BAØI TAÄP HAØM SOÁ VAØ CAÙC BAØI TOAÙN LIEÂN QUAN ÑEÁN KHAÛO SAÙT HAØM SOÁ
(cid:0) Baøi 1: Cho haøm soá y = coù ñoà thò (C) (cid:0)
x 2 x
4 1
1) Khaûo saùt vaø veõ ñoà thò haøm soá. Tìm nhöõng ñieåm treân ( C) coù toïa ñoä nguyeân 2) ( d) laø ñöôøng thaúng ñi qua A (1;2) vaø coù heä soá goùc m. bieän luaän theo m soá
(cid:0) Baøi 2: Cho haøm soá y = coù ñoà thò (C) (cid:0)
x 2 x
giao ñieåm cuûa ( C) vaø (d) 2 1
1) Khaûo saùt vaø veõ ñoà thò haøm soá 2) Tính dieän tích hình phaúng giôùi haïn bôûi ( C) vaø caùc truïc toïa ñoä
2
(cid:0) (cid:0)
x
9
3
Baøi 3: Cho haøm soá y = coù ñoà thò (C) (cid:0)
x
x 2
1) Khaûo saùt vaø veõ ñoà thò haøm soá 2) Bieän luaän theo k soá giao ñieåm cuûa ( C) vaø (d) : kx –y -4k -1=0
2
(cid:0) (cid:0)
x
3
Baøi 4: Cho haøm soá y = coù ñoà thò (C) (cid:0)
x
x 2
1) Khaûo saùt vaø veõ ñoà thò haøm soá 2) Vieát pttt cuûa ( C) taïi caùc giao ñieåm cuûa ( C) vôùi ñ t ( d) : y = -x +4 3) Vieát pttt cuûa ( C) keõ töø A (1;0)
2
(cid:0) (cid:0)
x
7
5
Baøi 5: Cho haøm soá y = coù ñoà thò (C) (cid:0)
x
x 3
1) Khaûo saùt vaø veõ ñoà thò haøm soá 2) Duøng ( C) bieän luaän theo m soá nghieäm cuûa pt x2 –(m+5)x +3m +7 =0 3) Tính dieän tích giôùi haïn bôûi ( C), ñöôøng tieäm caän xieân, x =2 vaø truïc tung Baøi 6: Cho haøm soá y = ax3 +3x2 -1 coù ñoà thò (C)
1) Khaûo saùt vaø veõ ñoà thò haøm soá khi a =1 2) Tính dieän tích hình phaúng giôùi haïn bôûi ( C) vaø truïc hoaønh 3) Tìm a ñeå pt ax3 +3x2 -1=0 coù 3 nghieäm phaân bieät, coù moät nghieäm duy nhaát Baøi 7: Cho haøm soá y = 2x3 +3(m-1)x2 +6(m-2)x-1 coù ñoà thò (C)
1) Khaûo saùt vaø veõ ñoà thò haøm soá 2) Xaùc dònh m ñeå haøm soá coù CÑ, CT vaø laäp pt ñöôøng thaúng ñi qua caùc ñieåm CÑ, CT cuûa ñoà thò haøm soá Baøi 8: Cho haøm soá y = x3 +3mx2 +3(m2-1)x+m3 -3m coù ñoà thò (C)
1) Khaûo saùt vaø veõ ñoà thò haøm soá khi m = -1 2) Chöùng minh raèng haøm soá ñaõ cho luoân coù CÑ, CT vaø caùc ñieåm naøy luoân chaïy treân hai ñöôøng thaúng coá ñònh khi m thay ñoåi Baøi 9: Cho haøm soá y = x4 -4x2 +3 coù ñoà thò (C)
1) Khaûo saùt vaø veõ ñoà thò haøm soá 2) Tính dieän tích hình phaúng giôùi haïn bôûi ( C) vaø truïc hoaønh 3) Döïa vaøo ñoà thò ( C). Tìm m ñeå pt x4 -4x2 +3 -m =0 coù boän nghieäm phaân bieät, coù 2 nghieäm keùp
Baøi 10: Cho haøm soá y = x4 -x2 coù ñoà thò (C) Khaûo saùt vaø veõ ñoà thò haøm soá 1) 2) Tìm k ñeå pt sau coù hai nghieäm phaân bieät x4 -x2 +2 –k =0
Baøi 11: Cho haøm soá y = -½ x4 -x2 + 3/2 coù ñoà thò (C) 1) Khaûo saùt vaø veõ ñoà thò haøm soá
2) Tính dieän tích hình phaúng giôùi haïn bôûi ( C) vaø truïc hoaønh 3) Tìm m ñeå pt sau coù nghieäm duy nhaát x4 +2x2 + m =0
Baøi12 Cho haøm soá y = -x4 + 5x2 -4 coù ñoà thò (C) Khaûo saùt vaø veõ ñoà thò haøm soá Tìm pttt cuûa ( C) ñi qua A (0;-4) 1) 2)
