
C3 CAD-CAM>MHHCACTTHH 1 GVC NGUYỄN THẾ TRANH
Chương 3.
MÔ HÌNH HOÁ CÁC THỰC THỂ HÌNH HỌC
3.1. MÔ HÌNH ĐƯỜNG CONG
Về mặt lý thuyết có thể sử dụng phương trình toán học bất kỳ để định nghĩa
đường cong. Tuy nhiên, mô hình toán học dưới dạng phương trình đa thức được sử
dụng phổ biến nhất do có đặc tính dễ dàng xử lý, đủ linh hoạt để mô tả phần lớn các
loại đường cong sử dụng trong kỹ thuật.
3.1.1. PHÂN LOẠI ĐƯỜNG CONG ĐA THỨC.
Mô hình toán học biểu diễn đường cong có thể dưới dạng phương trình ẩn,
phương trình tường minh hoặc phương trình tham số. Phương trình ẩn và phương trình
tường minh chỉ được sử dụng cho đường cong 2D. Đường cong đa thức tương ứng với
các dạng phương trình toán học được trình bày dưới dạng tổng quát sau:
Phương trình đa thức ẩn.
0),(
00
== ∑∑
==
m
i
n
j
ji
ij yxcyxg
Phương trình đa thức tường minh.
...)( 2
+
+
+
== cxbxaxfy (theo toạ độ Đề các)
...)( 2
+
+
+
==
γθ
βθ
α
θ
hr (theo toạ độ cực)
Phương trình đa thức tham số.
...))(),(),(()( 2
+
+
+
=
≡ctbtatztytxtr
Các dạng đường cong đa thức tham số được sử dụng phổ biến nhất bao gồm:
1, Đường cong đa thức chuẩn tắc,
2, Đường cong Ferguson,
3, Đường cong Bezier,
4, Đường cong B-spline đều,
5, Đường cong B-spline không đều.
3.1.2. ĐƯỜNG CONG 2D.
Đường cong 2D được sử dụng như các đối tượng hình học cơ sở trên các bản vẽ
kỹ thuật truyền thống để mô tả hình thể 3D.
1. Mô hình đường cong dưới dạng phương trình đa thức ẩn.
Phương trình ẩn g(x,y) = 0 biểu diễn đường cong trên mặt phẳng x-y, ví dụ như
đường tròn và đường thẳng được biểu diễn bởi phương trình:

C3 CAD-CAM>MHHCACTTHH 2 GVC NGUYỄN THẾ TRANH
0)()( 222
=
−
−+− rbyax ; 0
=
+
+
cb
y
ax
Mô hình này có ưu điểm:
- Dễ dàng xác định vectơ tiếp tuyến và pháp tuyến,
- Dễ dàng xác định vị trí tương đối giữa điểm với đường cong.
Phương trình đa thức bậc 2 g(x,y) = 0 biểu diễn họ đường cong conic là giao
tuyến giữa mặt cắt phẳng và mặt nón trụ. Tuỳ theo vị trí tương đối giữa mặt phẳng cắt
và mặt nón, đường cong conic có thể là:
1, Elip : 01
2
2
2
2
=−+ b
y
a
x
2, Parabôn : 04
2
=
−axy
3, Hyperbôn : 01
2
2
2
2
=−− b
y
a
x
Nhược điểm chính của mô hình đường cong dưới dạng phương trình ẩn là khó
thực hiện đồ hình tuần tự, đây là chức năng quan trọng trong đồ hoạ điện toán. Do vậy
trong mô hình hoá hình học, đường cong conic dưới dạng phương trình tham số được
sử dụng phổ biến hơn cả. Thực tế mô hình dạng phương trình đa thức ẩn có bậc cao
hơn 2 rất ít được sử dụng.
2. Mô hình đường cong dưới dạng phương trình đa thức tường minh.
Phương trình tường minh dạng : y = f(x) = a + bx + cx2 + ... mô tả đường
cong trên mặt phẳng x-y. Nếu f(x) là đa thức bậc 2, đường cong là Parabol.
