intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề KSCL ôn thi tốt nghiệp THPT năm 2022 môn Toán có đáp án - Trường THPT chuyên Lương Văn Tụy

Chia sẻ: Fan Chengcheng | Ngày: | Loại File: PDF | Số trang:28

36
lượt xem
4
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

“Đề KSCL ôn thi tốt nghiệp THPT năm 2022 môn Toán có đáp án - Trường THPT chuyên Lương Văn Tụy” là tài liệu luyện tốt nghiệp THPT hiệu quả dành cho các bạn học sinh lớp 12. Đây cũng là tài liệu tham khảo môn Toán hữu ích giúp các bạn học sinh hệ thống lại kiến thức, nhằm học tập tốt hơn, đạt điểm cao trong bài thi quan trọng khác. Mời quý thầy cô và các bạn tham khảo đề thi.

Chủ đề:
Lưu

Nội dung Text: Đề KSCL ôn thi tốt nghiệp THPT năm 2022 môn Toán có đáp án - Trường THPT chuyên Lương Văn Tụy

  1. SỞ GD&ĐT NINH BÌNH ĐỀ KIỂM TRA CHUYÊN ĐỀ LẦN 1 TRƯỜNG THPT CHUYÊN NĂM HỌC 2021 - 2022 LƯƠNG VĂN TỤY MÔN TOÁN - LỚP 12 ĐỀ THI CHÍNH THỨC Thời gian làm bài: 90 phút (không kể thời gian giao đề) Câu 1: Cho hình chóp S. ABC có đáy là tam giác đều cạnh 2a , cạnh bên SA vuông góc với đáy và SA = a 3 . Tính thể tích V của khối chóp S. ABC 1 3 A. V = a 3 . B. V = a 3 . C. V = 2a3 2 . D. V = a3 . 2 4 Câu 2: Cho hàm số y = f ( x ) có bảng biến thiên như bên. Số nghiệm của phương trình f ( x ) − 6 = 0 là A. 3 . B. 1 . C. 4 . D. 2 . Câu 3: Cho bốn số thực a, b, x, y với a , b là các số thực dương khác 1 . Mệnh đề nào đưới dây đúng? ax A. ( a ) C. ( ab ) = ab . y B. a .a = a . D. y = a x− y . x+ y x x =a . x y xy x a Câu 4: Trong các hàm số sau, hàm số nào đồng biến trên tập xác định của nó? 2x + 3 A. y = −x4 + 3x2 +1 . B. y = x4 + 2x2 +1 . C. y = . D. y = x3 + 3x − 2 . x −1 Câu 5: Cho hình trụ có chiều cao h , bán kính đáy bằng r . Công thức tính diện tích toàn phần của hình trụ đó là A. S =  rh + 2 r 2 . B. S =  rh +  r 2 . C. S = 2 rh + 2 r 2 . D. S = 2 rh +  r 2 . Câu 6: Cho khối nón tròn xoay có bán kính đáy r = 3 và chiều cao h = 4 . Tính thể tích V của khối nón đã cho A. V = 16 3 . B. V = 4 . C. V = 4 . D. V = 12 . Câu 7: Tập nghiệm của bất phương trình 3x  9 là A. ( 2;+  ) . B. ( 0;2 ) . C. ( 0;+  ) . D. ( −2; +  ) . Tập nghiệm của bất phương trình 2 x −2 x−3 = 1 là 2 Câu 8: A. S = 1; − 3 . B. S = 2 . C. S = −1;3 . D. S = 0 . Câu 9: Nếu một hình trụ có diện tích đáy bằng 2cm 2 và chiều cao bằng 3cm thì có thể tích bằng A. 6cm3 . B. 6 cm3 . C. 12 cm3 . D. 2cm3 . Câu 10: Giải phương trình log3 ( x − 1) = 2 . A. x = 7 . B. x = 9 . C. x = 8 . D. x = 10 . Câu 11: Tính thể tích khối chóp có đáy là tam giác đều cạnh a và chiều cao của khối chóp bằng 3a . a3 3 a3 3 A. . B. a 3 . C. a3 3 . D. . 4 12 Câu 12: Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
  2. A. 6 . B. 5 . C. 4 . D. 3 . Câu 13: Cho hàm số f ( x ) liên tục trên đoạn  −1;2 và có đồ thị như hình vẽ bên. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn  −1;2 . Giá trị của M .m bằng A. −3 . B. 1 . C. −2 . D. 3 . Câu 14: Cho hàm số y = ax4 + bx2 + c ( a, b, c  ) có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số đã cho là A. 3 . B. 2 . C. 1 . D. 0 . 1 1 Câu 15: Cho hàm số y = − x3 + x 2 + 6 x − 1 . Khẳng định nào dưới đây là đúng? 3 2 A. Hàm số đồng biến trên khoảng ( −2;3) . B. Hàm số đồng biến trên khoảng ( 3;+ ) . C. Hàm số nghịch biến trên khoảng ( −2;3) . D. Hàm số nghịch biến trên khoảng ( −;0) . Câu 16: Đường cong trong hình bên là đồ thị của hàm số nào?
