M sao cho hiQu
sf-crta nai iirun phuong d,iQru tich cila hai tam'
giar MAB, ruOd &tio thf tg) biing binh
pt uong d.i\n iich cila tant gid.c AOB' Trlc li
(hinh 2) Nhung trong hinh hoc afin, chring ta kh6ng
thd lim nhu vf;y, vi khod'ttg cd,clt. lit' nt|t khdi
niQm khdng c6 ! nghia gi trong hinh hqc afin'
Thd cho n6n sau dAy, ta sE dirng diQn tich afin
(ctra binh hdnh hay tarn gi6c), li mQt bdt bidn
afin, dd dinh nghia 3 c6nic. (7) oBI42 - OALrt - OAB2
(6)
Qcd phrrggg trinh-gecto- bing cdch dat
OivI = x, OA: a, OB = b
Phrrong trinh (6) s6 vidt drroc li
fx,bf2 -fx,a)z - fa,blz Thay vdo (2), ta duqc I. Dinh nghia duirng eliP
Cho 3 d.idnt. a, A, B khOng th&.ng hdng. Ta
sd gqi l&--"lip quy'tich didnt M sqo cho
oAr,I2 + oBlli2 = oAB2 (l) s6 cci drJgc, c6n cri vlLo (4) : (8) Ez_rf=t
Ta thdy rlng O li nm ctia drrdng hypebol,
didm A thudc hypebol.cbn didm B thi khdng'
Hai dttdng thing chtra OA vd OB ld hai dildng
hinh han hqp.
Chil !!6t trlc lir :
Tdng cfia binh
phuong diQn t{ch hai
tam gid.c MOA, MOB
bd,ng binh phuong
diQn tich tam gid.c
OAB (xem hinh 1) Phrrong trinh theo tga dQ, vdi co sE {o, b}, (8',) thaYjigu ki0n (6) bing
OAI,I2 - OBIO - OABz
thi quf tich cria M s6 cd phuong trinh
€2 -'12 = -l Fllnh 1 R6 rdng le A, B
thuoc dudngelip. Cbn
O ln tdm (ddi xttng)
cta elip. Ta h6y tim
phrrong trinh crla drrdng eliP. (Trlc tarn girnc OAB ln m0 t tant gidc lieghqp) '
Ta h6y d4t x = OiuI, a - OA, b = OB Ldy
diQn tich binh hdnh (gdp doi) thay diQn tich tam
giric, phrrong trinh (1) vidt dugc li (6') (3) Dd la dudng
hypebol liAn hqp
criadrrdng (8). Nd
chrla didm B mi
kh6ng chrla didm
A. Trong hinh vE
dudnglf l}dudng
cd phrrong trinh
(6) cdn .H' la
dudng hypebol
li6n hgp c
x-$a+rp 12 lx,a72 +fx,blz = {a,bfz
(2)
Dd ld phrrong trinh vecto c{ta drrdng elip'
Mudn c
trII. Dinh nghia dudng parabol v6i kf hi6u nhu tr6n, ta cri phuong lx, a12 + [x,b]2=$fx-a, x -b)2, lt = const. (14) - "Ch.o 3 di&n kh6ng
thary hhng O, A E.
Quy tich didrn M d
citng mlt phia uoi A
dli uoi ditong thing
OB, saa clio binfi.
phuong dien tich Am.
gtlc OIIA bdrw tfch
xj crta dicn tictl OUA
ugi diCn tich OAB,
-So! lg rrfut dudng
AUW
parabol. Ta r"f di6u ki6n (9) (16) vd a ld hing sd oMAz =dW . olB
{ -va Sgtns plia drrdng_lhing oB (hinh B).
