i{.-i ' i'.i:,}P"./' i. i

BO GrAO DUC VA DAO TAO * HOr TOAN HOC vrET NAM

RA HANG TUAXC

q

ac

4

?

a

4

+.1 -

"-.--

--!--.

7

0-3 At!'?t

;* wffi F{#T ffiNr{ €HffiT Ttr{tr rf$ (ffiffi ffiilffiffi w{roNffi m xAy DIJNG e0ruCI TF{uc rfrurt nQ nru TRUnTG TTJyEN M UwE DUI\tg n Cf cytfiy nywr E ror Wy m BlilH ffGHIffi B Bu#$rs (ffi${r( Trqoffie ffimT prlfirss BFr$* m BE rHt QU0G SIA SH$r.I H$C Srr'Ilt Gror rm $ obd/tl x,g@ lsss - tes6

cDodn ngdj sinfi Xac dinh tam duon6 tron

NhCrng doy s6 ki lo

Ldp 12T bddng chuyAn LA Khidt, Qud.ng Ngdi ndm hoc 1995 - 1996

ToAN HQC VA TUbI TRE MATHEMATICS AND YOUTH

MUC LUC

Trang

o Ddnh cho cric ban Trung hoc co sb.

1

For Lower Secondary School Leuel Friends LA Qudc Hd.n - Vd mQt tinh chdt tht vi ctia hinh vudng.

e Gidi hdi ki trudc

Tdng biAn tdP : NcuvsN cANH roeN Ph6 tdngbi6n fiP : NGO DAT TU HoANG cIlfNG

2

Solution of Problems in Prouious Issue Cdcbdi eias6229

c Db ra ki ndy

8

nOl oOruc etEH rAP :

e D6 Nhu Ngq, - Xdy dung c6ng thrlc tinh

I

dO dai trung tuydn tam gi6c

c Dinh cho cric ban chudn bi thi vdo dqi hac

For College and UniversitY Entrance Exam PrePaPers

o Nguydn. Thanh Giang - Uttg dgng tich phin

10

tinh gi6i h4n

o Nguydn Tltrtc Hd'o - Dlnh nghia 3 drrdng c6nic

12

trong m[t phing a{in

o Nguydn Htu Thd.o - Dd thi qudc gia chon

Problems in This Issue Tu233,..., T10/233,LU233,L21233

o Gidi tri todn hac

Nguy6n CAnh Todn, Hodng Chring, Ng6 Dat Ttl, LO Khdc BAo, Nguy6n HuY Doan, Nguy5n Vict Hai, Dinh Quang HAo, Nguy6n XuAn HuY, Phan Huy KhAi, Vfl Thanh Khidt, L0 Hai Khoi, Nguy6n VEn M{u, HoingLO Minh, NguY6n KhSc Minh, Trdn V6n Nhung, Nguy6n Ding Phdt, Phan Thanh Quang, Ta Hdng QuAng, Dang Htng Th5ng, Vr1 Duong Thuy, Trdn Thdnh Trai, LO 86 Kh6nh Trinh, Ng6 Vi6t Trung, D+ng Quan Vi6n.

Fun with Mathem'atics .Binh phuong - Gi6ri d6p bdi : Do6n ngdLy sinh Bia 4 Va Kim HuQ - X6c dinh tdm dtrdng trbn Thanh Tud.ru - Nhirng deY s6 ki 14.

"- --'

- DT: 8213786 BiAn tQp uit. lri sy: vu KIM THIrY irirn oav , QU6c sbNc

Trq. sd tda soqn : 45B Hlrng chu6i, Ha Noi 2Bl Nguy6n vrn Cil:?;'h Chi Minh DT: 885G111

hoc sinh gi6i tornn ldp 9 ntrm hoc 1995 - 1996 14

Ddnh clro cdcbgn fH6

,\l

u( ful

ryrT[rrytt ffimTTtt$u$ c*m ,m]]*Huu0r$G

lE oudc HAN (Nsh? An) tll

Trong srich gi6o khoa hinh hoc l6p 8 dE n6u l6n c6c tinh chdt co bAn cria hinh vu6ng. Trong bni brio niy, chring t6i xin n6u th6m m6t tin[ chdt khric ctia hinh vu6ng vd c6c rlng dung phong phri ctla nri.

tY

P unns

Gi6i: Goi P t Ii didm d6i " xingciaMqua 0 o thi P thu6c canh BC. Tt N k6 NI{ t MP vit l6y tr6n dudng th8ng NI/ m6t didm Q sao cho NQ = MPthlQ, thu6c eanh AO (xem hinh 3). ,A Gqi ^E li didm d6i xrlng cria Q qua O vdl ld chdn dudng vu6ng g.rg ha tit O xudng EN.Ldy B vd C tr6n dtrdng thing.EN sao cho : .IB = IC = IO.Ldy A vd. D ddi xrlng v6i C vi B qua O thl ABCD li hinh vu6ng phAi dung.

tlPc' Illnh 1

K6t qu6 sau d6y li su tdng qu6t htia cria bii

Bhi torin I z Cho hinh uu6ng ABCD uit. cd.c d:6y M, N, P, q tuong ilng tr€n cd.c dudng t!*"19;,1.c; A r,t fi CD, DA, ChTNg m.inh rd.ng : MP = NQ khiudchi K khi MP.r NQ. Gi6,i: Dd chrlng minh ta ,A K6 MH II AD, NK ll AB rdi chrlng minh hai 0 tam giric vu6ng MHP vd NKQ bing nhau (xem hinh 1).

to6n 1.

BAy gid, ta hiy 6p dung kdt quA crja bdi to6n

1 dd giai crnc bii to6n sau :

Blri to6n l' : Cho hinh chit nhet ABCD c6 AB = a, BC = b ud. cd,c didm M, N, p, e nd.m tr€n cd,c duimg thd.ng AB, BC, CD, DA. Cfulng ruinh MP a NQ khi utr. cni nhiffi:I

Blri to6n 2 z Cho hinh uu6ng ABCD eanh bdng a ud. mQt didm M chuydn d.6ng ffAn canh BC. Phdn gid.c crta g6c DAM cat CD tqi N.

Chtng minh AN < Z . MN. D&ng thtte xa.y I

ra hhi ndo ?

Chring minh bii to6n 1' tuong tu nhrr crich chrlng minh bni to6n 1, xin dinh cho ban doc. Blri todn 4z Chofi giacABCD. Dung hinh chit nhQt MNPQ ngoai tidp fi giat ABCD d6, bidt tt s6 crta hai canh hb nhau bd.ng h (k td, s6 duong cho trudc)

/Y :.,I

D

1

Iltnh'2 1, ttAN t Ml,tacd AN = MI =

^,IH

a

fc

Htnh 4

Gi6i: GiA A, B-,9,D theo thrl tg nim tr6n c6c cgnh MN, NP, PQ, QM (xem hinh 4) " vd,MN1NP = ^ K,KAAH T p DB, AE k6o ddi cdtPQ tei E thi theo k6t

quibiitodn 1',tacdffi = ffi= f nenFhoen todn x6c dinh, tr) dri xdc dlnh dugc c6c dinh cria hinh chfr nh |MNPQ.

Giii: Dudng th&ng kd tr) M vu6ng gdc vdi AN citANtaoH vi cdt drrdng thing AD tat L OGq hinh 2) S DAN = NAM n6n NH=HI=;AN . Theo bdi to6n > Z. MN. D&ng thtlc x6y ra khi vi chi khi ff = tf <+ CM = 7@ DN = alL).Ban doch6ychrlngminh ta! q9{ 1-ay (Dua vdo su dong d4ng crla c6c tam $6e ADN, NCM vd ANM). - BAi todn 3 z D4tng hinh uu6ng ABCD bidt ui ti tam O cila hinh uu6ng uit. ui-tri hai didm M, N theo thtl ttt nd.m, tr€n hai cgnh AB uit. BC.

(xem ti€p tang7)

l,l

tsdi TZl22g. Tim nghiQm. nguYAn cia

phuong tinh

x2 +f +i +f :27144a

Ldi gi6i : .c:iua Nguydn Hdi Hd,9b, Chuy6n

BidiTVzLg Cho x > 0, ! > 0, z > 0 Chilng ntinh (xyz + D (;++).:.; +L > x *y * z * 6

Thay x2 = 122 vio phttong trinh ta thdy

Van - Torin Ung Hda, Hd TAY. x2 +F +xa +f = 277440 (t) +x27x2 + 1)(x + t) = 24 .92 .s . lg . _29 Tt (1) ta suy ra ngay nghiQm r phAi I6n hon L vd x2Id udc chinh phttong ctra 271440' Cdc rioc chinh phrrong ctiZlt{qo c

\r-'yl

* (* + tl(6+ 1) < 122 $22 +D $2+1) = 27L440

,v,,x,

+ -) > 2x.

Dd.ng thtlc xd.y ra khi nin ? Ldi gini : (c{ra b4ri' Nguydn Hoqch Tnic Sinh, 8A. Qu6e hoc Quy Nhon). Ta cti vdtrr{i li A = ( nrf\+ /rv+I\ + (xzf\*! *+.+ \ zl x y z \--r' xl z Ap dsng bdt ding thrlc cQng ta a Y * i ' 2z , (xt *;) .- 2t , \xz

1

z

drfongv6ir=Y:z=1.

phuong trinh dugc nghiQm ding x21x2 +111x+1) = 122 $22 + 1) ( 12 + l) = 271440 YOix2 : (23)z = 62 tathdr

-:

VQyr : 12ln nghiQm duY nhdt. Nhin x6t : Hdu h6t cac ldi giai grli ddn d6u dring. Song ldp lufn ddi dbng. C6c b4n au dAy cO tai giai t6t : Hlr B,6rc : Nguydn Danh. Nann, Nguydi Hilng Cuitng, Trd.n Thi Hd Phuong, 9T, NK BEc Giang. Lho Cai : Nguydn Hbng Quang. Vinh Ph6 : NguYdn Dtc Minh, 8A, Chuy6n Tam Dtro ; Hd.Vd.n Son, 9T, ChuY6n Phri Thq. H}r Tey : D6 Anh Tud.n,9T, Thudng Tin; Nguydn. Mq.nh Hd, 9K, La Lqi, Hd' DOng' HDr NOi ; Diling NgQc Son, 9CT, Tit Liam' Qu6ng Ninh : Etrt Ann Dtc 8A, TD Uong Bi' Hii Phdng : D6 Thity Chi, 8Ar, Hdng Bdng' Ttranh H6a : Hd. Xudn Gid.p, 6Tr; Hoit'n'g Thi Hd, Hd Thi Phuong Thd.o, 8T, IIK gim Son. I0r6nh H6a : BitiThanhMai 9T, L0 QuyD6n, Nha Trang. TP Hd Chi Minh : Nguydn Cd'nt Thgch,8r, HdnBEing, QuQn 5,.

rd NcUYEN

BAi T3/229 " Gidi Phuong trinh :

@ -sr+2)(x2 * 15x *56) +8 = o

VOyA > ?'x +2y + 22 ** *1 +L = x I Y * xyz l, , , 1. 7, z+ (x *;) * (, *r) + (z +;) r,1y*z*6. y;, r, =!, Ddu bing xAy ra khi vi ctri kfri *y = '-, " =1. ,ru' niry tuong Nhan x6t : Bii to6n niy drrgc hing tr6m ban grli ldi giai d6n. Tuy6t d4i da s6 giAi dtng, batt nhtr tr-on. Chi cci mQt s6 it ban ngiriggn, Dinh giei h-i dii. Trong sd nhi6u ldi giei tdt c6 fuam Duong 9A NghQ An., Le Anh Tho,9-A Thanh H.6a, Trd.n NguY€n Thq I Hh Tinh, Nguydn Viet Hd 9 Hh B6c, D-d lhity Chi 8A H-ai f nang, Trd.n Luu Vd.n 8C Ngqc t>am, Bt4 Thanh Hilie 9H HA NOi, Yd Anh Tud.n,9T, Quing ginh, Nguydn. Tud.n. Trung 8T HII EA", Nguydn Thd.i Soz 9! Thanh H5a, Ngiydn"HiyVu, ST Ninh Binh, In lnhVinh sil, Ha, N[i, rvguydz Dtc Hdi 98 Vinh Ph(r,. Nguydn Thi Thi.FIa 8A Quing Ninh, La Thd fnd:ng 8H Hn NOi, Ld Trung Ki€n 9T }Jt6, Dinh-Trqng Quang 7C Hn NQi, Trdn Tq Dpt 8A, Ha NOi, Ha Thu Hibn Y6n Bdi'.'

