
16
Li gii: Cho:
( )
( )
( ) ( )
( )
( )
1 1 1 . 1 1 1x y f f f f f f= = ⇒=⇒=
vì
( )
( )
( )
( )
1 0 1 1f f f f≠⇒=
.
( ) ( ) ( ) ( )
( )
( ) ( ) ( )
1
1
1; 0; 1
f
fy
x y f y f y f f y f y f y a
y y
= ∈ + ∞ ⇒= = ⇔ =
.
Mt
khác:
( )
( )
( ) ( ) ( )
( )
( ) ( )
1
1
1
ff y
y
f f y f y f y f f y f y f y f y y f y f
y y
y
= = = =
( ) ( )
( )
1 1
y f y f f f y
y y
=
.
Vì
( )
( )
0f f y ≠
nên
( ) ( ) ( )
1 1 1
1 1y f y f f y f b
y y y
= ⇔ =
.
( ) ( ) ( ) ( )
10;a b f y y
y
+⇒= ∀ ∈ + ∞ . Th
l
i th
y
ñ
úng.
Ví d 13: Tìm
:f R R→
tha mãn:
( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
1
02
: ,
f a
a R f a y f x f a x f y f x y x y R b
=
∃ ∈ − + − = + ∀ ∈
.
Li gii:
Cho
( ) ( )
1
0, 2
x y b f a= = ⇒=
.
Cho
0;y x R= ∈
ta ñưc:
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
. 0 .f x f x f a f f a x f x f a x c= + − ⇒= −
.
Cho
;y a x x R= − ∈
ta ñưc:
( ) ( )
( )
( )
( )
( )
2 2
f a f x f a x d= + −
.
( ) ( ) ( )
( )
( )
( )
2
1
12
21
2
2
f x
c d f x
f x
=
+⇒= ⇔
= −
.
Nu
o
x R∃ ∈ sao cho:
( )
1
2
o
f x = −
thì:
( )
( ) ( )
2
12 . 2 0
2 2 2 2 2 2
b c
o o o o o
o
x x x x x
f x f f f a f
− = = + = − = ≥
⇒ Vô lí.
Vy
( )
1
2
f x x R= ∀ ∈
. Th li thy ñúng.

17
Ví d 14: (VMO.1995)
Tìm
:f R R→
tha mãn:
( )
( )
( ) ( )
( )
( )
2
22
2 , 14f x y x y f x f y x y R− = − + ∀ ∈
.
Li gii:
Cho
( ) ( )
( )
( )
( )
2
0 0
0 0 0 0 1
f
x y f f f
=
= = ⇒= ⇔ =
.
Nu
( )
0 0f=
: Cho 0y
x R
=
∈
ta ñưc:
( )
( )
2 2
0f x x f t t t=⇒= ∀ ≥
Cho
x y R= ∈
ta ñưc:
( ) ( ) ( )
( )
( )
( )
( )
2 2
2
0 2 0f x x f x f x f x x f x x= − + ⇔ − = ⇔ =
.
Th li thy ñúng.
Nu
( )
0 1f=
: Cho 0y
x R
=
∈
ta ñưc:
( )
( )
2 2
1 1 0
f x x f t t t= + ⇔ = + ∀ ≥
.
Cho
0;x y R= ∈
ta ñưc:
( )
( )
( )
( )
( )
( )
2 2
2 2
2 2f y y f y f y f y y= − + ⇒= +
( ) ( )
( )
2
2
1
1 2 1 1
f y y
y y y f y y
= +
= + + = + ⇒= − −
.
Gi s
o
y R∃ ∈ sao cho:
( )
1
o o
f y y= − −
. Chn
o
x y y= = ta ñưc:
( ) ( )
( )
( )
( )
2
2
1
1 2 1
o o
o o o o
o o
f y y
y y f y f y f y y
= −
= − + ⇔ = +
.
Nu
( ) ( )
1 1 1 0 0 1 (
o o o o o
f y y y y y f= −
⇒
− − = −
⇒
= = −
v lo¹i)
.
Nu
( ) ( )
1 1 1 1 1 0
o o o o o
f y y y y y f= +
⇒
− − = +
⇒
= −
⇒
− =
.
Tha mãn:
( )
1
o o
f y y= +
. Vy
( )
1 f y y y R= + ∀ ∈
. Th li thy ñúng.
Ví d 15: (VMO.2005)
Tìm
:f R R→
tha mãn:
( )
( )
( ) ( ) ( ) ( ) ( )
, 15f f x y f x f y f x f y xy x y R− = − + − ∀ ∈
.
Li gii:
Cho
( )
( )
( )
( )
2
0 0 0x y f f f= = ⇒=
. ðt
( ) ( )
2
0 f a f a a=⇒=
.
Cho
( )
( )
( ) ( )
( )
( )
2 2
2 2 2
*x y R f x x f a f x x a= ∈ ⇒= + ⇒= + .