3) Tính dieän tích hình phaúng giôùi haïn bôûi ( C) vaø truïc hoaønh 4) Tính dieän tích hình phaúng giôùi haïn bôûi ( C) vaø ñöôøng thaúng ( d) y +4 =0 5) Döïa vaøo ñoà thò ( C) bieän luaän soá nghieäm cuûa pt theo m : x4 + 5x2 -4 -m =0
Baøi 13: Cho haøm soá y = x3 +3mx2 +3(2m -1)x+1 coù ñoà thò (Cm)
1) Khaûo saùt vaø veõ ñoà thò haøm soá khi m =0 ( C) 2) Tìm m ñeå haøm soá coù CÑ, CT 3) Tìm giao ñieåm cuûa ( C) vaø ñt y =1. Vieát PTTT cuûa ( C) taïi caùc giao ñieåm naøy 4) Goïi ( d) laø ñöôøng thaúng qua A (1;-1) vaø coù heä soá goùc k, bieän luaän theo k soá ñieåm chung cuûa (C) vaø ( d) (cid:0) (cid:0) Baøi 14: Cho haøm soá y = coù ñoà thò (C) (cid:0)
x x
2
3 1
1) Khaûo saùt vaø veõ ñoà thò haøm soá 2) Vieát PTTT cuûa ( C) song song ñöôøng thaúng y= x 3) Chöùng minh raèng y = x+m luoân caét ( C) taïi hai ñieåm A,B thuoäc hai nhaùnh khaùc nhau
2
(cid:0) (cid:0) (cid:0)
x
2
Baøi 15: Cho haøm soá y = coù ñoà thò (Cm) (cid:0) (cid:0)
2 mx
mx 1
1) Tìm m ñeå haøm soá coù cöïc trò 2) Tìm m ñeå haøm soá taêng trong khoaûng xaùc ñònh 3) Khaûo saùt haøm soá khi m = -1 ( C ) 4) Vieát pttt cuûa ( C) ñi qua A ( 6;4) 5) Chöùng minh raèng treân ( C) coù hai tieáp tuyeán song song vôùi ñöôøng thaúng y =2x +3 Baøi 16) Cho haøm soá: y = x3 -3x2+1 coù ñoà thò (C)
1) Khaûo saùt söï bieán thieân vaø veõ ñoà thò haøm soá 2) Chöùng toû raèng ( C ) coù moät taâm ñoái xöùng. Tìm toïa ñoä taâm ñoái xöùng I 3) Vieát phöông trình tieát tuyeán cuûa ( C) taïi I 4) Chöùng toû raèng tieáp tuyeán naøy coù heä soá goùc nhoû nhaát trong taát caû caùc heä soá goùc cuûa caùc tieáp tuyeán cuûa ( C)
x
Baøi 17) Cho haøm soá: y = coù ñoà thò (C)
12 (cid:0) x 1) Khaûo saùt söï bieán thieân vaø veõ ñoà thò haøm soá 2) Vieát phöông trình tieát tuyeán cuûa (C) bieát tieáp tuyeán song song vôùi ñöôøng
thaúng (d) y = -3x +5 Baøi 18) Cho haøm soá y =4x3 -3x coù ñoà thò (C)
1) Khaûo saùt söï bieán thieân vaø veõ ñoà thò haøm soá 2) Vieát phöông trình tieát tuyeán cuûa (C) ñi qua ñieåm A(3;99) Baøi 19) Cho haøm soá: y = x3 -3x2+2 coù ñoà thò (C)
1) Khaûo saùt söï bieán thieân vaø veõ ñoà thò haøm soá 2) Vieát phöông trình tieát tuyeán cuûa ( C) taïi A coù hoaønh ñoä x =2 3) Vieát phöông trình tieát tuyeán cuûa (C) ñi qua ñieåmB(23/9; -2) Baøi 20) Cho haøm soá: y = x4 -5x2+4 coù ñoà thò (C)
1) Khaûo saùt söï bieán thieân vaø veõ ñoà thò haøm soá 2) Vieát phöông trình tieát tuyeán cuûa ( C) taïi A (-1; 0) 3) Vieát phöông trình tieát tuyeán cuûa (C) song song vôùi ñöôøng thaúng : 4x-y -2 =0 (cid:0) (cid:0)
5
2 2 x
Baøi 21) Cho haøm soá: y = coù ñoà thò (C) (cid:0)
7 x 2
x 1) Khaûo saùt söï bieán thieân vaø veõ ñoà thò haøm soá 2) Vieát phöông trình tieát tuyeán cuûa ( C) song song vôùi ñöôøng thaúng : y =x+4
(cid:0) Baøi 22) Cho haøm soá: y = coù ñoà thò (C) (cid:0)
2 2