B4n D6 Nggc Dtlc (6H Trttng vrronglld NQi) de phrnt bidu va chrlng minh bii to6ntd-ng.qu6t sau : Cho tu >- 3 at, an > 0. Chrtng minh ring

I'

,1

*

a2 %..*,+ al

a3

(at...an+l) (-+...*4) &r,

1 I ...

+

* ----:-- 7 ar* ...

d1..an_2 a2... an-l

"o

LA,i giai. Ta cci : @2 - s, + 2)(x2 * 15x * 56) + I = =x4+12f+fi*-fiBx+120= = 1x4 t of - ts#1 + @f + 36P - eo) - - (8r2 14Bx - 120) = x21x2 + 6x - 15) + * 6x(x2 * 6x - 15) - 8(x2 * 6x - 15) = = (x2 * 6x - 15\(x2 + 61c -8) = (r + 3 - 2r[6) (r +3 + 2\[6)@ + 3 +{17) : o. vQY -Phuong irinh c6 4 nghi|m. lit. : x1= -3+2'[6; xz = -3-2r[ 6,' rs = -3 + {I7 ; x4 : -B -'ln ' Nh$n x6t. C

-

2

a4... anal *an|2n. oANc suNc ruANc

Nguy6n Hrru Quy6n (Vinh Ph(, 9T Chuy6n Phri Tho), HdVdn Son (Vinh Phrl, 9T Chuy6n Phri Tho), Nggc Bich Phuong (Tidn Giang, 9 Torin NK huy6n Cai LAy), Le Chi ThAnh (Hu4 9I Nguy6n Tri Phrrong), Nguy6n Hoach Tnic Sinh (Binh Dinh, 8A Qudc Hgc Qui Nhon), Nguy6n Minh QuAn (QuingNg6i,9T Chuy6n Nghia HAnh), Nguy6n Hoing Chrtong (B6c Th6i, 9 To6n THCS Ntrng Khi6u Tp Thrii Nguy6n), Trdn Ngoc Cudng(Tp Hd Chi Minh, BT, Nguy6n An Khuong, Ho

oANcvrEN

(Khr{nh Hda, 8 To6n L6 Quy' D6n, Nha Trang), Nguydn D6 Thdi NguyAn (Vinh I.ong, 9T, Chuy6n Nguy6n Binh Khi6m, Tk Vinh Long[ Ng4ydn Hbng Quang (Tx Lho Cai), Nguydn Khanh Linh (Ha NQi, 9c THCS Ngoc LAm, Gia L6m), Hdn Minh Trung (Thanh H6a, 6E THCS Nang Khidu, Tp Thanh H6a),Vtt Mqnh Cudng (V[nh Phti, 8A Chuy6n CII Tam DAo), Dinh Trqng Hilng (Virng Tdu, 9T LO Quy D6n, Tp Vung Tdu),'Nguydn Cd.nh Tod.n (Iuydn Quang, 9 To6n Nang Khi6u Le Quy Ddn), ?a Xuyan Hung (Y6n Bdi, 9T LO Hdng Phong), Nguydn Ngoc Quang (Hi NOi, 9H THCS TrungVrrong),Ld.m Manh Truisng (Cao Blng 9A THCS Hop Giang, Tx Cao Bing)./.

BdiT4l229.Cho tam gidcABCu6i cdr cqnh a = 5 ; b = 6 ; c = 7- Tinh khod.ng cd,ch gitta td.n dutmg tritn nQi tidp uit. trqng tAm cfta tam giac d6.

Biri T5/229 : Tran mQt ph&.ng cho g6c xOy c6 dinh ( xOy = 600). MQt tgpl

Ldi gi6i vin t6t: Gqi Mrld,tdm vbng trdn ngo4i ti6p LOAB, M) ld trung didm cta -cung nh6 a AB ct&a drrdng trdn dd. Dd tim tAp M ta cdn tim tAp {MJ u {M2}.

oANc vrEN

Ldi giai. Gqi M lA trung didm cria AC vd G li trong tinr tam g16c ABC, ta c6 G nim tr6n doat BM sao cho GM:GB=1:1(1). Goi O ld tAm drrdng trbn n6i tidp tam $ec ABC vi I lBr giao didm clfr'a AC v6i tia BO, AO lA cric ph6n giric clioa cdc g6c tudng (tng ABC, BAC. Ap dung dinh li v6 tinh chdt drrdng phdn gi6c (hinh hqc 8), ta cri ;

(O, a) (6 ddy OM' t Oy, OM" t Ox

OM'l,Jtflcphiavdi

Oy so vli Ox

OM" khrlc phia

Ox so vdi Oy).

21

b) Tap {Mz} la do4n MrM, trong dci Mp M2 thuOc phAq gtr6c Oz c$.a g6c xOy, OMt - a, OMr= to,. VOy tQp @didm M ehinh ld. M'M".\) MrMz'

Nh$n x6t: . MQt sd bpn chi tim drroc 1 trong? t4p Mr

ho1cM,

o C6c ban d6 giai t6t bii ndy : Vinh Phri : Mai Thu Thd.o, Ilit.Vd,ru Son gT Chuy6n Phri Tho, Nguydn Trung Lqp, 88 Chuy6n Vinh Lac.

Hlr Tay : Nguydn Manh Hd, 9K', THCS Lo

IABATIAIATT IC: BC: E- AC= IA+rc= b+7 = 12' YQy IA: 1AC :"L2 = 3,5. Vdi phAn gi6cAo, . u Ar 3.5 1._ __ talarcd, OB=M= 7 :rQ).K6thqp(t) v6i (1), ta cd GO /i IM (dinh li Tal6t dAo). V6y : OGBG222 IM: B*: t, hay OG =1r*:; (IA_AM) = = 5 (3,5 - 3) = I, ve khoAng e6ch cdn tim i^1rdo' d Nhan x6t. Cd 96 bai giAi trong dcj crj 5 bdi giAi sai. Nhi6u bdi trinh bdy dni ddng cri bdi dtroc trinh bdy hdt bdn trang grdy ( !). Dec biet cdban Hdn Minh Trunghgcldp 6E THCS Ndng Khi6u Thdnh phd Thanh }jr6a c6ldi giAi tdi cirng cric b4n sau ddy : Trdn Tdt Dat (He NOi, 8At PTCS Chu Vdn An), Trdn Thi He (Thanh f,tr6a, B Torln Irlang khidu Bim Son), Phqm Thinh NSU (Vinll Ph6, 9A, NK thi xa Vinh Y6n),

Lqi, Hd D6ng.

$t

a) ?4p {Mr} : Tgg2 OM, = M)A:' BM, - a. MpA ( 90o, MrOBag0. +M, thu6c cung nh6 M'M" cria drtlng trdn

q6

Suy ra ring o = b. Vay Hmr. tdn tai.

-

Hdi.

Her NOi z BiLi Mqnh Hitng, 9H Trung Vrrong, Nguy 6n Minh COng, 9A Cflp II YOn Hba, Tt Li6m. Thanh H6a : IIiLn Ngqc Son, 8E Ndng khidu Thi x5,, Cao Xudn Sinlt, 9T Nga Li6n, Nga Son.

Chuy6n Nghia Hinh, QuAng Ngei.

TP Hd Chi Minh z Ch_uy.g Nhd,n Phti, STr

Quing Binh : Trd,n Chi frdo PTNK D6ng Quing Tri z Nguydn Hitu Nghi, gTL Quing Ng6i : Nguydn Minh Qud.n, 9T, Kh6nh Hda : Bil.i Thanh Mai, 9T, Va ThY Dung Hba, Trd.n Tud.n Anh,8T, Le Quy D0n, Nha Trang. Nguy6n An Khuong,ro" *i*.*rMrHty

Chuy6n L0 Quf Ddn.

BidiTsdzg Cho dau s: { *n} tnao md.n L <

Chri ), ringr,, . i,r"do dci a +b < | = S' b) Trrong tU ndu r, ( r, t4.cring cri limrrrtdn tai. Gqi gidi han ldA. Ta c6 A = t + a -* - A={2. Nhfn x6t : C6c b4n sau cd ldi gi6i tdt : Neuven Ti6n Drlng 11 la NA-qg, Nguy6nPhric Xfiairn 11 HAi Hung, Trdn Nam Dung 11CT Neh6 An, Lo Hdnelia Vinh, D4ng Htru Thg, Binh Dinh, Nguy6n Anh Hoa 11A Nant Ha, Phan Anh fiuyliOa N6ng, Ph4m V-en Du 11 Thanh Hda,-Ddo Ngoc LuAn Hh NQi, Trdn Hfru Luc 11 6uinE BInh. Cd khd nhi6u ldi giai sai, kh&ng dirin aaf {rn} li tdng vi bi chen hoec chrlng minh gi6i han ld i. oANc HUNG rnANc.

tq.c ffan' [0, 7], c6 dao hd,m trong (0, 1) uit. f(O) = f(l) = 0. Chilng ntinh rd.ng tbn tai mQt s6 c e. (0, L) sao cho f(c) = 1.996f'(x).