( )
( )
( )
( )
( ) ( )
( ) ( )
2 2
f x f x
f x f x f x f x
= −
⇒= − ⇒= − −
.
N
u
*
o
x R∃ ∈ sao cho
( ) ( )
o o
f x f x= −
:
+ Ch
n
( )
( )
( ) ( ) ( )
0;
o o o o
x y x f f x a f x a f x a= = − ⇒= − − + −
.

18
+ Ch
n
( )
( )
( ) ( ) ( )
0;
o o o o
y x x f f x a f x a f x b= = − ⇒= + −
.
( ) ( ) ( ) ( )
( )
( ) ( )
( )
( )
2 0
o o o o
a b a f x f x f x f x a c+⇒− − − + − + =
.
Vì
( ) ( )
o o
f x f x= −
nên
( )
( )
( )
( )
*22 2 2 2 2
0 0
0
o o o
f x a f x x a a x a x=⇒= + ⇒= + ⇒= trái v
i
gi
thi
t
*
o
x R∈
.
V
y
( ) ( )
f x f x x R= − − ∀ ∈
. Ta th
y (c) không ph
thu
c vào x
o
nên ta có:
( ) ( )
( )
( ) ( )
( )
( )
2 0a f x f x f x f x a c− − − + − + =
. Thay
( ) ( )
f x f x= − −
suy ra:
( )
( )
( )
0
1 0 1
a
a f x f x
=
+ = ⇔ = −
.
+ N
u
( )
( )
( )
( )
( )
*22
0f x x
a f x x f x x
=
=⇒= ⇔ = −
.
Gi
s
t
n t
i
*
o
x R∈
ñ
( )
o o
f x x=
. Khi
ñ
ó (b) suy ra:
( )
0
o o o o o
x f x a x a x x= = + − ⇒=
trái gi
thi
t
*
o
x R∈
.
V
y
( )
f x x x R= − ∀ ∈
. Th
l
i th
y
ñ
úng
+ N
u
( )
1 f x x R= − ∀ ∈
. Th
l
i ta
ñư
c
( )
15 2 ,xy x y R⇔ = ∀ ∈
. Vô lí.
V
y hàm s
c
n tìm là:
( )
f x x= −
.
Nhn xét
: Có m
t suy lu
n hay nh
m l
n
ñư
c s
d
ng các VD:
VD13
( )
( )
( )
( )
2
1
12
1
4
2
f x
f x
f x
=
= ⇔
= −
; VD14
( )
( )
( ) ( )
( )
22
1
11
f y y
f y y f y y
= +
= + ⇔
= − −
;
VD15
( )
( )
( )
( )
22
f x x
f x x f x x
=
= ⇔
= −
,
ñ
ó là hi
u sai:
( )
( )
( )
( )
2
1
12
1
4
2
f x x R
f x
f x x R
= ∀ ∈
= ⇔
= − ∀ ∈
;
( )
( )
( ) ( )
( )
22
1
11
f y y x R
f y y f y y x R
= + ∀ ∈
= + ⇔ = − − ∀ ∈
;
( )
( )
( )
( )
22
f x x x R
f x x f x x x R
= ∀ ∈
= ⇔ = − ∀ ∈
.

19
Th
c t
th
ư
ng là nh
ư
v
y nh
ư
ng v
m
t logic thì không
ñ
úng.
( )
( )
2
1
4
f x =
thì
( )
f x
có th
là hàm khác n
$
a nh
ư
( )
( )
( )
10
2
10
2
x
f x
x
≥
=
− <
. Nh
ư
v
y
( )
( )
( )
( )
2
1
12
1
4
2
f x
f x
f x
=
= ⇔
= −
ch
%
ñ
úng v
i m
&
i x c
th
ch
không th
k
t lu
n ch
%
có hai hàm s
( )
1
2
f x x R= ∀ ∈
ho
c
( )
1
2
f x x R= − ∀ ∈
.
ð
gi
i quy
t v
n
ñ
này ta th
ư
ng “th
”
( )
1
2
f x x R= ∀ ∈
hoc
( )
1
2
f x x R= − ∀ ∈
vào ñ
bài ñ tìm hàm s không tha mãn (trong VD13 thì
( )
1
2
f x =
không tha mãn) sau ñó lp
lun ph ñnh là
( )
1
:2
o o
x f x∃ = −
ñ dn ñn vô lí!
Ví d 16: Tìm
: (0,1)f→ℝ
tha mãn: f(xyz) = xf(x) + yf(y) +zf(z)
, , (0,1)x y z∀ ∈
.
Li gii:
Chn x = y = z: f(x
3
) = 3xf(x).
Thay x, y, z bi x
2
: f(x
6
) = 3 x
2
f(x
2
).
Mt khác: f(x
6
) = f(x. x
2
.x
3
) = xf(x) + x
2
f(x
2
) + x
3
f(x
3
).