  3. 1 3 3 2 A. y = x + x − 2x + 1 . B. y = x3 − 3x2 +1. 2 2 1 9 1 3 9 C. y = − x3 + 3x 2 + x + 1 . D. y = x − 3x 2 + x + 1 . 2 2 2 2 Câu 17: Cho tứ diện SABC có các cạnh SA , SB , SC đôi một vuông góc với nhau. Biết SA = 3a , SB = 4a , SC = 5a . Tính theo a thể tích V của khối tứ diện SABC . 5a3 A. V = 10a3 . B. V = . C. V = 20a3 . D. V = 5a3 . 2 ( Câu 18: Tính đạo hàm của hàm số y = log 2 x + e x . ) 1 + ex 1 + ex 1 1 + ex A. . B. . C. . D. . ( x + e x ) ln 2 x + ex ( x + e x ) ln 2 ln 2 Câu 19: Tính thể tích V của khối cầu có đường kính bằng 3cm . 9 9 A. V = 36 cm3 . B. V = cm3 . C. V = 9 cm3 . D. V = cm3 . 2 8 AD Câu 20: Cho hình thang ABCD vuông tại A và B với AB = BC = = a . Quay hình thang và miền 2 trong của nó quanh đường thẳng chứa cạnh BC . Tính thể tích V của khối tròn xoay được tạo thành. 4 a3 7 a3 5 a3 A. V = . B. V =  a3 . C. V = . D. V = . 3 3 3 Câu 21: Phương trình 32 x +1 − 4.3x + 1 = 0 có hai nghiêm x1 , x2 trong đó x1  x2 chọn phát biểu đúng A. x1 + x2 = −2 . B. 2x1 + x2 = 0 . C. x1x2 = −1 . D. x1 + 2x2 = −1 . Câu 22: Tìm tập xác định D của hàm số y = ( x 2 + x − 2 ) −3 là A. D = \ −2;1 . B. D = ( −; −2)  (1; + ) . C. D = . D. D = ( 0; + ) . Câu 23: Diện tích mặt cầu ngoại tiếp hình lập phương cạnh a bằng  a2 3 A. 4 a 2 . B.  a2 3 . C. . D. 3 a 2 . 2 Câu 24: Biết 4 = 5 , 5 = 6 , 6 = 7 , …, 6 = 64 , khi đó x1x2 .x2 ...x60 bằng x1 x2 x3 x60
  4. 3 5 A. 4 . B. 3 . C. . D. . 2 2 Câu 25: Tập nghiệm của bất phương trình log 1 ( x 2 − 6 x + 5) + log3 ( x − 1)  0 là 3 A. S = ( 5;6 . B. S = (1; +) . C. S = 1;6 . D. S = 6; +) . 2x + y = 8 Câu 26: Hệ phương trình  x có bao nhiêu nghiệm? 2 + 2 = 5 y A. 1 . B. 2 . C. 4 . D. 0 . x+m Câu 27: Hàm số y = đồng biến trên từng khoảng xác định khi và chỉ khi tham số m thỏa mãn x +1 A. m  1 . B. m  1 . C. m  1 . D. m  1. Câu 28: Cho hàm số y = f ( x ) có bảng biến thiên như hình vẽ. Mệnh đề nào dưới đây đúng? A. Hàm số đồng biến trên khoảng ( −;1) . B. Hàm số nghịch biến trên khoảng ( −1;1) . C. Hàm số nghịch biến trên khoảng ( −1;3) . D. Hàm số đồng biến trên khoảng ( −1; +  ) Câu 29: Hàm số y = ax4 + bx2 + c có đồ thị như hình vẽ Mệnh đề nào sau đây là đúng? A. a  0, b  0, c  0 . B. a  0, b  0, c  0 . C. a  0, b  0, c  0 . D. a  0, b  0, c  0 . Câu 30: Tìm giá trị lớn nhất của hàm số f ( x ) = x3 − 8x2 + 16x − 9 trên đoạn 1;3 13 A. max f ( x ) = 5 . B. max f ( x ) = . C. max f ( x ) = −6 . D. max f ( x ) = 0 . x1;3 x1;3 27 x1;3 x1;3 x 2 − 3x + 2 Câu 31: Số đường tiệm cận đứng và ngang của đồ thị hàm số y = 2 là x + 2x − 3 A. 4. B. 3. C. 2. D. 1. Câu 32: Giá trị cực đại của hàm số y = x3 − 3x + 2 là A. yCÑ = 1 B. yCÑ = 4 C. yCÑ = 0 D. yCÑ = −1 Câu 33: Trong các khối đa diện sau, khối đa diện nào có số đỉnh và số mặt bằng nhau?