*r< Zud.xn*r= I +sn =Zoo > 1. Chtng minh rd.ng day {xn} n\i fip uit. tim gi6i hqn c&a n6. Ldi giAi: C6ch 1 (cria b4n Nguy6n Minh

B,di T71229 : Cho hd'm sd f(x) li€n

3-(xn-l)2 Ta cd : rn+l" = z Tt dd bing quy nap d6 thdy 1 < xn < ZYn

1

,l

HOi hdt ludn cfia.biti tod'n c9 thary d6i hhdryg ndu f(0) = f(1) = m,'udi m lit sd th1c khat 0 cho trudc ? Ldi giai : (cria La Quang Adry, LlCT - DHKHfN - DHQG TP Hd chi Minh) ; cao Thd Anh,11CT Qudc hgc Ilud ; Truon-g Vinh Ld.n, 10CT PTNK Quing Binh ; N guydn N gsc Phtic,12I PTTH sd 1 Dtlc Phd - Qunng Ng?-r ; Trd.n'Ti,dn Dfi.ng,11T PTTH Amsterdam, Hh NQi Trinh Httu Trung, 11T - LrT Son - flranfr H6a ; Nguydn Tidn Dung, Phan Anlt. Huy, LlA1, 12Ar PT"itI 1.6 Quf Don - Dn N6ng) :

> 1. Khidd l*,*r - ,lZl=;l(B - (%-1)1- G - (rl7-t;;21 = i.lr, - {Zl I ,[i - (2 - x,1l (1) M 0 1 2 - *n < r/7 do dd_tt (1) suy ra lrn*,

Suy ra

1 -_,

T:2

1

- rlTl . *r*, -,-z1,{, = fr' t *n -,[21 lr"-rlzl . (#)'-' lxr-,El ' Vi lim (U^)"-' = 0 n6n suy ra lirnr,, = {2 Cdch 2 (ctra ban NguySn Nggc Hrtng 12? Thanh Hda). Bingquynap d6 thdy I < xn< 2. X6t hdm s6f(x) =- 1 *r - i.6 f'(x) = 1 -r < 0 Vr € (1, 2) vhy fk) nghieh bidn trong (1, 2). Do dti a) N6ur, > r, thiT'(r1 < flxr)'*xr< ro tidp tuc nhrt vAy ta cd x, > x3 > x5 2 ...vd r, ( ,+ ( ... Thnnh thtt hai d6y {rr*} vd {rr1* 1} hOi tu vn

giAsito=limrr*

b = limrru*r.

.b2

qua gi6i h4n ta c6 a = 1+b - , b = l*a-T

X6thim s6g(x) = ets%.f(x)x6cdlnht€n [0, 11. Tt cdc gshthi6t d6i v6i hdm/(r) suy ra him g(x)lilntgc trOn [0, 1], cd d4o hdm trong (0, 1) "u S(O) = g(1) = 0. Bdi th6, theo dinh Ii (0, 1) sao chog'(c) = O (l). Lagrdng, tae6 :3c € -xrlr Md,: g'(x) = eGG L/(,) - re%/(')i vr e (0, 1), vd -x (0, 1) n6n tt (1) ta c6 f(e) - ets% + 0 !r € ir*- f(c) = 0hay f(c) = 1996f (c). (Dpcrn)' Klii thay di6u kiQn f($ = flt) = 0 bdi di6u kiQn 1'(0) =-fl1) = m (rn + 0 cho tru6c) thi k6't lufn cta bdi torln s€ kh6ng cbn dring vdif(x) lit him bdt ki th6a mdn di6u kiQnf(x) li6n tuc tr6n [0, 1] vA c

*(a- b\(a+b - 4) = 0.

4

Phrrong 10A Hnng Vtrong Pht Thq).

BAi Tgi229. Goi AA1, BB tlit hai dudn"g cao cila tam giar nhgn ABC, M-uit M lh.n tuqt ld, trung didm, crta cdt doan th&.ng AB ud. ArBr. Duimg thd.ng CM c&t lai duimg trbn (ArBrC)Z T ud, duirng thd.ng CM, cdt tgi duitig-trdn (ABC) d T, Ch&ng mini rd,ng Trddi xilng u6i T qua duimg th&ng AB.

2" Ngodi cdc ban dE n6u t6n trong phdn Ldi gSdi, cac ban sau ddy crlng cd ldi giAi tdt : Lfirn Ddng : Phan Thanh Hdi (l2T PTTH Th6ng Long) ; Qu6ng Binh: Trb,n Dilc Thudn g}f PTTH Ddo Duy Tt) ; Thanh Hria : L6 Vdn Cuimg (11T' PTTH Lam Son) ; I.{am tl}r : {€"y6? 7a1Q Hoa (11A PTTH L6 Hdng Phong) ; Hn NQi z La Tudn Aruh (12ts PTCT: DHKH?N, DHQG HN)

NGUYEN K}IiC MINH

Bhi T8i229. Tinr cd,t cd. cd,c sd thuc a > Z

sao cho

n

t

(1)

t, G_tz\dt ,t | ' -_ to#*at2+L 8

v-

AB.M ; (1) vn do dti :

AA

Ldi giAi 1. (Dtta theo ldi gif,i cta Trdn Tdn D4t, BA, Chu Van An, He NQi). ViAr vd Br nim tr6n drrUng trbn dudng kinh AB, tdm M, n6n ta drrgc : CArBr = AtBrC - ABC; (2)

2-,

(Ki hieu .^ chi ring hai tam gi6c nly ddng dang nghich ('ddng a?ng nhtrng rlrq" hriOng)). Lai vi 7 nim lrg\dudng trot u ,(ArB rC), n6n cri :

(3)

cArBr- CTBL,

Tt (1) vd (3) suv ra :

/'--1-

-->i\

o

. _.----- ^

_..---\

Giii (cria da sd c6e ban), Dat r : -Y ^ thi dx - 2(l - P)dt l+tz (L+t1z trqt-t21at 1l Jot4+"tz+t=rl r*+*= 1 ,rE4 :warclg- Suy ra (l) <+arctg? : tr, Q) v6iu =Y, X6t hdm s6 f(u) - aretgu - i" , u > O. Ta cri f(u) = = Q<+4:

-[; f'@t

1*u2

4 x--r

- - MABr= CTBlvidoddA, M,T,Brcing thu6c m6t drrdnE trbn : tt dri : :---\\. /: MAT = MB.T, hayli: BAT: MBrT; (4) - Dttdng thingMtsrld tiSp tuydn tai B, cria dqg trbn3lQ!,BrO va B!9, MB{ = B:CT, hay ld : MB:T = ACM ; (5) AA Tt (2) suy ra CAtMz- CAM vi do dci : -..,-\ _..,.-\ ^ ACM = MrCAl= T:CB (G) Cu6i cirng, vi ?, nim tr6n dr.rdng trbn

dx

(7)

TrCB = TrAB Tt (4), (5)r(Qva (7) suy ra :

(8)

BAT = T"AB

u(ABC), n6n lgllrroc I .--.-

(9)

TBA: ABT,

A,a

V{y phggna trinh (2) cci nghiQm duy nhdt a

Z),'qJ

_ L

:l.havrla=Z-laas-g. 2

Nhan x6t. * Ta thdy bni ndy thirc chdt lA

bdiTglz2v.

+ CAc ban grli bai giei d6n d6u cho drip sd dring. C

Tt (8) ve (9) suy ra : ABT : ABf vi do dd ?, vi ? d6i xrlng vdi nhau qua drrdng thEngAB (d"p,c.m.). (Kt hiqu ; chi ring hai tarr gp6c *{!iu*a'u{t?tf $}1?"1'$?fl ,lff ghhb?#J; 11CT, Phan Bdi Chdu, NehQ An vi mQt sd ban khrlc). 9o.! fz lir grao didm thd hai cria dudng thing CM vli dudng tfinu(l&gL Cflngchfn! minh nhutr6n, vi CMviCMi lihai trungtuydn

xcuy,ru vAN naAu

Chrlng minh tuongAta dtroc :

tu.ing rlng cta hai tarn giSe ddng dang (ngh!ch) ABC vb,ArBrC, u6n ta drrgc (6), cring trlc li :

hay lA: ,

" *<*o + GB + GC + GD)z; {2) M{t khric, ta la. i cd (theo bdt ding thric

R2 - ocz

{GA+GB+GC+GD)x

vd ta dttgc : AT, = tsTz, BTL = ATz (10) M4t kh6c, chfng rninh ttlong tg nhu (1) ve (3) 6 trcn, ta di ddn kdt luQn : MArldtifp tuydn d A, cdra dudng trbn u L(A.B rC) vd do d

hfc.MT = M*l = MA.MB = MC.MTz {= !fuIlur(ArBrc)). Tn dci suy ra: MT = MTz, da ddf:ATF lh mOthinhbinhhinh vivi vdy:B?, = AT vdATz = 8?; (11).

" (# ** * ;e .fi1 ,,u (B) TU (1), (2) ve (3) ta duoc (*), d.p.c.m. Ddu ding thrlc x6y ra khi vdL chi khi : GA = GB = GC = GD (= E), nghia li G : O,vdt$ dtQn ABCD ld gdn d6u (Cti thd chting minh di6u nny blng phuong ph6p v6cto).

Tt (10) vd (11) suy ra : AT, = AT, BT, =

al

A BT, do i6'ABT : ABT vi ?1 = DAB(?).

20) B?n Phirng Drlc Tudn, ldp 10

-CT

NhSn x6t : 10) Nhi6u ben nh0n xdt ring, bdi torin ndy chinh Ie bai i'ndn T51211 cho PTCS, dd ding tr6n t4p chi THvTT sd 211 ra thring 0U199f (chi cd thay ddi cdch ph6t hidu d6i chiit).

Nhan x6t : 10) Kh6 d6ng c6c b4n tham gia giai bei to6n tr6n vd d6u cho ldi giAi dring; tuy nhi6n mQt sd b4n trinh bhy ldi giAi cbn rrldm ri' PTNK HAi Hrrng vA ban-Trdn C Hi, l6p 11 CT, PTNK Ddng H6i, Qu&ng Binh da d6 xudt vd cho ldi giAi -dfng bni todn tdng qurit hdn : "N6u G le Irgng t6ilr cria h0 z didrn- {e,1i = 1,2,...,n)} nim tr6n m4t cdu (O) vi cric dudng th&ng AiG cfit lai (O) 6 A',i Q : 1,2, ..., n), thi ta cd B.D.T. sau: nll

i=l

2") Ta vdn^cd k5t quA nhrt tr6n khi tam gi6c ABC cd gde C tt. That vdy, st dgng g

" Nhu vay, gla thidt tam g76c ABC phAi nhgn ld kh6ng cdn thi6t, chi cdn gie thi6t tam gi6c ABC kh6ng vu6ng d C mi th6i (dd At* B t). NGUY6NOANCPU T

,

Hudng d6n girili. Phuong trlnh dao dQng

Zce"rZce, ). Ddu d6ng thrlc d4t i=r duoc khi vh chi khi c =*0 uvEN oANc pn{r B,diLllB?,g.M|t con ld,c ld xo c6 kh6i luqng m = 200g ud dao d.Qng bdi chu ki T = 2s. fqj, thdi di{m [ - 7s- con lfu c6 uLn t6c u = -25,{2 n . L0-3 mls uir cd thd nang wt = !25n2 . 10-6 J . Hd.y uidt phuong tinh dao d,Qng cila con ldr ud. tinh ndng luong eila n6. di6u hba ed d4ng

,,lt

BAii Tl G/229. Gqi G ld. trqng ffi.nt efia til diQn ABCD, nQi ti6p ntQt c&.u (O). Cd.c dudng thd.ng AG, BG, CG uit DF cd.t lq.i (O) theo thrl ttl d AyByCruit. Dr. Ck*ng ruinh rd.ng : GAl+ G.ts1+ GC1+ GDr> GA + GB + GC + GD

Prz

---t,

xt - - 4

.

A = bcrn; g= (cur).