⇒ 3 x
2
f(x
2
) = xf(x) + x
2
f(x
2
) + 3x
4
f(x) ⇔ 2 x
2
f(x
2
) = xf(x) + 3x
4
f(x)
3
2
3 1
( ) ( ),
2
x
f x f x x
+
⇒= ∀ ∈ ℝ
Thay x bi x
3
ta ñưc :
9
6 3
9
2 2
3 9
2
3 1
( ) ( ),
2
3 1
3 ( ) 3 ( ),
2
3 1 3 1
3 ( ) 3 ( ),
2 2
( ) 0, 0
x
f x f x x
x
x f x xf x x
x x
x f x xf x x
f x x
+
= ∀ ∈
+
⇒= ∀ ∈
+ +
⇒= ∀ ∈
⇒= ∀ ≠
ℝ
ℝ
ℝ
Vy f(x) = 0 vi mi x ∈(0; 1).
BÀI TP
1) Tìm
:f N R→
tha mãn:
( ) ( )
5
0 0; 1 2
f f≠ =
;
( ) ( ) ( ) ( )
, ,f x f y f x y f x y x y N x y= + + − ∀ ∈ ≥
.
2) Tìm
:f N R→
tha mãn:
( ) ( ) ( )
3 , ,f m n f n m f n m n N n m+ + − = ∀ ∈ ≥
.

20
3) Tìm
:f R R→
tha mãn:
( )
( )
( )
,f x f y y f x x y R= ∈
.
4) Tìm
:f R R→
tha mãn:
( ) ( )
( )
( )
( )
1 1 ,f x f y y f x x y R+ = + ∈
.
5) Tìm
( ) ( )
: 0; 0;f+ ∞ → + ∞
tha mãn:
( )
( )
( ) ( )
2 2
0;
ax 0;
y
f x M x y y x f y x
∈ +∞
= + − ∀ ∈ + ∞
.
6) Tìm
:f R R→
tha mãn:
( ) ( ) ( )
1 2 1 ,f xy f x y f x y xy x x y R− − + + + = + + ∀ ∈
.
7) Tìm
[
)
[
)
: 1; 1;f+ ∞ → + ∞
tha mãn:
( ) ( ) ( )
( )
( )
[
)
, 1;
f xy f x f y
x y
f f x x
=
∀ ∈ + ∞
=
.
8) Tìm
:f R R→
tha mãn:
( ) ( ) ( ) ( )
1 ,f xy f x f y f x y x y R= − + + ∀ ∈
.
9) Tìm
:f R R→
tha mãn:
( ) ( )
( )
( ) ( )
( )
( ) ( )
, , ,f x f z f y f t f xy zt f xt zy x y z t R+ + = − + + ∀ ∈
.
10) Tìm
:f R R→
tha mãn:
( )
( ) ( )
2 2
,f x y x f y y f x x y R− = − ∀ ∈
.
11) Tìm
[
)
: 0;f N → + ∞
tha mãn:
( ) ( ) ( ) ( ) ( )
( )
1
1 1; 2 2 , ,
2
f f m n f m n f m f n m n N m n= + + − = + ∀ ∈ ≥
.
12) Tìm
:f Z R→
tha mãn:
( ) ( ) ( )
, ; 3
3 2
f x f y
x y
f x y Z x y
+
+
= ∀ ∈ +
⋮.
13) Tìm :f N N→ th
a mãn:
( ) ( )
( )
3 2f n f f n n n N− = ∀ ∈
.
14) Tìm :f Z Z→ th
a mãn:
( ) ( ) ( ) ( ) ( )
( )
1 ; 2 ,f a Z f m n f m n f m f n m n Z= ∈ + + − = + ∀ ∈
.
15) Tìm :f R R→ th
a mãn:
( )
( ) ( )
3
2 3 1 ,f x y f x y f x y x y R+ = + + + + ∀ ∈ .
16) Tìm :f R R→ th
a mãn:
( ) ( )
2 4
1 2x f x f x x x x R+ − = − ∀ ∈
.
Phương pháp 4
:
S dng tính cht nghim ca mt ña thc.
Ví d 1: Tìm P(x) vi h s thc, tha mãn ñ'ng thc:
Li gii:
2 2
(1) ( 2)( 1) ( 1) ( 2)( 1) ( ),x x x P x x x x P x x⇔ + + + − = − − + ∀
Chn:
2 ( 2) 0x P= − ⇒− =
1 ( 1) 0
0 (0) 0
1 (1) 0
x P
x P
x P
= − ⇒− =
=⇒=
=⇒=
Vy: P(x) = x(x – 1)(x + 1)(x + 2)G(x).
3 2 3 2
( 3 3 2) ( 1) ( 3 3 2) ( ), (1)x x x P x x x x P x x+ + + − = − + − ∀