Đặc tính tiêu biểu của đa thức tường minh là có thể chuyển đổi thành phương
trình ẩn hoặc phương trình tham số. Nếu y = f(x), trong đó f(x) là đa thức của x, tức
là:
0)(),(
=
−≡
x
f
yy
x
g hoặc x(t) = t ; y(t) = f(t) (3.1)
Do vậy phương trình đa thức tường minh có ưu điểm của phương trình ẩn và
phương trình tham số, đó là:
- Dễ dàng xác định vectơ tiếp tuyến và pháp tuyến.
- Dễ dàng xác định vị trí tương quan giữa điểm với đường cong.
- Dễ dàng thực hiện đồ hình tuần tự.
Nhược điểm chính của dạng phương trình tường minh là không thể điều khiển
đường cong khép kín hoặc đường thẳng đứng. Dạng phương trình (3.1) còn được gọi
là dạng phi tham số.

C3 CAD-CAM>MHHCACTTHH 3 GVC NGUYỄN THẾ TRANH
3.1.3. ĐƯỜNG CONG ĐA THỨC THAM SỐ.
Khảo sát việc thiết lập đường cong với điều kiện biên cho trước bao gồm toạ độ
và tiếp tuyến tại 2 điểm đầu và cuối: P0, P1, t0, t1. Vì rằng đường cong được định nghĩa
bởi 2 vectơ vị trí và 2 vectơ tiếp tuyến có thể biểu diễn chúng dưới dạng phương trình
đa thức vectơ bậc 3. Đa thức bậc 3 được sử dụng rất phổ biến, bởi vì đó là bậc tối
thiểu, đủ để dựng các loại đường cong trong không gian 3D.
1. Mô hình đường cong dưới dạng phương trình đa thức chuẩn tắc.
Đặc tính của mô hình đa thức chuẩn tắc là dễ dàng xác định.
Xét phương trình đa thức vectơ bậc 3:
r(u) = (x(u), y(u), z(u)) = a + bu + cu2 + du3
Có thể biểu diễn phương trình đa thức này dưới dạng ma trận theo vectơ cơ sở
U và vectơ hệ số A như sau:
[]
UA
d
c
b
a
uuuur =
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎣
⎡
=32
1)( với 10
≤
≤
u (3.2)
Phương trình đa thức bậc 3 (3.2) không thể hiện được ý nghĩa hình học, nhưng
có thể được sử dụng để thiết lập đường cong trơn láng đi qua 4 điểm dữ liệu { Pi: i =
1,...,4} theo phương pháp sau:
Đặt di là chiều dài cát tuyến giữa điểm Pi và Pi+1:
iii PPd
−
=+1 với i = 0, 1, 2
Từ đó giá trị tham số ui tại các điểm Pi được xác định như sau:
0
0=u;
∑
=
i
ddu /
01 ; ∑
+
=
i
dddu /)( 102 ; 1
3
=
u
Đường cong bậc 3 (3.2) đi qua các điểm dữ liệu phải thoả điều kiện:
ii Pur =)( ; với i = 1,...,4
Tổng quát, đường cong đa thức bậc n đi qua (n+1) điểm dữ liệu được biểu diễn
bởi phương trình đa thức:
∑
=
=n
i
i
iuaur
0
)(
2. Đường cong Ferguson.
Ferguson giới thiệu một
phương pháp khác sử dụng phương
trình (3.2). Theo đó đường cong
được thiết lập bởi (Hình 3.1):
a. Hai điểm đầu cuối P0 và P1.
b. Tiếp tuyến đầu cuối t0 và t1.
r(u)
t0
t1
P0
P1
Hình 3.1 - Đường cong Ferguson

C3 CAD-CAM>MHHCACTTHH 4 GVC NGUYỄN THẾ TRANH
Đường cong bậc 3 (3.2) thoả điều kiện biên P0, P1, t0, t1 chúng phải đảm bảo:
dcbrt
brt
dcbarP
arP
32)1(
)0(
)1(
)0(
1
0
1
0
++==
==
+++==
==
&
& (3.3)
Sau các phép biến đổi, hệ số PT đa thức được xác định theo biểu thức:
CS
t
t
P
P
d
c
b
a
A≡
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎣
⎡
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎣
⎡
−
−−−
=
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎣
⎡
=
1
0
1
0
1122
1233
0100
0001
(3.4)
Kết hợp biểu thức (3.2) và (3.4), đường cong Ferguson r(u) theo điều kiện biên
như trên được biểu diễn bởi ma trận hệ số Ferguson C và vectơ điều kiện biên
Ferguson S như sau:
S)( UCUAu
r
== , với 10
≤
≤
u (3.5)
Thực tế dễ dàng xác định được độ lớn của vectơ tiếp tuyến, do đó độ lớn của
vectơ được chọn bằng chiều dài cát tuyến 0110 PPtt
−
=
=
. Sự lựa chọn này thoả
yêu cầu về hình dáng.