Det OM = x, OA: a, OE'= b
Phuong trinh vidt drroc li (17) (10) Chuy6'n sangtga d6 theo (B) va. (a) ta s6 dtioc r7 cia.M (11) r-,-C"Ol{-
trlnn sau : rlring OB p tidp tuy6n tai O. phuong -zp€rt+zp(€+D -p = 0 (18) lx, a]2 = lx,b)la,bl
- ,t :6
^2_
^ , ?.ual.g
UA!4vi6n phtrong cria parabol. hay ld
Z(lx, alz+[x, b1z)-tre fx, b]*fx, al+labl)z=g +
(2 -p)([x,a)z +fx,b]\ +2pfx,al[x,b] -
* 2p[a, bJ[x, a - b] - p[a, bJ2 = O (13)
nnuon6,1riYltfii,;'#l*o
trong dci A(rr) lA d4ng toin phrlons
A @x) = (2 -p) ([x, a]2 +lx, u1z1 +4i.1x, al 6 bl ( 1 b)
"u" nP,li9rrrfflgn;i2o_,
a- -pfa,b)z
Ctng vdi cdc ki hi6u nhrr trong qic phdn
tr6n, ta se cd phuong trinh sau crla-c6nic, theo
toa dO €,
(z-p)(€z+rtz) IV. Dinh nghia chung B c6nic =(2-p)2-p=4(t-p) z -p _ Tr6n
dAy,
chfng ta d6 dinh
nghia ricng fi6i
dudng c6nic vi.
dudne c6nic vi.
ldp phuong trinh
lQp phrlong trinh
cta chfns du6i
dang chi
dang chin6 t5c. Bay gid ta hey
xdt quj tich sau vA.
dinh nghia nd. dang todn phirong li
12-u -u
A)=
' o'
I
l-p
Ta suy ra
1) n6ul < 1 thi @ ) o, ta cd gidng elip
2) ndu p > 1 thi @ 1 O, ta c
gioc lien hqp). . (rxcorwcriclrp[rAN...
(tidp theo trang I 1 ) Trong phuong trinh ( 1 8), ta cci dinh thrlc cria didmchia *i=TQ=M) Chia [0, z] t_h3nh z phdn bing nhau b6i c6e vaai=i
1t ,,++@ r a ca iJ{€
j:1 i= 2. Tinh ti* [ 12 n. 2' * +
,*+J 23 +n3 43 +n3 ' "'
*--!-- *..*-4 ^l (oo rs+. iv*)
(2k1t + n3 ' "' ' (2n\3 + n3 ) \YU re r' r
B. Tinh r.* 15 +2s'* ... *n5
4.Tfnh rm1/sir-z' - 2n. n6-
,,,+sin-+"'+si" ' j (D6 24' IVa)
,-i
" TrGn m6i do4n [r;-1, r,] chqn €,=T Q=fr) - I *COStf 1 1
- iro, =i ( *l *=:21 (T) = r,
+ tim
=i .I.th*^ d.x = J
n+fa
Birrg phuorig phrip ddi bidn ban tinh dugc l 5. Tinh Iim j 27.2n n-,a,p\
1/
/--f
_
n-+* \ 1 +"irr9
a\t--r-il Zn 1+sin, +... + 1 .hit
I * sin=- + ... +
Zn ruJt ",
J=T(Detr =n-t).
,n $tT ctng mdi ban lim mQt sd bdi tap tudng
1. rinh,rimJ# .#+... + #l (D6 59.IVa) "arrlV"*)- 13 (D6 56 1 + sinfi
(DHQG He Noi 1995 khdi A). Db THI eudc GIA
cHoN E{sc sINH ctot roAx r,op g
NAwr rrec Lees - Lee6 NcUYEN u0u ruAo
(Hd Nai) Bing A (180 phtit, kh\ng hd thiti gian b. Trong m4t ph&ng tqa dQ xoy (o li gdc tqa
dQ), ngudi ta v6 mQt drrdng trbn cci tAm ld didm
C t3;4), bdn kinh bing 2 don vi' Bei l. a. Tim tdt ch c5c sd cti hai cht sd o6 sao cho , -'" ,,ld sd nguyon t5. la-ol Hey tinh 916 tri nh6 nhdt crla tdng oic
khoAng crich tt didm M tr6n drrdng trdn tdm C
ndi tr6n ddn hai trgc toa d6 ox vd oY. Bing B ( 1 B0 phtit, khOng hd thiti gian giao db)
Bhi 1. a. Tim tdt cd cdc s6 cti hai chfr sd od b. V6i 100 s6 t1t nhi6n bdt ki, h6i c sao cho r-----i- ld s6 nguy6n td. , a.b
la-bl b. V6i 100 sd ttr nhi6n bdt ki, h6i c
BAi 2. a. Cho 9 sd duong ap az, a3t ..., &9 BAi 2. a. Cho a, b ld c6c sd drrong th6a mdn
di6u ki6n az = b + 3gg2 vd x, y, z Ii nghiQm
dtrong cia hO phuong trinh
lx*y*z=a
1t, oy, *22 =b
Chrlng minh'ring giri tr! cria bidu thric P sau giao db) or(1 - a2),a2(1-a3),a3(l -ao),,..,as(l -as),
ar(l - a,) ; ffi
- P:'lff*
W*'\@*
-@a-11
- V tdn t4i ft nhdt mQt tich sd khong lan hon |.