Lei giai. (ctanhidu b+n). GoiE laba- klrl rn{t cdu (0), ihi ta cd : GA.GA. - GB.GB, = - GC:GCr= GD .GDt=@l(O) - R2 -OGz Do dd ta dugc :

kN marZA^2

,1

1 1

r =Asin(arf +g) (L), vdi o: , =tt vd h=maT. Tir di6u kiQn da cho r= -2$[Z ru.10-3 m/s vi W,: 7 = l\1ttz ' 10-6 J, thay vio (1), giAi ra ta drrgc lt\ t f = bsrn \", 'A ) Nang lugng w=wa+llrr=w**

GAr+ GBt + GCl + GDr= (R2 - OC?) x (i)

crla con l6Le : =-=--=22

+

r "(**cs*GC+GD); L,ai cd : -r -*

t

+'^

-+

:++---'+-+

1

= 250 "n2.t0-6J. NhAn x6t" C6c ern cd lbi giAi dring : ?r&n Quarug'Vinh, XZTa6n, trrldng Shuydn l;6_qryei! Suank Nsei ; Hdn Vd,n Th6.rug, 1 1A6, TIICB dao D-ny Tr), "fhanh EX6a; Va Mq.nh Hitng, 11E2, PTTE{ Eim Son, T'hanh I1[6a ; Trucng Cao Cubng,12 Torin, tffBng chuydn Le Khidt, Qtr*erg Ng',i.

MAi,qr\iH

-r 4(R2-OG\ = O.A2* Otsz+ ACz+ ODz- 4AC? = tdc + &12 + @Z + GB)z + (oA + G-C1z a + @A + Gb\2 - 40# = GAz + GBz + GC2 + + GDz + zod GA + cFt + cc + cb1 = GN+ +Gts?+ GCz+ GDz>- *EA + Gts + GC + GD)z

8)

C6si) :

vbrvrErrirvn clr{r (tidp theo tang 1)

BAi L2l22g. Cho m.qch d.i6n uE dudi, udi x,*tr=48f/",di€n kd G c\ri 0,BA; u6n kdchi z4v.

X.) Tinh dietu bd g crta diqn kdud. gu

Rt= 3on

etia udtt hd.

),-

2) Tinh di€n trd x trong 2 trudng hqp chuydn x. sang ll AB thi :

I)EFGH in hinh vu6ng 2)St _ W IO EFGH Blr! tori,n 2 : Dr.tng hinh vu6ne ABCD bi6t to6n 2 : Dr vi tri dinhA vi vi tritrirng didm N 6tra canh BC. fl ulnnJt va vl Ert Erung crem.{v cua c4nh,6(_. didfiM lf n&mfran naic+nti p-!4.tam I ""a.h+i ri t6.m O vihai didfrM. Nnim t"r6n haicanh ddi di6n crla hinh vu6ng. ddi di6n crla hinh vu6ns.

Bgy gid,.c.r{c bqn hay dirng cric kdt guA tr6n "_ oe glar cac bal tap sau : . Bbi tfrrr I : Cho hinh wudno AtsAfl ennh - Biri tflp I : Chc hinh '".uOne ABCD e-anh N, P, q, li trune didm cta'c6r bing o. GQi M, N, P, 0 la trunfdidm cta'c6c *nfi AB; Ed:'cd.^iL Ua" fiit"?11ai,EaN. canh A-8, BC, CD, DA. Cdc drr6ne thins AI/. :D, DA. C6c drr6ne thins AI/, q?,.Cq, qlq nhau tao thinh tdsrilcdfiGfl "$ nhau tao thinh ffi"s)6cEFG.L{. Chrlnrminh rinc

Bir! t96n-4 : Dgng,hinlr vudng ngoai ti6p mQt trl gi6c eho trttdc (D6 thi vdo chuv6n toair DHTH vA DHSP, 1972)

a) Diin ffi kiun mqch dat 6ng sudt c49 dgi p r,* b) Di€n Eludarg d6n gi6i. t') E = 1(r+r) +R2(I -I)+[JI-.>BA=4BI*

+40(I -0,2E *24-->I = M

*g

Bhi torin 5 : Cho hlnh chtr nhdt ABCD vir mOt didqM chuydn d6ng tr€n canh BC. Phdn g76c DAM c6t canh -tsC tai N, Xric dinh w tri M ia *3' "'# uu, gi6 tr! nh6 nhdt.

UAB=R'z(I-tr)+tJv = 32V.-+s =ry - tst=1oQ;

(tidp theo tong 9)

trd x dqt c6ng sudt cqc dq.i pon*.

U,

7--++

= 600 Q.

Rr=-;--= lv

U,.

*r.;( fr +fr12 - lfr -fr111

1

- ABz + ACz +; @p _ CBz)

UAB

o\ D

ld:

Do dri Ap=g;+-ff,n^,

*3=

b2 +c2 az 2-7

DI

.--'t*!+

b) CdEh 2 ; Goi f]d trung didm canh BC. Ta c

(r + R)t 3b

1

I -Is* R. Z)Itas= I =32O. a) Khi r chuydn sang lll-B thi mach ngodi crf di6n tr6I = #vi cri c6ng sudt p th6a rwdn EI = rI2 + p. Tt dd L = E2 - 4rp > 0 --> P** = h *t A = 0. So s6nh v6i bidu thric tdng qurit p : ;:\,Y;,;tathdy khi c

Be"

; hay li

u E,_[J

v6i

J

uv

Tt dd P, d4t cuc dai 'khi r = r' "--

32r

b) Gsi ,I' li dbng qua tr, I,o ii ddng qua doan mach AB cci chrla R1, R2, g, R3, R. Ta crj t, 7 - E-U r =t-tz=--T--E;= E,= 8o #vir,= #

NhQr? x€t. Cdc ern crj lbi Biei dfing z Trd.n Sy,ipon Ha, 1l Ct, P?THns.rrgkhidu, ere&aag ffiinlr ; Phan Vdn il*c 1"L"{,, pTTi{ phan gOi Cxr&u, Vimh, F$ghQ s^:e.

h,{Ar A.NFi

48 -r = BZ +r --'r = 32O, v&do dtir = 16

= ACz +AB2 _;@Ap _Be) suy ra AP=ry ^ b2+c2 e.2 ma= 2, - 4' _ Q.dd.t_cfuph trinh ldy I t11 nhi6n vi cho th6y 16 ydu td cdn tim, cdn-c6ch trinh bdv 2 lai sfi minh.mi iac tX gla dung dring ki thya! -chrlng dE dirng trude dri ddi v6i-dinh li ham s6 c6sln. Hon ntta cA 2 edch n6u tr6n dpu cd t6e dung cring cd dinh nghla tich v6 hu6ng crta Z veet6 mA. crle tdc gie dA dt{a ra. ,_ Cu6i ctrngxin cd rnQt d$ r:gh! v6i c6c tr{e giA : N6n cheng vi6c dua dlnh t{ h6m sd sir:" l6n tril6c, g6n vi6c xAy dung dinh Ii hAm ed e6srn v6i vi6e x6y durng cQng thdc tinli dO dei trung tuydn tam gi6c erhtt thd tV d6 trinh bdy trong n}:Ung:rem trutdc d6y"/.

nx-1

NcuvBtl utuu otjc *'*!:

cho

b) lim a, , n+*a

SE RA Ki XAV

thrlc f{x) = xa + 4x3 - c2r2 - tzx + l' H6y tinh tdng v6i n li sd nghi6m vd r, Id

S = ! -:

Bai T fi83 : n 2r?+l - ,!!r(xrt - 1)z nghiQm cfia da thr3cf(r)'

ooan rri6 pHrE.. (Nam Hd)

Ehi T1/233 : Cho daY s6 nguY6n an *z * a, - r = 2 {on n t * on) Yn > 1 Chtlng t6 ring tdn tai sd nguy6n M kh6ng

{ ""} ff = o th6a rndn :

BAti T8/233 : Cho ba sd thrrc a, b, c th6a m6n di6u kiQn az +b2 * c2 = 2. Chrlng minh ring :

M *4an*r.an ld sd chinh phr-tong Yn > 0

DOAN Q{JATG]4ANH

1)lo'rb*c-abcl<2 z)la3 +b3 +c3 -tubcl <2{2

ohu thu6c z sao cho : '

Bhi T21233 : Chrlng rninh ring n6u ")

(a+c){a+b+c) < 0, thi (u - r)i;;+?,["of '

{IIdi Phdng)

Bari T3/233 : Cric sd nguydn kh6ng dm, a, b,

BAii T9/233: Cho tam glecABC cci c6c c4nh A, iiii Artdng cao vi trlng tuydn trrong ring l;-h;,;;,h;,-;;;,*u,rr,, diq"n tich s' clrng ", rninh ring :

c. d th6a min di6u ki6n : '

a)a*b*c>2W.'{S b) tr.,.m.! + hu.nt! * n,".mf, > g {F's2'{s t-ti6lc NcQc vu

f"z + zbz + xcz + 4d2 = 36 (1) lzoz +b2 -2d.2 = 6 (2) ii* gia tri nh6 nhdt cirap= o21162l-"2162

'"fi##r'f"

Bhi T10/233 : Ciro trl diQn ABCD vi mOt didm P sao cho P A2 + BC2 + CD2 + DB2 : i-*+ coz+ DA2+ AC= P G + Dfr + AB2+ + BDz = P D2 + ABZ + BCz + CA2, Ct riog minh ring tdn tai trong khdng gran

m6t didm M th6a m6n

BAi T4l233 : Cho tarn glilc ABC.tlhg+' Csi (0,1) la drrdng trbn tam D, brin kinh bang 1 ngoai tidp tam g16c ABC. - Chfn! minhrang : a *b * c > abc' Ddu "=" xlY ra khi nno ? .

N vAN TR6c

(Qudng Ngai).

AGr= BGz-- CGr= D6o Trong dd G 1, G2, G3, G 4ldn lrrqt ld trgng tdm cta oic trl d iC\tt'' MB c D, *1?*-T?fl"lMAB c'

(Btnh Dinh)'

^ Bili T5/233 : Cho tam girie vudng ABC ( ) = 9V ) drrdng cao AH, trung tpydn BM vir pt ao eia'" CD d"dngguy-tai rnQt didm' Chrlng {5 - 1 minh ring sinB = z

Tt dci suy racdchdtrngm6t tarn gi6c ccj tinh

rnAN xuAN PANc (Nan Hd) n

vr oueic D,NG (Bdc Thdi).

cAc oii vAr li BAi L1l2S3 : Tt 2 didm A vi B c6ch nhau 100m. xe 1 vi xe 2 cilng xudt phiit v6i ctr-ng vfln ;6;;': :,;= L0 m/s' x"e 1 di tLec hrrdnghop v6i eS iAcOOl. niAt ring 2 xe so g?p nhau d C 'H,ey x6c dinh : ---

cAc l6P TrIcE Bei T6/233 : Cho m la s6 thgc duong' Vdi m6i n nguY6n drrong daY sd thgc

- ifuang chuydn dQng cria xe 2? - Th,di didm 2 xe gAP nhau ? - Tga do didrn c ?"