Phương trình (3.2) và (3.5) đều được biểu diễn dưới dạng ma trận cơ sở. Có thể
biểu diễn (3.5) dưới dạng khác:
r(u) = (U C) S
= (1- 3u2 +2u3)P0 + (3u2 - 2u3)P1 + (u - 2u2 + u3)t0 + (-u2 + u3)t1 (3.6)
= 1
3
31
3
20
3
10
3
0)()()()()()( PuHutuHutuHPuH
+
+
+
trong đó: )231()( 323
0uuuH
+
−= ; )2()( 323
1uuuuH +
−
=
)()( 323
2uuuH
+
−= ; )23()( 323
3uuuH
−
=
)(
3uHi là hàm kết nối Hermite bậc 3 thoả điều kiện biên tại u = 0, 1 như sau:
0)0()1()0()1(
1)1()0()1()0(
3
2
3
1
3
3
3
0
3
2
3
1
3
3
3
0
====
====
HHHH
HHHH
&&
&&
0)()()()( 3
2
3
1
3
2
3
1
=
=
== jHjHjHjH && với mọi j = 0,1
Dễ dàng xác nhận rằng phương trình (3.6) thoả điều kiện biên (3.3).
Phương trình (3.6) là định nghĩa chuẩn về đường cong kết nối Hermite.

C3 CAD-CAM>MHHCACTTHH 5 GVC NGUYỄN THẾ TRANH
3. Đường cong Bezier
Đường cong Bezier được định nghĩa bằng nhiều phương pháp.
Hãy xét phương pháp xây dựng đường cong Bezier bậc 3 từ phương trình
đường cong Ferguson (3.5).
Bốn đỉnh điều khiển Bezier V0, V1, V2, V3 (hình 3.2a) thoả điều kiện:
V0 là điểm đầu của đường cong,
V1 là vị trí 1/3 chiều dài trên vectơ tiếp tuyến đầu,
V2 là vị trí 2/3 chiều dài trên vectơ tiếp tuyến cuối,
V3 là điểm cuối của đường cong.
Đỉnh điều khiển Bezier được biểu diễn theo điều kiện Ferguson như sau:
V
0 = P0 ; V1 = (V0 + t0/3) ; V2 = (V3 - t1/3) ; V3 = P1
Ngược lại, điều kiện biên Ferguson được biểu diễn theo đỉnh điều khiển Bezier
Vi là:
P
0 = V0 ; P1 = V3 ; t0 = 3(V1-V0) ; t1 = 3(V3-V2)
hay dưới dạng ma trận:
LR
V
V
V
V
t
t
P
P
S≡
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎣
⎡
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎣
⎡
−
−
=
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎣
⎡
≡
3
2
1
0
1
0
1
0
3300
0033
1000
0001
(3.7)
Cuối cùng ta thay thế kết quả (3.7) vào phương trình đường cong Ferguson
(3.5) để đạt được phương trình đường cong Bezier bậc 3 biểu diễn bởi ma trận hệ số
Bezier M và vectơ đỉnh điều khiển R:
r(u) = U C S = U C (L R) = U (C L) R
= U M R , với 10
≤
≤
u (3.8)
trong đó:
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎣
⎡
−−
−
−
=
1331
0363
0133
0001
M;
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎣
⎡
=
3
2
1
0
V
V
V
V
R
Đặc tính tiêu biểu của đường cong Bezier là hình dáng của đường cong phụ
thuộc vào đa tuyến lồi giới hạn bởi các đỉnh điều khiển ( Hình 3.2) . Tương tự như
V0=P0 V3=P1
V2
V1
t1 t0
a,
V3
V0
V1
V2
r(u)
r(u)
b,
V0
V1
V2
V3
r(u)
c,
Hình 3.2 - Đường cong Bezier bậc 3