b. Cho n s6 thttc drrong xr, r),..., r. vi khi
thay ddi thf tu vi tri ctia n {6 aa, Ta drrgc
xir, xir, ,,,, Xin(n > 1). i ring x; 1996*22
b. cho ru s6 thrrc drrongrp x2t ...2 r, vi khi
thay ddi thf tU vf tri cria n sd dci, ta dugc
xir, xir, "', xro(n > L)' - rl-r, +r[*, +... 1fr,
,--___G- : xi Chrlng minh rhng ttn - Chrtng minh
x'r xi
-+-+.,.+-
xi- xi^
BAi 3. Cho didmA c6 dlnh vihai didmB, C
di dOng sao cho AB = a, AC = b (a, b ld hai sd
drrong-cho tru6c). Ngudi ta vE tam gi6c ddu
BCDlao cho A vd D thuOc hai ntla mat ph&ng
ddi nhau mi bd la dudng thhngBA.. Bei 3. Cho tam gi6c nhgn ABC vdAD, BE,
CF ld cdc phdn giric trong cria nri. Goi S, vi S
ldn lrrgt ld diQn tich cria c'5c tam g75c DEF vit
ABC. a. Chfng minh ring 4So < S. Hdyx6c dlnh d0ldn eria g6e BAC khi/D ctj
d0 dai l6n nhdt.
.-qAi 4. a. Cho drrdng fiin (C) nim trong gdc
roy (dudng trdn (Q3.h6ng cci didm chung v6i
cric canh cira gdc xoy) .Hay tim tr6n drrdng trbn
(C) mQt didm M sao cho tdng eic khoAng crich
tt MJI{A hai dudng th&ng chrla c6c c4nh cria
g6c xoy ln nh6 nhdt. b. Trong m4t phing tqa d0 xoy (o li gdc tga
d0), ng[di ta vO mQt dudng trbn cri tAm ln didm
C (3 ;4), bdn kinh bing 2 don v!. b. Vdi m6i didm M nim trong t am g76c ABC
(iVI kh6ng thu6c c5c cqnh cria tam $6zABC), goi
a', b', c'ldn lrrqt le d0 dei cl&a cd;c khoAng cdch
tt M ddn ede c4nh BC, AC vdAB ; tim tfp hop
nhirng didm M th6a m6n hQ thtlc a' < b' < c'.