  5. A. Khối tứ diện đều. B. Khối bát diện đều. C. Khối lập phương. D. Khối mười hai mặt đều. Câu 34: Cho tứ diện ABCD . Các điểm M , N , P lần lượt thuộc các cạnh AB, AC , AD sao cho MA MB, NA 2 NC , PA 3PD. Biết thể tích khối tứ diện AMNP bằng V thì khối tứ diện ABCD tính theo V có giá trị là A. 6V . B. 4V . C. 8V . D. 12V . Câu 35: Cho hàm số y = f ( x ) có bảng biến thiên như hình bên dưới. Đồ thị hàm số y = f ( x ) có tổng số bao nhiêu đường tiệm cận đứng và ngang? A. 3. B. 2. C. 1. D. 0.  1  1 +x Câu 36: Tính tích tất cả các nghiệm thực của phương trình log 2  + x  + 2 2 x = 5 .  2x  1 A. . B. 2. C. 0. D. 1. 2 x+3 Câu 37: Cho hàm số y = . Có bao nhiêu giá trị nguyên thuộc đoạn x − ( 3m + 2 ) x 2 + 3m + 1 4 −2019;2019 của tham số m để đồ thị hàm số có 5 đường tiệm cận? A. 2018. B. 2019. C. 2021. D. 2020. Câu 38: Cho hàm số y = f ( x ) thỏa mãn f ( x ) = 4 và có bảng biến thiên như hình bên dưới Tìm tất cả các giá trị của tham số m để đường thẳng y = m cắt đồ thị hàm số y = f ( x ) tại 6 điểm phân biệt. A. 3  m  5 . B. 0  m  5 . C. 3  m  4 . D. 4  m  5 . Câu 39: Cho hàm số y = f ( x ) . Hàm số y = f  ( x ) có đồ thị như hình bên dưới.
  6. Hàm số y = f ( 2 − x ) đồng biến trên khoảng A. ( 2;+ ) . B. ( −2;1) . C. (1;3) . D. ( −; −2) . Câu 40: Có bao nhiêu số nguyên x thỏa mãn log3 ( x 2 + 1) − log3 ( x + 31)  ( 32 − 2 x −1 )  0 ? A. Vô số. B. 28 . C. 26 . D. 27 . y (C) B C A O x Câu 41: y = ln x có đồ thị ( C ) như hình vẽ. Cho hàm số Đường tròn tâm A có duy nhất một điểm chung B với ( C ) . Biết C ( 0;1) , diện tích của hình thang ABCO gần nhất với số nào sau đây. A. 3,01 . B. 2,91 . C. 3, 09 . D. 2,98 . Câu 42: Cho hàm số f ( x) = 3x 4 − 4 x3 − 12 x 2 + m . Gọi M là giá trị lớn nhất của hàm số trên đoạn.  −1;3 . Giá trị nhỏ nhất của M bằng 57 59 5 A. . B. . C. . D. 16 . 2 2 2 Câu 43: Bạn A định làm một cái hộp quà lưu niệm (không nắp) bằng cách cắt từ một tấm bìa hình tròn bán kính 4cm để tạo thành một khối lăng trụ lục giác đều, biết 6 hình chữ nhật có các kích thước là 1cm và xcm (tham khảo hình vẽ). Thể tích của hộp quà gần nhất với giá trị nào sau đây? A. 24,5cm3 . B. 25cm3 . C. 25,5cm3 . D. 24cm3 . Câu 44: Giả sử các số a, b, c thỏa mãn đồ thị hàm số y = x3 + ax2 + bx + c đi qua ( 0;1) và có cực trị ( −2;0) . Tính giá trị của biểu thức T = 4a + b + c . A. 22 . B. 24 . C. 20 . D. 23 .