I e,,,i\ f = 6 d,roc x6c dinh nhu sau :

,1

chdt n€u tr.n'

an,o= ! on,i*t= an,i ('*;;o,,,r)

l=0, lr...n-l en,n2fi+fvdimoineZ+

BBi L2l233 : IvtOt diQn tich didm o - *2. 10-s c drlns c6ch tdrn kim loai phing irOt aat *6t Lt oang"o -= 3cm' H4v 16: dinh lgc iJo"iiacsi,r" diQTr tich s. y? t6+ kim loai dd khi dEt chd'ng trong chdn kh6ng i

ltl

-

-z+

NCUYEN DUY TRUY (:fhdt Btnh).

pHau soNc ouYd,r. (Hd N/,i) ooi

i$

2) Gie sil m > tr . Chring minh : uj on.n. * 4 vdi mol rL e' &'

)

1)Provethatifnr.,{r"t+L

r g

tl a ^

fi't

u) on,r, <

!.2x!+t _ ,y ,4,r*r,

",'*:,,*=#' T71233. Consider the poll.nomial f(x) = xa +4F -2x2 - 12x I 1 . Calculate the sum t : Where n is the nurnber of roots and

-

"zi

T'8/233. The real nurnbers o., b, c satisfy a2 +b2 + c2 = 2. Prove that : l)la+b*c-abcl <2, z) I a3 +br + c3 -Sabcl < 2{2 . T97233. Let h.u, h6, hr' and nzo, trl6, nL. be respectively the altitudes and the medians of a triangle with sides @, b, c and let S be its area. Prove that :

@N$Ill{il we" uQlL itst * ";is?#"a7nir*> 1 prove rhat: n? * lfor every n e Z+ FOR LCIWER SECONDARY SChIOCILS - T1/233. Let the sequence of integers { ""} ff :, satisfy an + 2 * an _ I = 2(an + I * an),Vn >- l. _ Pro_v-e that therq exists an integer M, not depending on z, such that is a nerfect =o,ru"J#BJ "h , a. TZl233 Provd that if (a+c)(u+b+c)<0 then (b - c)2 > 4aia +'b'+ c) . T-8/2P3. Thg-non positive integers a, b, c, d )", + 2b2 + Sc2 + 4d2 = 96 (1) lzoz+b2-2d2=6 (2) jz . Find tile least value of P=a2+ 5za T4l28e" The radius of the circumcircle of an acuteangled triangle {BC equals 1. Prove that a*b*c>abc. When does eoualitv occur ? T5/233. The'altitride AH. the median BM and the4ngled-bisector CD of a right triangle ABC (A=90o) are concurrent. Frove that sinB :

a)a*b*c22W{9, b) homf + hrpt + h"mf; > s 1{3 s2 {s. T10/239. Let be given a tetrahedron ABCD

x; (i = 7 , 2 , ... , n) ate the roots of f(x). satisfy the conditions :

',1 5 - 1' -, triangle.

FOR UPPER SECCINDARY $CHOOLS T6/233, Let nr. be a positive real uumber. For every positive iirteger n,let { a,,. il i: o

,1

Deduee from it the construction of such a

be the sequence of real numbers defined by : _1' ^ @n,o - tt an,i: an,i+,(, *;non,i) Q = 0, 1,..', n-L).

ffiA,* dure^gt e6a4t tituib ffiffiffi@mfriilWffiffiffiffiT$Nffiffi

o6 Nnrl NGec *:no'n'":1'

+ +- +

= (IA + IC12 + {IA + IC)z : 2IA2 + 2iC2 }eay bz + c2 = 2nlo +, (b'. su, ra cong

thtlc d6i vbi m " -- "-a ---- i- ---

--> +

and a point P such tlat pA2 +BC2 +CD2 I rtg2 =pg2 +CD2 +DAz I 4C2 = =P0 +DA2 +A824BDz - PD2 + AR2 +BC2 +CA2 . Prove that there exists a point M in space such that AG, = BGz = CGs: DG4, where Gl , G2, Gj, G4 are respectively the centers of gravity of the tetrahedra MBCD, MCDA, MDAB, MABC.

..-t

Trong phdn "H6 thrlc ktone trong Tam si6c" cua srich-girio khoa l'dp 10 Ban l{hoa hbc Tu nfiion, c?D tac gie de xAy dgng c6ng thric'tinn AO aai dt.tdns truns tuv6n tam siric benp nhtronE ohd,o vecto-(nhtr da tlm ddi vdi dinh iffibm s5?tisinl. Day lh qich lArn ggn vi. d5 hidu. Tuy n-hi6n, cdn ccf i:rich trinh bdylhric hop li hon.

Trddc ti6u, dhring ta'iem c6c tdc giA vidt : "Ggi.I l& trung didrrecanh BC. + -+ Tacri: CA=IA-IC -..) -+ BA=IA-IB -t

lry

O dAy, theo t6i vi6c viSt CA, B$lh4lrrra trr ub6a*"i hoc sinh thildng vi6t AC,AB ho4c CA,AB (kidu ho6n vi vbng quanh). Mat khr4c, muc dich li timmocbn b! "khudt". Theo tdi nghi, cd thd trinh ba'y theo 1 fiong2 crich sau dAy :

Qg dci :* CAz +BAz = 4+^++ (rA - rc)2+ (rA - rc|t:

(xem tidp trang 7)

a) Cd.ch I : Goi f lA trung didm canh BC. fheo $S t$1c trung didm ctia doan th&ng :2 AI = AB + AC -r8 * 4AIz : AB2 +ACz +2AB .AC = ABz + ACz +

-

codnfr cfro cdc 6aru cfrudh 0i tfri r.'do dai froa

$ru$ $uru$ E{cm PHAH vfmrx un#r af,qn*

t

h

Brr6c 3 : Kdt lu4n Lint Sn = [ 161ax

a

tt+ @'

o Nhie lai : Dlnh nghia tich phAn (GT12) Cho/(r) xde dinh tr6n [o, b] 1. Chia dogr [o, &] thenh z p]rdn b&ng nhau

-

trudnshqp

1-

,2,

,n,

2(b -a\

bdi (n + 1) didrntti",, 1i =ffi1nhu sJu ' xo:a;*l=a*

.n ls^zlr f \

I

I

ffo= a <.rl < x2 1 ...< xk< ,..4xn = b v6i b -a n ;o2:r*-,,, = u

-_

-

drJ&"jIsJEalfI ll tl#fff,*+p B"r.iAe 1: BidfrddiS,?thinh d?ng s,=;[r(;) *r(;). nr(;) i= ,1. - n.L-t \n l'

b--a

eua"d,=qii ra him /vd chring rninh f li6n

tuc tr6n-[0, L]

=6i=a*i-.Tinnf({,)=f

I

...xn= a *n .* 2. Ldy Ei : xi e Lxi - 1, ri1 i = L,n , \o*i

3. LQp tdng

NcuvEN TI{ANH GIANG (Hdi ltwng)

b-a, " ) s, =) f(6i) (xi - xi - ,l = .Lr (a + i*)

"

l=I

/!

n2+12' n2+22'"'' n2+n2'

\ b*a, n I

n L'\

Tilrh Limsn n+*a

Et b-a b-a. x-=-lflc*-\+ n 2(b-a\. ,

b-a.

*r (" +i::---2) *... *r (" *".7) ).

f@)=i -

ra cd : s.=:t:*.xet ,",=r

1* (;).

tr6n [0. Ll + f(r) li6n tuc tr6n [0. 1l

( S, : Tdng tich phdn (tdng Rieman) eria hnrn / rlng vdi phdn ho4ch d6u [o, b] rlng vdi uich chgn Ei6budc2) 4. Ndt flx) li6n tqc tr6n La,bi tni

fia

\;)'

r

Khj dd : S, lh tdng tich phdn c,5,af\i) tren [0, 1l v6i ph6p chia [0, 1] thnnh z phdn bing nhau bdi cric didm chiar , = f, G = on) raic6ch chgn ;_ €i= oelxi-1,x,i (i = 1z)tfclir: q' = if(6'14' =i__+- := i: tl + i: I , -1( - tL.,/-. , i,; (o, =xi-xi-r=;)

Lim Sn= [ Sg1ax. "l** tim sr6i han- tdls Sn = ur * u, * ... * un (Lim S) phg thuQc vdo n € N trong nhi6u trua#inrlp ta ari thd ddn ddn d4ng tdng tich phdn ) ffeil { rdi tinh tich phAn tuons rtns. gin&;;ch dnh tlch nh6n ta tinh drroc fi6i h"an cdn"tim. Bni torih : Clio S, : uI* u, * ... * zr" Tinh

'n d,x

Lim Sn? n+6

r1 7[ = arctsx l; = ?'

Budc 3 : Kdt lu@n Lim Sn = { Y61ax. o Sau day ta *gti?It i.au'o VD1 : Cho Sr=-! ^+-2+...+-tt-

Ngohi c6ch t{nh tr{c ti6p tdng S, nhd c6ng thdc bidn ddi. (dac biet li c6ng thdc cdp sd cdng (cdp sd nhdn) ia rrit 'gq, S, tEeo rz tii dri suy ra Lim.Sn ta cei thd tinh gi6i h4n nhd tich phhn

ir,'*X bu6c sau :

f ,=,1 * \n) o" uo!:Tj" = Jr u ", VD2: Tinh 11 -1 ,,':T*i#+dry**wffi) Tacri: * '- - n - 1 -r 1_-: * Dn - iTilry' {4:$4r'''' {TF:F

,\

n

&

.

r

-tjl vtl i

, t

s --

"a* h -n.'- zL L,\ .t &-.s,. &*fi 3LJ_1

n.#-"\7t,)

i___-_____* i tn; r -"- I LH - nZ

Bu*c fi : Qli ra rra::r pvhlh{lng minh flii6n

'crirc tr6m [#, &],

ItJ

Hudc i ; Bi6h ddi S,, th&nh dang ; b *a, b*a Sl.. = -"-- :" 1 f {a +1.:-:'r"r f {s +2." * i + ,, n n / / &or, +, "+/"i tt-t.tL.-- ) I = -- 5' I { cr r- j ,'--

g.

. n+**

VD4: TInh

tr6n [0, 1].

i._

;

tdng

:_t, Ta ed ttnl1

L

+ LimS, = J e.osttx * =Y li = ,. **) (, * ?-l , F.*\* ,yT-l(r D4t ,,='l(r.,*) (,n?.1 ?":\: vd s,=rn Pn=i[* (r+) *...nr" (r+)] X€t harn s6 y = f(x) = ln (l +r) li6n tsc tr6n [0: 1] IGi dd S- li tdne tich phdn ctia him f(il trfun [0, 1] coi pH6p chiE [0, 1] thanh z.ph'dn'blng nhau bdi cric didm chia x, = I vd ehgn Ei = i e lxi - p x) (i = Ln) v6i Li = i.

i-1 '1

71+*m

o 11

Chia [0,.1] thdnh'z phdn blng nhau bdi c6e didm ehia *i=* Q=7e. Tr6n m6i doan x)ldy E, = * (i = Ln) ; t;=*;*;-r=1. f*i tich ph6n

=l

OO

'

dx

:1+ 1 _, "?'uS-e)' "" ,':T!.:[#=*i il (;r

1+*o

eari= cosf, (, = [ E,t1) + dx = -%osirtt d.t 1 x : 0 =+ / :

Do dd limsn= [tnql*1ax = rtr(.Itu) l1 - 1, - I # =rn2 - I a* * I # = 2tnz - 1 ,+ lim P, : lim do = , JTJ" - e?tnz - L n+*o Ta x6t rl du *a him l6v t{ch phin x6e dinh

[ ; * = t *

-

.xL o _

zsrn zsrn

,). U Do dti Jt

lt

n

tdn [a, a7 marig lt t0 ; 1] " l- . xt . xt sln- . I Sln- "=+--+

Tinh tim\l ln

-'l

I

n-+&z lL *..#** , **7fu* , fut nsln-

++-fr1

zri','u

- r '" -2sint dt 2- '=;tu# = [o':'1*=Z-X:Z ,a '^t^yT:"=t \lDB : (D6 thi DHQG IIaNOi kh6i D - n6m t99b) Tim

Det s:fr'l

'

n

'

nill 1 *cossp2 o , . I sin{ n + n * "z lt +co*f, r +.oir%t

ln

Det

?n.2n

.nnf Tn-n nlnlnnrun

-h,,T-t=-t._-.=--T--r

2n

xL

0'-n, *"'4 cos: +coff + co#)

lT; (r +cos L +"n T. *.o,4o) ,,,:*(r +""i +.*3+...+"o r**): 7 / n-l =n_\:': ." "

Ltt zxt - -

+...+-

_oLrn$ 1ao.&- =*,2,'(T)

Xdt f(x) = costtx, tr€n Chia [0, 1] thinh z phdn blng nhau bdi crtc (i=o;n-L)

,*"r[l TXtt ..tL1t 4Stn-nn ^llxt 7 + cot- n

I , 0,n

[0, tl

Yi ': ..