--&Ai 4. a. Cho dttdng trbn (C) nim trong gdc
roy (drrdng trbn Glkh6ng.cri didm chung v6i
c6c canh cir a g6c xoy) . H6y tim tr6n drrdng trdn
(Cl mQt didm M sao cho tdng c6c khoAng crich
tr) M-lifu hai drrdng thing chrla c.4c c4nh cta
g6c xoy li nh6 nhdt. Hay tinh gli td nh6 nhdt ctra tdng cdc
khoAng cach tt didm M tr6n dtrdng trdn tdm C
ntii trdn d6n hai trgc tga dQ or vd oy. 14 nh6 hon 1. ddy kh6ng phg thu6c vd.o x, y, z : Chrlng minh ring trong 9 tich s6 : DAP AI\ BingA
Bhi 1 Cnu a) Ndu sd o6 th6a mdn di6u ki6n
bii torin thi 6a cring th6a m6n di6u ki6n bii
todn, vi la -bl : li-al L996 *x2 = (xy *yz *za) *x2 :
= x(y + x) + z(y + x) = (y +r)(x +z)
Tt d
1996 *xz $*)(x*) =p (1), v6ip nguyOn td vd 0
= (g +z)2
= 1z *x)2 Do dri, ta chi x6t trrrdng hop o > b :
a.b
a.b
la -bl a -b
-
(1) .=p(o - b) = ob *pa-pb-ab + p2 - p2
hay
++ = (x +y)2 v#nffid,*;$ jff , p(a +p) -b(a +p) = pz
(a + p)(p - b) = p2 (*)
Vi p nguy6n td n6n cl,c udc cl8La p2la +l ;
lp ; !p'.
- Tt d&ngthrlc (*) vd doa*p > 0 n6np -
6>0
+ loai b6 qic trrJdng hgp -1, -p vit -p2.
. _M4!. kh,{c, vi o + i ,''p -'b'ncn tfu ding
thrlc (*) { suvra: *2 n*2
*...*A = i 3
'i, ft rti, la+o:o2
lp -6 = 1
f":p2-p
.llb=p_l lL* vit C >- B. .nirr.<.
'I',U do :
Do a, blir crictchir s6 via > b n6n 0 < b < a
< 9, lri thdp ehi c
5 thi o = p2 -p > 9). V6ip -- 2, thi a = Z,b =
1;tac6 s62l
Ydi p = 3, thi o = 6, b : 2 ; ta c6 s6 62
' Horin vi vai trb c:0.acjLcchit sd avdb ta drJoc
4 s6 th6a m6n d6 bai le :21,62, 12 vd26.
. Cd.u b) Ta bidt ring hi6u hai s6 chia hdt cho
11 khi sd du trong ph6p chia hai sd d
nxTilntt : P;*-1:'r GiA srl cri kh6ng ldn hon 9 s6' khi chia cho 11 GiA sti kh6ng thd chon ra dr/oe 10 sd td 100
sd dd cho khi chia cho 11 cd s6 du li 0, nghia li
cd kh6ng l6n hon 9 sd khi chia cho 11 ccj s6 du
d6u ld 0. vi
ccisdduldl, " , 1996 + y2
(1996 +x2\Q996 +f\
1996 * z2
aI ; t, rw,E,+
d6u li cde 3i6 drrone
Khai cin ta dtroc
P : x(y *z) * ik * z\ *zk *v\
= 2(xi + vi + Zx\ = z'. tgoo ='{992
[\t")i khbng phir thuoc vdo r, y, z (dpcm)
*2 *2
*'
DatA = 1l *
'
xit
',,
, _ ({x, +r[*z + ... +t[*r)2
C=tr*xr*...**u=2rr
Ta so chrlng minh cho T)
"
x V6i hai sd dttong a, b ta c6 :
-2
az
:2a -b (1)
a2+b2>2ab{rO -b ,za*r
Ap dqng bdt ding thrlc (1) khi cho o, b ldn
lrrot ldy ea,c 976 tri tu'ong fingxrvi r;,, r6i r, vi
xir, ,.., rdi r, vi *,o, tu duoc :
-),'r' Zr(uo-t,)
*i* =i*,, &=1 k:r " sd du ln 10. Tr)ddsuyra:A>C(2)
*Tacd nB = (fl-r, + tlA +, . . *r[r), = (xr*xr* ...