x x 1) Khaûo saùt söï bieán thieân vaø veõ ñoà thò haøm soá 2) Vieát phöông trình tieát tuyeán cuûa ( C) taïi A (1; -3) 3) Vieát phöông trình tieát tuyeán cuûa (C) ñi qua ñieåmB(-6;5)
4) Chöùng minh raèng ñöôøng thaúng y =x +k (d) luoân luoân caét ( C) taïi 2 ñieåm thuoäc 2 nhaùnh khaùc nhau
2
(cid:0) (cid:0)
2
x
Baøi 23) Cho haøm soá: y = coù ñoà thò (C) (cid:0)
x 1
x 1) Khaûo saùt söï bieán thieân vaø veõ ñoà thò haøm soá 2) Chöùng minh raèng coù hai tieáp tuyeán cuûa ñoà thò ñi qua ñieåm A(1;0) vaø hai tieáp
tuyeán ñoù vuoâng goùc vôùi nhau (cid:0) (cid:0)
2
x
Baøi 24) Cho haøm soá: y = coù ñoà thò (C) (cid:0)
22 x 1 x
(cid:0) Baøi 25) Cho haøm soá: y = coù ñoà thò (C) (cid:0) 1) Khaûo saùt söï bieán thieân vaø veõ ñoà thò haøm soá 2) Vieát phöông trình tieát tuyeán cuûa (C) ñi qua ñieåmB(1;0) 1 1
2 x x 1) Khaûo saùt söï bieán thieân vaø veõ ñoà thò haøm soá 2) Bieän luaän theo m soá giao ñieåm cuûa ( C) vaø ñöôøng thaúng (d): 3x +y –m =0
Töø ñoùù suy ra phöông trình tieáp tuyeán cuûa ( C) song song vôùi ñöôøng thaúng 3x +y +2 =0
Baøi 26) Cho haøm soá: y = -x +3 + coù ñoà thò (C)
1 x(cid:0)1
1) Khaûo saùt söï bieán thieân vaø veõ ñoà thò haøm soá 2) (d) laø ñöôøng thaúng ñi qua A(0;3) vaø coù heä soá goùc m. Bieän luaän theo m soá giao ñieåm cuûa (d) vaø ( C). Suy ra phöông trình tieáp tuyeán cuûa ( C) xuaát phaùt töø A (cid:0) (cid:0)
3
x
Baøi 27) Cho haøm soá: y = coù ñoà thò (C) (cid:0)
32 x 2 x
1) Khaûo saùt söï bieán thieân vaø veõ ñoà thò haøm soá 2) Bieän luaän theo koá giao ñieåm cuûa ( C) vaø (d) : kx –y -4k -1 =0 Baøi 28) Cho haøm soá: y = x3 -3x2+2 coù ñoà thò (C)
1) Khaûo saùt söï bieán thieân vaø veõ ñoà thò haøm soá 2) (d) laø ñöôøng thaúng ñi qua A(2;4) vaø coù heä soá goùc m. Bieän luaän theo m soá giao ñieåm cuûa (d) vaø ( C). Baøi 29) Cho haøm soá y = -x3 +3x-2 coù ñoà thò (C)
1) Khaûo saùt vaø veõ ñoà thò haøm soá 2) Vieát pttt cuûa ( C ) ñi qua ñieåm M(2;-4) 3) Vieát pttt cuûa ( C ) ñi qua ñieåm M(-13/6 ;-4) (cid:0) Baøi 30) Cho haøm soá: y = coù ñoà thò (C) (cid:0)
1 1
2 x x
1) Khaûo saùt vaø veõ ñoà thò haøm soá 2) Vieát pttt cuûa ( C ) coù heä soá goùc = -3 3) Vieát pttt cuûa ( C ) bieát tt song song vôùi ñt y = -3/4x +2 4) Vieát pttt cuûa ( C ) bieát tt vuoâng goùc vôùi ñöôøng phaân giaùc thöù nhaát
2
(cid:0) (cid:0)
1
x
Baøi 31) Cho haøm soá ( C) : y = (cid:0)
x 1
x
1) Khaûo saùt vaø veõ ñoà thò haøm soá 2) Bieän luaän theo m soá nghieäm cuûa pt: x2 +(1-m)x +1 –m = 0
2
(cid:0) (cid:0)
1
x
= m(x+1) -1
3) Bieän luaän theo m soá nghieäm cuûa pt:
(cid:0)
x
2
(cid:0) (cid:0)
1
x
= x +m
4) Bieän luaän theo m soá nghieäm cuûa pt:
(cid:0)
x 1 x 1
x
Baøi 32 : Cho haøm soá ( C): y = x4 –x2
1) Khaûo saùt vaø veõ ñoà thò haøm soá 2) Bieän luaän theo m soá nghieäm cuûa pt: 4x2(1-x2) =1-m 3) Bieän luaän theo m soá nghieäm cuûa pt: x4 –x2=mx