1

=+'t'r(o+'+) Kftf(x) =,ffiLi6n tsc tr6n [0, z]

r?.

,r-r1 i a4" "* .; = ; ( g6s ;o)=sn

n-l -)r"G) o, = + cosL+... + "orL-

(xem tidp trang 13)

11

orem cnra xi=i(L=on) chgn €i= n thu6c [r, - 1, xiTvdi i = I7 *,a a, = -L. *

r,$ IT,illllt ilr ffi l'fi [Jl[i iffil

I

il]r1ilI ilrilrli $fiIlfiIft rfilfir; I

NcuYEN THUC HAo @a Nai)

@)

Lx, a7 = -_r1ta,bll [r, b] = Ela,b) l

Ta suy ra

(5)

Ch* !. - Cdihd

62+q2=t minh d6 ding ring "n,frrg OAt OB lh,hai b6n kinh li6n hop, trlc AA', BB' td. tzai dubng h,inh tihn ho.p crta dubrug elip'

Trong hiuh hgc phd th6ng, ngrrdi ta dlnh nghia drrAng elip vd hypebol, vdi 2 ti6u didm F, .F.1 ve fing Ai6u ki6n li tdng ho4c hi6u cta kho&ng cacfr tt didm M ddn F vi .F''khdng ctdi' Ndu ia tdng, qui tich ciaM ld drrdng elip ; ndn l}r hiQu thi quy tich ciraM lA dirdng hypebol' Cbn paratrol thi lb qu! tich didrn M ei'ch ddu mQt Aldm cO dinh.F vA dridngth&ug cd dlnh A' Cflng cbn cci dinh nghia chung cho 3 drrdng, vdi mQt ti6u didm .F' va dribng chudn tudng rXng A' Di6u kiQn det ra trh ti sdp cria khoAng c6ch trJ M ddn F vi A ph6i Id hing s6. Quf tich c&aM li elip,. hypebol hay parabol ld tny theo,u < l, lt > t, hay li pr : l.

II" Dinh nghla dudng h5rPebol Ch.o ba d.idm. A, A, B kh\ng th&ng himg' Ta s€ gqi tit hypebol qui tich didnt' M sao cho hiQu sf-crta nai iirun phuong d,iQru tich cila hai tam' giar MAB, ruOd &tio thf tg) biing binh pt uong d.i\n iich cila tant gid.c AOB' Trlc li (hinh 2)

Nhung trong hinh hoc afin, chring ta kh6ng thd lim nhu vf;y, vi khod'ttg cd,clt. lit' nt|t khdi niQm khdng c6 ! nghia gi trong hinh hqc afin' Thd cho n6n sau dAy, ta sE dirng diQn tich afin (ctra binh hdnh hay tarn gi6c), li mQt bdt bidn afin, dd dinh nghia 3 c6nic.

(7)

oBI42 - OALrt - OAB2 (6) Qcd phrrggg trinh-gecto- bing cdch dat OivI = x, OA: a, OB = b Phrrong trinh (6) s6 vidt drroc li fx,bf2 -fx,a)z - fa,blz

Thay vdo (2), ta duqc

I. Dinh nghia duirng eliP Cho 3 d.idnt. a, A, B khOng th&.ng hdng. Ta sd gqi l&--"lip quy'tich didnt M sqo cho oAr,I2 + oBlli2 = oAB2 (l)

s6 cci drJgc, c6n cri vlLo (4) :

(8)

Ez_rf=t Ta thdy rlng O li nm ctia drrdng hypebol, didm A thudc hypebol.cbn didm B thi khdng' Hai dttdng thing chtra OA vd OB ld hai dildng hinh han hqp. Chil !!6t

trlc lir : Tdng cfia binh phuong diQn t{ch hai tam gid.c MOA, MOB bd,ng binh phuong diQn tich tam gid.c OAB (xem hinh 1)

Phrrong trinh theo tga dQ, vdi co sE {o, b},

(8',)

thaYjigu ki0n (6) bing OAI,I2 - OBIO - OABz thi quf tich cria M s6 cd phuong trinh €2 -'12 = -l

Fllnh 1

R6 rdng le A, B thuoc dudngelip. Cbn O ln tdm (ddi xttng) cta elip. Ta h6y tim phrrong trinh crla drrdng eliP.

(Trlc tarn girnc OAB ln m0 t tant gidc lieghqp) ' Ta h6y d4t x = OiuI, a - OA, b = OB Ldy diQn tich binh hdnh (gdp doi) thay diQn tich tam giric, phrrong trinh (1) vidt dugc li

(6')

(3)

Dd la dudng hypebol liAn hqp criadrrdng (8). Nd chrla didm B mi kh6ng chrla didm A. Trong hinh vE dudnglf l}dudng cd phrrong trinh (6) cdn .H' la dudng hypebol li6n hgp c

x-$a+rp

12

lx,a72 +fx,blz = {a,bfz (2) Dd ld phrrong trinh vecto c{ta drrdng elip' Mudn c

trII. Dinh nghia dudng parabol

v6i kf hi6u nhu tr6n, ta cri phuong

lx, a12 + [x,b]2=$fx-a, x -b)2, lt = const.

(14)

- "Ch.o 3 di&n kh6ng thary hhng O, A E. Quy tich didrn M d citng mlt phia uoi A dli uoi ditong thing OB, saa clio binfi. phuong dien tich Am. gtlc OIIA bdrw tfch xj crta dicn tictl OUA ugi diCn tich OAB, -So! lg rrfut dudng AUW parabol. Ta r"f di6u ki6n

(9)

(16)

vd a ld hing sd

oMAz =dW . olB { -va Sgtns plia drrdng_lhing oB (hinh B). Det OM = x, OA: a, OE'= b Phuong trinh vidt drroc li

(17)

(10)

Chuy6'n sangtga d6 theo (B) va. (a) ta s6 dtioc

r7 cia.M

(11)

r-,-C"Ol{- trlnn sau :

rlring OB p tidp tuy6n tai O. phuong

-zp€rt+zp(€+D

-p = 0 (18)

lx, a]2 = lx,b)la,bl - ,t :6 ^2_ ^ , ?.ual.g UA!4vi6n phtrong cria parabol.

hay ld Z(lx, alz+[x, b1z)-tre fx, b]*fx, al+labl)z=g + (2 -p)([x,a)z +fx,b]\ +2pfx,al[x,b] - * 2p[a, bJ[x, a - b] - p[a, bJ2 = O (13) nnuon6,1riYltfii,;'#l*o trong dci A(rr) lA d4ng toin phrlons A @x) = (2 -p) ([x, a]2 +lx, u1z1 +4i.1x, al 6 bl ( 1 b) "u" nP,li9rrrfflgn;i2o_, a- -pfa,b)z Ctng vdi cdc ki hi6u nhrr trong qic phdn tr6n, ta se cd phuong trinh sau crla-c6nic, theo toa dO €, (z-p)(€z+rtz)

IV. Dinh nghia chung B c6nic

=(2-p)2-p=4(t-p)

z -p

_ Tr6n dAy, chfng ta d6 dinh nghia ricng fi6i dudng c6nic vi. dudne c6nic vi. ldp phuong trinh lQp phrlong trinh cta chfns du6i dang chi dang chin6 t5c.

Bay gid ta hey xdt quj tich sau vA. dinh nghia nd.

dang todn phirong li 12-u -u A)= ' o' I l-p Ta suy ra 1) n6ul < 1 thi @ ) o, ta cd gidng elip 2) ndu p > 1 thi @ 1 O, ta c

gioc lien hqp).

. (rxcorwcriclrp[rAN... (tidp theo trang I 1 )

Trong phuong trinh ( 1 8), ta cci dinh thrlc cria

didmchia *i=TQ=M)

Chia [0, z] t_h3nh z phdn bing nhau b6i c6e

vaai=i 1t

,,++@

r a ca iJ{€ j:1

i=

2. Tinh ti* [ 12 n. 2' * + ,*+J 23 +n3 43 +n3 ' "' *--!-- *..*-4 ^l (oo rs+. iv*) (2k1t + n3 ' "' ' (2n\3 + n3 ) \YU re r' r B. Tinh r.* 15 +2s'* ... *n5 4.Tfnh rm1/sir-z' - 2n.

n6- ,,,+sin-+"'+si"

'

j

(D6 24' IVa) ,-i "

TrGn m6i do4n [r;-1, r,] chqn €,=T Q=fr)

- I *COStf

1

1 -

iro, =i ( *l *=:21 (T) = r, + tim =i .I.th*^ d.x = J n+fa Birrg phuorig phrip ddi bidn ban tinh dugc

l

5. Tinh Iim j

27.2n

n-,a,p\ 1/ /--f _ n-+* \ 1 +"irr9 a\t--r-il

Zn 1+sin,

+... +

1

.hit I * sin=- + ... + Zn

ruJt

", J=T(Detr =n-t). ,n $tT ctng mdi ban lim mQt sd bdi tap tudng 1. rinh,rimJ# .#+... + #l

(D6 59.IVa)

"arrlV"*)-

13

(D6 56 1 + sinfi (DHQG He Noi 1995 khdi A).

Db THI eudc GIA cHoN E{sc sINH ctot roAx r,op g NAwr rrec Lees - Lee6

NcUYEN u0u ruAo (Hd Nai)

Bing A (180 phtit, kh\ng hd thiti gian

b. Trong m4t ph&ng tqa dQ xoy (o li gdc tqa dQ), ngudi ta v6 mQt drrdng trbn cci tAm ld didm C t3;4), bdn kinh bing 2 don vi'

Bei l. a. Tim tdt ch c5c sd cti hai cht sd o6

sao cho , -'" ,,ld sd nguyon t5.

la-ol

Hey tinh 916 tri nh6 nhdt crla tdng oic khoAng crich tt didm M tr6n drrdng trdn tdm C ndi tr6n ddn hai trgc toa d6 ox vd oY.

Bing B ( 1 B0 phtit, khOng hd thiti gian giao db) Bhi 1. a. Tim tdt cd cdc s6 cti hai chfr sd od

b. V6i 100 s6 t1t nhi6n bdt ki, h6i c

sao cho r-----i- ld s6 nguy6n td.