+ x) +b{Vrx, + bli fu +... +^[i rh +zrtirx, +
2W + . . . + htizx"+... + b[x, _ t\, O x t, xz, . . . xn ctiua ding thdC (*) ta drroc : V,di lai s6 duong a, b ta c6 %[ab < a +0. (3)
Ap dgng cr{c,fi6u.ndy._vdo c6c sd duong
nB < (xr*xr*. . .**) + (xr+xr) +
+ (x, * xr) +. . . + (x, * x) + (x, + xr) +
+ (xr+x) +. . , + (xr*x)*...*rn_r**n). nB < n(xr'*x2* . . .xn) = nC+ C > B. (4)
TiI (2) ve (4) suy raA > B (dpcm). (1996 +z\(Lgs6+x2) IU Ia"cd kfrone l6n hon g sd khi chia cho lt cri
nhrr v{y thi tdt cA cri kh6ng qu6 99 sd (9.11)
Di6u niy trrii v6i giA thidt cLolrudc ld 100 s6.
VAy, it nhdt cring phAi cd 10 sd nAo dd khi
chia cho 11 cci cinis-d drr ; hi€u hai s6 bdt ki
trong 10 sd nAy chia hdt cho 11'(dncm).
Bhi2Cdu o) Theo gia thidt tai6':x*'yIz = a
+ (x+y+z)2 : x2 + y2 + z2 + Z(xy+yz+n) = a2.
Thay x2 + yz + 22 = b'vd a2 : b + Aggz
Suy rary *yz * zx =Yf= t99G
ta c
ob ac 1 -- oc'[-r- bc
-
uu Lr @+b)(c+a) (o+b)(b+c) (a+c)(b+c))
= 3(S * Ser,r - Saor' - Scoa) - 3So
hayS - So 2 3So + S > 4So(dpcm) Bai 3
Cd.u a
K{ hi6u BC =
a,AC=b,AB=
c, AD, tsE vd CF
lA c6c drrdngphdn
gr6p criX cdc g6c
A, B vir C, b*a Tnr6c hdt ta chrlng minh bd d6 :
Cho mQt gtic nhgnroy vd M lir m6t didm nim
trong g6c xO y. Goi r' vdy' ldn lrrot li kho6ng cach
tit M d6n cdc canh Ox, Oy ; ggi Oz ln phAn gi6c
ciag6cxoy. Chrlngminh ririgr'Jdi<}ri vn chi
khi M thu6c mi6n trong oia gdc xOz. rrl ' a+c = Tac6:
AFACb
BF- BC- a -
AF BF AF+BF AB
b*a b*a
b a
b.c
TinhdugcAF= o*U(l)
chrlng minh tuong t4AE = ]l
Do dtf
11bcbc
s.eEF :
AFsinA = ; @ * b)' 1o*"1ri"e
r-aE
t
bc
bc.S
;tcsina'^ *6'11o q"1 = 1o a6'11o I
(a *b\b
2-'""*'(a *6)(a *c)
{a lQ)@"+ )
(o + b{o.+ c)
(trolrg dd S ld didn tic(bria t6m gi6cAEb)
"1,
Tuong t1t nhu tr6n ta cd : ab.S ac.S 0Yt.
'vd IJ =JY. c
_..q
BDF= (.,-T016 +4 iDcro=(a+c)(b+c) x' = MX < MJ < IJ+IM : IY*IM - MY =!' ^ ' (a+b)(b+c) ' (a+c)(b+c)_l'" Mat kh6c
S -S, = SAEF *Sryar,*SCnE =
Io"ctcab1:-:-r
- lt"++){"+c)
L hay x' < y'.
- Nguqc l4i, n6u cci didm N niro dd nim
tronggdcxOy mdNX, < NY, (trongdciNX, vir
MF,It khoAng crlch ft N ddn c5c c4nh Oi vit
Oy)ta phAi chrlng minh N thuQc mi6n trong cria
g6cxOz. . bzc +bc2 +a2c +acT +azb +abz
(o +b)(b +c)(c +o) trdi giA thi6t. t ThQt vQy :
- N6u-N.thuQc Oz thi NXr : Mf. Di6u ndy
- Ndu N thu6c mi6n trong c,&.a g6c zOy,6rp
dgng crich chtlng minh phdn thudn d tr6n, thi
NX, > AIY,. Di6u niy cfng tr6i y6ti-giA thi6t.
Vay.N thu6c mi6n trong cfia gcic xOz. Chrlng rninh :
- Gie sfi M
thu6c mi.6n-tronE
gia'E6c xOz.
ft rrZ na MX L,
MY I- OY:MY
nhAi c6t Oz.vi'M vit
Y nim trirns hai
ntta mdt nh&frs ddi
nhau 'mh bd" le
dtrdnE thins Oz.
Goi Eiao didddd la
1.Tfr1hqIJ tox,
ta cd
MX: x', MY = y
Ti dd AD, BE vdCF. 2abc : oQ-""(a +b)@ +c)(c +o)' Vi + ac2 = a(bZ + c21 > 2abc
lau2
* bc2 : b(az + c21 > 2abc
'fi: ]oa2
lc& + cb2 : c(az + b2) > 2abc
non : b2c +bc2 + a2c + ac2 + a2b + ab2 > 6abc
+s-s,=1rTayff|1"*,; s= = 2abc * ob2 + ab + acz + azc +bc2 +bzc nim trong LCOD kh6ng kd cric cqnh crla nd. = 2abc + ab(a +b) + ac(a + c) + bc(b + c)
n6n 2abc = (a +b)(b + c)(c + a) - lab(a+b)+
+a.c(a +c) +bc(b +c)l 2abc
(a+b)(b+c)(c+a) _ -7
-a (a + b)(b + c)(c + o) Ap dung bd d6 nny dd chrlng minh cAu b :
Ggi O li giao didm ctra ba dttdng phdn gi6c
Theo giA thiftM nim trongtamg16cABC.
Vio' < b'n6nMphAi nim trong Lam g; c BCF
Vib' < c'n6nMphAinim trong tam $6c CAD
Ydy M th6a m6n di6u kiQn a' < b' < c'+M =| (a+b)(c+a (b+c)(c+a) (a+b)(b+c) Bni 4
Cdu a
- Phdn tich :
Tt didmM'bdt ki
tr6n drrdng trdn
(C),haM'H t Ox,
M'K t Oy. Dltng
ti6p tuy6n v6i
drrdng trbn (C) tai
M sao cho tidp
tuydn niry cfit Or 6 16 ab(a +b) + ac(a + c) +bc@ + c)
(a +6)(b +c)(e +a) A, cdt Oy d B, AA = OB, vd cdc didm O vd C
nam v6 hai phia cria ii6p tuydn ndy. hd phriong ?a thdy ri.ng:
M'K . OB +M'H . AA = 2S*noo "u, (M'H +M'I{)OA:25*nou Oy, ta c6 : fy:x+l
ly:-x+7-212'y:4-\12
Gqi S le tdng khoAng c{rch tr) M ddn Ox vd.
S: 7 -^[2. Bing B
piti ! (a, b) : xem ldi giei d bAng A.
Bd.i 2
C!.u a.' Theo gia thi6't, cric sd 1 - o, > 0
Ap dung kdt qu6 criabdt dingthric C6-i,ta6: suy raM'I( + M'H =T
!i sdc cho tnldc vd dudne trdn (Ct cd dinh
n6n tidp tuydn AB xdc dinh vd Ol,: OB kh6nE
ddi. Do dd IvI'K + M'H nh6 nhdt khi Srrru nh6
nhdt, mudn v&v di6n tich L,M'AB phAi nh6 nhdt
(vi tam s16c OAB c6 dinh). Mu6n vdv M' = M
(hic4ay-dttdng cag hq tt M'xudngAE bang 0).
Vi itz la tidF didm'n€n CM l. A? (1)
IvIat khric L OAB cdn (OA : OB), n6n phAn (ar+(l-o,)\2 pr.dc Oz cria sdc O phAi vu6ng s6c v'6i AB.