, a.b la-bl

b. V6i 100 sd ttr nhi6n bdt ki, h6i c

BAi 2. a. Cho 9 sd duong ap az, a3t ..., &9

BAi 2. a. Cho a, b ld c6c sd drrong th6a mdn di6u ki6n az = b + 3gg2 vd x, y, z Ii nghiQm dtrong cia hO phuong trinh lx*y*z=a 1t, oy, *22 =b Chrlng minh'ring giri tr! cria bidu thric P sau

giao db)

or(1 - a2),a2(1-a3),a3(l -ao),,..,as(l -as), ar(l - a,) ;

ffi - P:'lff* W*'\@* -@a-11 - V

tdn t4i ft nhdt mQt tich sd khong lan hon |. b. Cho n s6 thttc drrong xr, r),..., r. vi khi thay ddi thf tu vi tri ctia n {6 aa, Ta drrgc xir, xir, ,,,, Xin(n > 1).

i

ring

x;

1996*22 b. cho ru s6 thrrc drrongrp x2t ...2 r, vi khi thay ddi thf tU vf tri cria n sd dci, ta dugc xir, xir, "', xro(n > L)'

- rl-r, +r[*, +... 1fr, ,--___G-

:

xi

Chrlng minh

rhng

ttn

-

Chrtng minh x'r xi -+-+.,.+- xi- xi^ BAi 3. Cho didmA c6 dlnh vihai didmB, C di dOng sao cho AB = a, AC = b (a, b ld hai sd drrong-cho tru6c). Ngudi ta vE tam gi6c ddu BCDlao cho A vd D thuOc hai ntla mat ph&ng ddi nhau mi bd la dudng thhngBA..

Bei 3. Cho tam gi6c nhgn ABC vdAD, BE, CF ld cdc phdn giric trong cria nri. Goi S, vi S ldn lrrgt ld diQn tich cria c'5c tam g75c DEF vit ABC. a. Chfng minh ring 4So < S.

Hdyx6c dlnh d0ldn eria g6e BAC khi/D ctj d0 dai l6n nhdt. .-qAi 4. a. Cho drrdng fiin (C) nim trong gdc roy (dudng trdn (Q3.h6ng cci didm chung v6i cric canh cira gdc xoy) .Hay tim tr6n drrdng trbn (C) mQt didm M sao cho tdng eic khoAng crich tt MJI{A hai dudng th&ng chrla c6c c4nh cria g6c xoy ln nh6 nhdt.

b. Trong m4t phing tqa d0 xoy (o li gdc tga d0), ng[di ta vO mQt dudng trbn cri tAm ln didm C (3 ;4), bdn kinh bing 2 don v!.

b. Vdi m6i didm M nim trong t am g76c ABC (iVI kh6ng thu6c c5c cqnh cria tam $6zABC), goi a', b', c'ldn lrrqt le d0 dei cl&a cd;c khoAng cdch tt M ddn ede c4nh BC, AC vdAB ; tim tfp hop nhirng didm M th6a m6n hQ thtlc a' < b' < c'. --&Ai 4. a. Cho dttdng trbn (C) nim trong gdc roy (drrdng trbn Glkh6ng.cri didm chung v6i c6c canh cir a g6c xoy) . H6y tim tr6n drrdng trdn (Cl mQt didm M sao cho tdng c6c khoAng crich tr) M-lifu hai drrdng thing chrla c.4c c4nh cta g6c xoy li nh6 nhdt.

Hay tinh gli td nh6 nhdt ctra tdng cdc khoAng cach tt didm M tr6n dtrdng trdn tdm C ntii trdn d6n hai trgc tga dQ or vd oy.

14

nh6 hon 1. ddy kh6ng phg thu6c vd.o x, y, z : Chrlng minh ring trong 9 tich s6 :

DAP AI\

BingA Bhi 1 Cnu a) Ndu sd o6 th6a mdn di6u ki6n bii torin thi 6a cring th6a m6n di6u ki6n bii todn, vi la -bl : li-al

L996 *x2 = (xy *yz *za) *x2 : = x(y + x) + z(y + x) = (y +r)(x +z) Tt d

1996 *xz

$*)(x*)

=p (1), v6ip nguyOn td vd

0

= (g +z)2 = 1z *x)2

Do dri, ta chi x6t trrrdng hop o > b : a.b a.b la -bl a -b - (1) .=p(o - b) = ob *pa-pb-ab + p2 - p2 hay ++

= (x +y)2

v#nffid,*;$ jff ,

p(a +p) -b(a +p) = pz (a + p)(p - b) = p2 (*) Vi p nguy6n td n6n cl,c udc cl8La p2la +l ; lp ; !p'. - Tt d&ngthrlc (*) vd doa*p > 0 n6np - 6>0 + loai b6 qic trrJdng hgp -1, -p vit -p2. . _M4!. kh,{c, vi o + i ,''p -'b'ncn tfu ding thrlc (*)

{

suvra:

*2 n*2 *...*A = i 3 'i, ft rti,

la+o:o2 lp -6 = 1 f":p2-p .llb=p_l

lL*

vit C >- B.

.nirr.<. 'I',U do : Do a, blir crictchir s6 via > b n6n 0 < b < a < 9, lri thdp ehi c 5 thi o = p2 -p > 9). V6ip -- 2, thi a = Z,b = 1;tac6 s62l Ydi p = 3, thi o = 6, b : 2 ; ta c6 s6 62 ' Horin vi vai trb c:0.acjLcchit sd avdb ta drJoc 4 s6 th6a m6n d6 bai le :21,62, 12 vd26. . Cd.u b) Ta bidt ring hi6u hai s6 chia hdt cho 11 khi sd du trong ph6p chia hai sd d

nxTilntt

:

P;*-1:'r

GiA srl cri kh6ng ldn hon 9 s6' khi chia cho 11

GiA sti kh6ng thd chon ra dr/oe 10 sd td 100 sd dd cho khi chia cho 11 cd s6 du li 0, nghia li cd kh6ng l6n hon 9 sd khi chia cho 11 ccj s6 du d6u ld 0. vi ccisdduldl, "

,

1996 + y2 (1996 +x2\Q996 +f\ 1996 * z2 aI ; t, rw,E,+ d6u li cde 3i6 drrone Khai cin ta dtroc P : x(y *z) * ik * z\ *zk *v\ = 2(xi + vi + Zx\ = z'. tgoo ='{992 [\t")i khbng phir thuoc vdo r, y, z (dpcm) *2 *2 *' DatA = 1l * ' xit ',, , _ ({x, +r[*z + ... +t[*r)2 C=tr*xr*...**u=2rr Ta so chrlng minh cho T) " x V6i hai sd dttong a, b ta c6 : -2 az :2a -b (1) a2+b2>2ab{rO -b ,za*r Ap dqng bdt ding thrlc (1) khi cho o, b ldn lrrot ldy ea,c 976 tri tu'ong fingxrvi r;,, r6i r, vi xir, ,.., rdi r, vi *,o, tu duoc : -),'r' Zr(uo-t,) *i* =i*,,

&=1 k:r "

sd du ln 10.

Tr)ddsuyra:A>C(2) *Tacd

nB = (fl-r, + tlA +, . . *r[r), = (xr*xr* ... + x) +b{Vrx, + bli fu +... +^[i rh +zrtirx, + 2W + . . . + htizx"+... + b[x, _ t\, O

x t, xz, . . . xn ctiua ding thdC (*) ta drroc :

V,di lai s6 duong a, b ta c6 %[ab < a +0. (3) Ap dgng cr{c,fi6u.ndy._vdo c6c sd duong nB < (xr*xr*. . .**) + (xr+xr) + + (x, * xr) +. . . + (x, * x) + (x, + xr) + + (xr+x) +. . , + (xr*x)*...*rn_r**n).

nB < n(xr'*x2* . . .xn) = nC+ C > B. (4) TiI (2) ve (4) suy raA > B (dpcm).

(1996 +z\(Lgs6+x2)

IU

Ia"cd kfrone l6n hon g sd khi chia cho lt cri nhrr v{y thi tdt cA cri kh6ng qu6 99 sd (9.11) Di6u niy trrii v6i giA thidt cLolrudc ld 100 s6. VAy, it nhdt cring phAi cd 10 sd nAo dd khi chia cho 11 cci cinis-d drr ; hi€u hai s6 bdt ki trong 10 sd nAy chia hdt cho 11'(dncm). Bhi2Cdu o) Theo gia thidt tai6':x*'yIz = a + (x+y+z)2 : x2 + y2 + z2 + Z(xy+yz+n) = a2. Thay x2 + yz + 22 = b'vd a2 : b + Aggz Suy rary *yz * zx =Yf= t99G ta c

ob

ac

1

--

oc'[-r- bc - uu Lr @+b)(c+a) (o+b)(b+c) (a+c)(b+c)) = 3(S * Ser,r - Saor' - Scoa) - 3So hayS - So 2 3So + S > 4So(dpcm)

Bai 3 Cd.u a K{ hi6u BC = a,AC=b,AB= c, AD, tsE vd CF lA c6c drrdngphdn gr6p criX cdc g6c A, B vir C,

b*a

Tnr6c hdt ta chrlng minh bd d6 : Cho mQt gtic nhgnroy vd M lir m6t didm nim trong g6c xO y. Goi r' vdy' ldn lrrot li kho6ng cach tit M d6n cdc canh Ox, Oy ; ggi Oz ln phAn gi6c ciag6cxoy. Chrlngminh ririgr'Jdi<}ri vn chi khi M thu6c mi6n trong oia gdc xOz.

rrl

'

a+c

=

Tac6: AFACb BF- BC- a - AF BF AF+BF AB b*a b*a b a b.c TinhdugcAF= o*U(l) chrlng minh tuong t4AE = ]l Do dtf 11bcbc s.eEF : AFsinA = ; @ * b)' 1o*"1ri"e r-aE t bc bc.S ;tcsina'^ *6'11o q"1 = 1o a6'11o I (a *b\b 2-'""*'(a *6)(a *c) {a lQ)@"+ ) (o + b{o.+ c) (trolrg dd S ld didn tic(bria t6m gi6cAEb) "1, Tuong t1t nhu tr6n ta cd :

ab.S

ac.S

0Yt. 'vd IJ =JY.

c _..q BDF= (.,-T016 +4 iDcro=(a+c)(b+c)

x' = MX < MJ < IJ+IM : IY*IM - MY =!'

^

' (a+b)(b+c) ' (a+c)(b+c)_l'"

Mat kh6c S -S, = SAEF *Sryar,*SCnE = Io"ctcab1:-:-r - lt"++){"+c) L

hay x' < y'. - Nguqc l4i, n6u cci didm N niro dd nim tronggdcxOy mdNX, < NY, (trongdciNX, vir MF,It khoAng crlch ft N ddn c5c c4nh Oi vit Oy)ta phAi chrlng minh N thuQc mi6n trong cria g6cxOz. .

bzc +bc2 +a2c +acT +azb +abz (o +b)(b +c)(c +o)

trdi giA thi6t.

t

ThQt vQy : - N6u-N.thuQc Oz thi NXr : Mf. Di6u ndy - Ndu N thu6c mi6n trong c,&.a g6c zOy,6rp dgng crich chtlng minh phdn thudn d tr6n, thi NX, > AIY,. Di6u niy cfng tr6i y6ti-giA thi6t. Vay.N thu6c mi6n trong cfia gcic xOz.