- Tt (1) va-(Z) su'y ra CM lfdz. t
l=n o,(1 -r,.,*l Z \tt hay 4) .l#iff4':tt$y?*g thins qua s(3 - 21[2 ;
,, fea dQ cri" #; -# il 1*1',u.f
trlnn :
x:3-{2 4 ae(7 -rr) = * + [or(1 - o1)J . la2! - o)] ... x [o.(1 - os)l 1 x ranl- os)r < l,i]' ,-,
Tt bdt ding thkJ {*) suy ra : Trong 9 tich sd
dA cho it nhdt phAi cri m6t tich khOng l6n hon
4 i vi ndu kh6ng cci tich nio nhrt v6y thi v6 trdi uo cira bdt ding thfc (*) sE l6n hon
trrii vdi kdt quA tr6n. ft)' ''u., I Cd.u b: xem ldi giAi d bAng A.
Bdi 3 (xem hinh v€...)
Dtrng tam giric
ddu ABE sao cho
dinh E vi dinh C
cing thuOe nrla m6t
phing bd ld dridng
tleag AB.-Ia c6 :
ABC : EBD (i
cirng bing 600 cOng
(lloAe trt)
s6c
EBC, vd vi BA =
BE, BC: BD-!Q3 ^ ^ LBAC : EBD (c.g.c)
Trldrisuyra ED = AC = b vi BDE = BCA(I)
Vdi 3 didmA, E, D talu6n cdlD < EA+ ED : a*b Triong h!: ar(\ - a) < "i Cdch dune :
"
- Duns'pEan si6c Oz c:iua Edc xOy
- T& Cli6 drid"ns thine sofrs soni v6i Oz cdL
(Ci a hai didm. Di6m M."mi t'i6p tilvdn tai dd
chia mat ph&ne lim hai'phdn. sho cho O va C
nam d hai-nrla mat phine d6i rihau cci bb ln tidp
tuydn tai M, ta diC'fi phA'i tim.
Chilne minh QuaTI duns tiSn tuvdn AB.
\n CNI r- AB v'd CM ll'Oz"n6i Oz" t AB. Oz
vita ld drtdng cao, vta li phAn eidc cta s6cAOB
n6n A AOB-cdn (OA: OB). '
liv M' bdt-ki tr6n (C),tac6 (M'K+M'H)OA
: 25u.eoa > 2Snoo: (I/IE + MF| . OA
Suy ra M'K + M'H > ME + MF.YQy ME +
Mtr'nh6 nhdt.
Bi&*thn : Di
c69 *9y Rhgp,
vuong nav tu tht
giao tidri M de
ndi d tr6n lu6n
lu6n x5c dinh. Bdi
to6n lu6n'lu6n cd
nehiOm hinh. Khi
C"nam tr6n Oe thi
m6t trons hai
gido didm 6.&a Oz
vdi dtldnstrdn (C)
ln didm p1rai tiin.
ln didm D-hai tim.
Cqq 6 ,: Ap.dgng. \6t.qyh_clt1a;didm M c Tam giSc CEF ca; (CE = Cf) Kdt lu+q: I +b thi BAC = L20o. - CE - 3 - b[Z ; AF = AC Biti 4: Xem ldi giAi bingA. -BC - CtuIz = ME .MF = ME2 = MFz.tn CM =
2n|nME = MF : 2. suv ra EF = 4.
+cE-cF-'G =" # = rg
-Tt dd BE
-CF:4-b12. Ddu d&ng thrlc xdy ra khi E e AD.Y}y AD
ldn nhdt khi bing a *b (1y1a>u\n : o * b). Khi
*iAIlCD-Aii ti6Bir&c trong drtdng trdn-n6n
BAC+ BDC = BAC+ 600 = 1800+ BAC =
1200 xAc DlNl-l rAM DUONG TRON
LAm thdnAo dd x6c dinh tAm cira mQt drrdng
trbn cho tnl6c md chi dirng compa mQt ldn vd
dirng thtldc kh6ng qua 6 ldn ? V6 KIM HUE Gidi dfip bdi NHITNG cAY sd ni r+ DOAN NGAY SINh Gqi ngny sinh ctra ngridi mn Th6ng do6n alf
t6, than; sinh Id cd. ndrr- sinh li Tgrnn (vi c6c
ban cria lf,atrg d6u sinh vdo thd ki 20). Theo c6c ph6p tinh mn Th6ng d6 d{t ra ta cci :
{ t(a6 xz +tt) 5 +22)10+cd} t oo+rmzrz *33 =
: 10000 x a6 + 77000+100 xda+19331i1n:
: aFUOOO +cd6A +tnn + 78933 =
= a5i[fri + 78933. 1.23456789 x 8 + 9 : 987654321
12945678 x 8 + 8 : 98765432
1234567x8*7:9876543
123456 x 8*6 =987654
12345 x 8*5:98765
1234x 8+4 = 9876
123x8+3=987
12x8*2:98
1x8*1:9 Vi kdt quA bao gid cf,ng ld' adc4tntx + 78933
n6n b4n ThSng ehi cdn liiy kdt qu6 cria cdc b4n
trrl di ?8933. Trong hi6u s6 cbn lai thi 2 chrt s6
hdng tr6m nghin vd hing chuc nghin chi ngiy
sinn] hai cht-s6, hang nghin vi hdng tram chi
th6ng sinh, hai chit sd hing chuc vd hdng don
vr chi ndm sinh (da bdt di 1900) cira ngudi
Th6ng dorin. Tt kdt quA dri ta tinh drrgc ngiy sinh cira Hdng : 110115-78933=031182
tric ld Ngdy 3 th6ng 11 nam 1982
NgiysinhcriaNgqc: 229813- 78933 = 150880
trie ld Ngny 15 th6ng 8 nem 1980.
(fheo Doitn Hd.i Giang,7A, NK Qulnh Lrtu, 123456789 x 9+ 10: 1111111111
12345678 x 9 + I = 111111111
1234567 x 9+8 = 11111111
123456x9+7:1111111
12345 x 9*6:111111
L234x9+5:11111
123 x 9+4: 1111
12x9+3:111
1x 9+2=ll
0x9*1=1 NhQn xdt : B4n Phqm Luong Anh Minhl6P
52, Nguy6n Dinh Chidu, QI, TP. Hd Chi Minh
ctng dadua ra c6ch dorin ngiy sinh cira Th6ng
nhrr tr6n. Bd Nguydn Thi Tuydt (139 Dudng
30 - 4, P.5, TX Cd Mau, Minh Hii) vd rdt
nhi6u ban dA cti giAi d6P t6t T}{ANH -IUAN
(Suu thm) BiN}I PI{TJONG sou : , _dE 1d. Ngh€ An) rnua tq.i cac C0n6 ty sath ad. thidtb{ trubng hgc trong
'";e;;n";'si*plai n*6c. !,ba !1\Ort l!,0n5 10 Tda sagn"xin trd tdi clzuig cho c6.c bgn a6 *ta hdi ub cii,e utd,n
*Thbihqnrabd,o:Tod,whoeud,tuditrdraryQtth.arie*otxi.uit'ocudithd.ng.
* Thbi ho.n.nhQ,n bdi gid,i : Hai thdng tinh tit igi'y cd:6i iit,a thd,ng *zti bd,oph6,,.?.""F
- Tim. rn'ua bd.o taanlqe tudi trd d d.d.u : Bg'rt c6 tk€ d1f mua d.d.i hgn' tq'i B*u d'iin hoq'e
dibu kian
bin auq*. Cdc iq,n 6 rid NOi co thd ntua tq,i bl T'rd.n Huns, Dq'o, '25 Hdn Gi6 2.000"
Hai nghin ddng Sip chrl tai TTVT NhA xudt bAn gi:4o duc
In tai nha mey in Di6n Hdng. 57 GiAng Vo
Inxongvir nQp hlu chieu tn6ng 1111996 ISSN:0866-8035
Chi sd: 12884
M6 s5: 8BT35MG Thuyan, 57 Gid.ng V6...
Cd.nt on cd.c ban.SE RA Ki XAV
:1+ 1 _,
"?'uS-e)' ""
,':T!.:[#=*i il (;r
r,$
IT,illllt ilr ffi l'fi [Jl[i iffil