Chrlng rninh : - Gie sfi M thu6c mi.6n-tronE gia'E6c xOz. ft rrZ na MX L, MY I- OY:MY nhAi c6t Oz.vi'M vit Y nim trirns hai ntta mdt nh&frs ddi nhau 'mh bd" le dtrdnE thins Oz. Goi Eiao didddd la 1.Tfr1hqIJ tox, ta cd MX: x', MY = y Ti dd

AD, BE vdCF.

2abc

: oQ-""(a +b)@ +c)(c +o)'

Vi

+ ac2 = a(bZ + c21 > 2abc lau2 * bc2 : b(az + c21 > 2abc 'fi: ]oa2 lc& + cb2 : c(az + b2) > 2abc non : b2c +bc2 + a2c + ac2 + a2b + ab2 > 6abc +s-s,=1rTayff|1"*,; s=

=

2abc * ob2 + ab + acz + azc +bc2 +bzc

nim trong LCOD kh6ng kd cric cqnh crla nd.

= 2abc + ab(a +b) + ac(a + c) + bc(b + c) n6n 2abc = (a +b)(b + c)(c + a) - lab(a+b)+ +a.c(a +c) +bc(b +c)l

2abc (a+b)(b+c)(c+a)

_

-7 -a

(a + b)(b + c)(c + o) Ap dung bd d6 nny dd chrlng minh cAu b : Ggi O li giao didm ctra ba dttdng phdn gi6c Theo giA thiftM nim trongtamg16cABC. Vio' < b'n6nMphAi nim trong Lam g; c BCF Vib' < c'n6nMphAinim trong tam $6c CAD Ydy M th6a m6n di6u kiQn a' < b' < c'+M

=|

(a+b)(c+a

(b+c)(c+a) (a+b)(b+c)

Bni 4 Cdu a - Phdn tich : Tt didmM'bdt ki tr6n drrdng trdn (C),haM'H t Ox, M'K t Oy. Dltng ti6p tuy6n v6i drrdng trbn (C) tai M sao cho tidp tuydn niry cfit Or 6

16

ab(a +b) + ac(a + c) +bc@ + c) (a +6)(b +c)(e +a)

A, cdt Oy d B, AA = OB, vd cdc didm O vd C nam v6 hai phia cria ii6p tuydn ndy.

hd phriong

?a thdy ri.ng: M'K . OB +M'H . AA = 2S*noo

"u,

(M'H +M'I{)OA:25*nou

Oy, ta c6 :

fy:x+l ly:-x+7-212'y:4-\12 Gqi S le tdng khoAng c{rch tr) M ddn Ox vd. S: 7 -^[2.

Bing B piti ! (a, b) : xem ldi giei d bAng A. Bd.i 2 C!.u a.' Theo gia thi6't, cric sd 1 - o, > 0 Ap dung kdt qu6 criabdt dingthric C6-i,ta6:

suy raM'I( + M'H =T !i sdc cho tnldc vd dudne trdn (Ct cd dinh n6n tidp tuydn AB xdc dinh vd Ol,: OB kh6nE ddi. Do dd IvI'K + M'H nh6 nhdt khi Srrru nh6 nhdt, mudn v&v di6n tich L,M'AB phAi nh6 nhdt (vi tam s16c OAB c6 dinh). Mu6n vdv M' = M (hic4ay-dttdng cag hq tt M'xudngAE bang 0). Vi itz la tidF didm'n€n CM l. A? (1) IvIat khric L OAB cdn (OA : OB), n6n phAn

(ar+(l-o,)\2

pr.dc Oz cria sdc O phAi vu6ng s6c v'6i AB. - Tt (1) va-(Z) su'y ra CM lfdz.

t l=n

o,(1 -r,.,*l Z

\tt

hay 4) .l#iff4':tt$y?*g thins qua s(3 - 21[2 ; ,, fea dQ cri" #; -# il 1*1',u.f trlnn : x:3-{2

4

ae(7 -rr) = *

+ [or(1 - o1)J . la2! - o)] ... x [o.(1 - os)l

1

x ranl- os)r < l,i]' ,-, Tt bdt ding thkJ {*) suy ra : Trong 9 tich sd dA cho it nhdt phAi cri m6t tich khOng l6n hon 4 i vi ndu kh6ng cci tich nio nhrt v6y thi v6 trdi

uo

cira bdt ding thfc (*) sE l6n hon trrii vdi kdt quA tr6n.

ft)' ''u.,

I

Cd.u b: xem ldi giAi d bAng A. Bdi 3 (xem hinh v€...) Dtrng tam giric ddu ABE sao cho dinh E vi dinh C cing thuOe nrla m6t phing bd ld dridng tleag AB.-Ia c6 : ABC : EBD (i cirng bing 600 cOng (lloAe trt) s6c EBC, vd vi BA = BE, BC: BD-!Q3

^

^

LBAC : EBD (c.g.c) Trldrisuyra ED = AC = b vi BDE = BCA(I) Vdi 3 didmA, E, D talu6n cdlD < EA+ ED

: a*b

Triong h!: ar(\ - a) <

"i

Cdch dune : " - Duns'pEan si6c Oz c:iua Edc xOy - T& Cli6 drid"ns thine sofrs soni v6i Oz cdL (Ci a hai didm. Di6m M."mi t'i6p tilvdn tai dd chia mat ph&ne lim hai'phdn. sho cho O va C nam d hai-nrla mat phine d6i rihau cci bb ln tidp tuydn tai M, ta diC'fi phA'i tim. Chilne minh QuaTI duns tiSn tuvdn AB. \n CNI r- AB v'd CM ll'Oz"n6i Oz" t AB. Oz vita ld drtdng cao, vta li phAn eidc cta s6cAOB n6n A AOB-cdn (OA: OB). ' liv M' bdt-ki tr6n (C),tac6 (M'K+M'H)OA : 25u.eoa > 2Snoo: (I/IE + MF| . OA Suy ra M'K + M'H > ME + MF.YQy ME + Mtr'nh6 nhdt. Bi&*thn : Di c69 *9y Rhgp, vuong nav tu tht giao tidri M de ndi d tr6n lu6n lu6n x5c dinh. Bdi to6n lu6n'lu6n cd nehiOm hinh. Khi C"nam tr6n Oe thi m6t trons hai gido didm 6.&a Oz vdi dtldnstrdn (C) ln didm p1rai tiin. ln didm D-hai tim. Cqq 6 ,: Ap.dgng. \6t.qyh_clt1a;didm M c

Tam giSc CEF ca; (CE = Cf)

Kdt lu+q: I

+b thi BAC = L20o.

- CE - 3 - b[Z ; AF = AC

Biti 4: Xem ldi giAi bingA.

-BC

- CtuIz = ME .MF = ME2 = MFz.tn CM = 2n|nME = MF : 2. suv ra EF = 4. +cE-cF-'G =" # = rg -Tt dd BE -CF:4-b12.

Ddu d&ng thrlc xdy ra khi E e AD.Y}y AD ldn nhdt khi bing a *b (1y1a>u\n : o * b). Khi *iAIlCD-Aii ti6Bir&c trong drtdng trdn-n6n BAC+ BDC = BAC+ 600 = 1800+ BAC = 1200

xAc DlNl-l rAM DUONG TRON LAm thdnAo dd x6c dinh tAm cira mQt drrdng trbn cho tnl6c md chi dirng compa mQt ldn vd dirng thtldc kh6ng qua 6 ldn ?

V6 KIM HUE

Gidi dfip bdi

NHITNG cAY sd ni r+

DOAN NGAY SINh

Gqi ngny sinh ctra ngridi mn Th6ng do6n alf t6, than; sinh Id cd. ndrr- sinh li Tgrnn (vi c6c ban cria lf,atrg d6u sinh vdo thd ki 20).

Theo c6c ph6p tinh mn Th6ng d6 d{t ra ta cci : { t(a6 xz +tt) 5 +22)10+cd} t oo+rmzrz *33 = : 10000 x a6 + 77000+100 xda+19331i1n: : aFUOOO +cd6A +tnn + 78933 = = a5i[fri + 78933.

1.23456789 x 8 + 9 : 987654321 12945678 x 8 + 8 : 98765432 1234567x8*7:9876543 123456 x 8*6 =987654 12345 x 8*5:98765 1234x 8+4 = 9876 123x8+3=987 12x8*2:98 1x8*1:9

Vi kdt quA bao gid cf,ng ld' adc4tntx + 78933 n6n b4n ThSng ehi cdn liiy kdt qu6 cria cdc b4n trrl di ?8933. Trong hi6u s6 cbn lai thi 2 chrt s6 hdng tr6m nghin vd hing chuc nghin chi ngiy sinn] hai cht-s6, hang nghin vi hdng tram chi th6ng sinh, hai chit sd hing chuc vd hdng don vr chi ndm sinh (da bdt di 1900) cira ngudi Th6ng dorin.

Tt kdt quA dri ta tinh drrgc ngiy sinh cira Hdng :

110115-78933=031182 tric ld Ngdy 3 th6ng 11 nam 1982 NgiysinhcriaNgqc: 229813- 78933 = 150880 trie ld Ngny 15 th6ng 8 nem 1980. (fheo Doitn Hd.i Giang,7A, NK Qulnh Lrtu,

123456789 x 9+ 10: 1111111111 12345678 x 9 + I = 111111111 1234567 x 9+8 = 11111111 123456x9+7:1111111 12345 x 9*6:111111 L234x9+5:11111 123 x 9+4: 1111 12x9+3:111 1x 9+2=ll 0x9*1=1

NhQn xdt : B4n Phqm Luong Anh Minhl6P 52, Nguy6n Dinh Chidu, QI, TP. Hd Chi Minh ctng dadua ra c6ch dorin ngiy sinh cira Th6ng nhrr tr6n. Bd Nguydn Thi Tuydt (139 Dudng 30 - 4, P.5, TX Cd Mau, Minh Hii) vd rdt nhi6u ban dA cti giAi d6P t6t

T}{ANH -IUAN (Suu thm)

BiN}I PI{TJONG

sou :

,

_dE

1d.

Ngh€ An)

rnua tq.i cac C0n6 ty sath ad. thidtb{ trubng hgc trong '";e;;n";'si*plai

n*6c. !,ba !1\Ort l!,0n5 10 Tda sagn"xin trd tdi clzuig cho c6.c bgn a6 *ta hdi ub cii,e utd,n *Thbihqnrabd,o:Tod,whoeud,tuditrdraryQtth.arie*otxi.uit'ocudithd.ng. * Thbi ho.n.nhQ,n bdi gid,i : Hai thdng tinh tit igi'y cd:6i iit,a thd,ng *zti bd,oph6,,.?.""F - Tim. rn'ua bd.o taanlqe tudi trd d d.d.u : Bg'rt c6 tk€ d1f mua d.d.i hgn' tq'i B*u d'iin hoq'e dibu kian bin auq*. Cdc iq,n 6 rid NOi co thd ntua tq,i bl T'rd.n Huns, Dq'o, '25 Hdn

Gi6 2.000" Hai nghin ddng

Sip chrl tai TTVT NhA xudt bAn gi:4o duc In tai nha mey in Di6n Hdng. 57 GiAng Vo Inxongvir nQp hlu chieu tn6ng 1111996

ISSN:0866-8035 Chi sd: 12884 M6 s5: 8BT35MG

Thuyan, 57 Gid.ng V6... Cd.nt on cd.c ban.