  7. Câu 45: Cho hàm số y = f ( x ) liên tục trên R và có đồ thị có 3 điểm cực trị như hình dưới đây. Số ( điểm cực trị của hàm số g ( x ) = f x3 − 3x + 2 là ) A. 5 . B. 9 . C. 11. D. 7 . Câu 46: Một hình trụ có độ dài đường cao bằng 4, các đường tròn đáy lần lượt là ( O;1) và ( O;1) . Giả sử AB là một day cung cố định trên ( O;1) sao cho AOB = 120 và MN là đường kính thay đổi trên ( O;1) . Giá trị lớn nhất của thể tích khối tứ diện ABMN là 4 3 4 8 3 8 A. . B. . C. . D. . 3 3 3 3 Câu 47: Cho hình chóp S. ABCD có đáy ABCD là hình vuông, AB = 1, cạnh bên SA = 1 và vuông góc với mặt phẳng đáy ( ABCD ) . Kí hiệu M là điểm di động trên đoạn CD và N là điểm di động trên đoạn CB sao cho MAN = 45 . Thể tích nhỏ nhất của khối chóp S.AMN là 2 −1 2 +1 2 +1 2 −1 A. . B. . C. . D. . 3 9 6 9 1 Câu 48: Cho các số thực a , b thỏa mãn  b  a  1 . Tìm giá trị nhỏ nhất của biểu thức 3 4 ( 3b − 1) P = log a + 8log 2b a . 9 a A. 7 . B. 8 . C. 6 . D. 9 . Câu 49: Cho hàm số y = f ( x ) . Hàm số f  ( x ) có bảng biến thiên như hình vẽ sau Giá trị lớn nhất của hàm số g ( x ) = f ( 2x ) − sin 2 x trền đoạn [−1;1] là A. f (1) . B. f ( 0 ) . C. f ( 2 ) . D. f ( −1) . Câu 50: Cho phương trình ( 2 log 32 x − log 3 x − 1) 5 x − m = 0 ( m là tham số thực). Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng hai nghiệm phân biệt? A. 125. B. 123. C. 122. D. 124. ---------- HẾT ----------
  8. HƯỚNG DẪN GIẢI CHI TIẾT Câu 1: Cho hình chóp S. ABC có đáy là tam giác đều cạnh 2a , cạnh bên SA vuông góc với đáy và SA = a 3 . Tính thể tích V của khối chóp S. ABC 1 3 A. V = a 3 . B. V = a 3 . C. V = 2a3 2 . D. V = a3 . 2 4 Lời giải Chọn D 4a 2 3 Ta có tam giác đều cạnh 2a nên SABC = = a2 3 . 4 1 1 Thể tích V của khối chóp S. ABC bằng VS . ABC = SA.SABC = a 3.a 2 3 = a 3 . 3 3 Câu 2: Cho hàm số y = f ( x ) có bảng biến thiên như bên. Số nghiệm của phương trình f ( x ) − 6 = 0 là A. 3 . B. 1 . C. 4 . D. 2 . Lời giải Chọn D Ta có f ( x ) − 6 = 0  f ( x ) = 6 . Kẻ đường thẳng y = 6 song song với trục Ox sẽ cắt đồ thị tại 2 điểm phân biệt cũng chính là hai nghiệm của phương trình f ( x ) − 6 = 0 . Câu 3: Cho bốn số thực a, b, x, y với a , b là các số thực dương khác 1 . Mệnh đề nào đưới dây đúng? ax A. ( a x ) = a x + y . C. ( ab ) = ab x . y B. a x .a y = a xy . x D. y = a x− y . a
  9. Lời giải Chọn D Câu 4: Trong các hàm số sau, hàm số nào đồng biến trên tập xác định của nó? 2x + 3 A. y = −x4 + 3x2 +1 . B. y = x4 + 2x2 +1 . C. y = . D. y = x3 + 3x − 2 . x −1 Lời giải Chọn D Ta có y = x3 + 3x − 2  y = 3x2 + 3  0, x  . Câu 5: Cho hình trụ có chiều cao h , bán kính đáy bằng r . Công thức tính diện tích toàn phần của hình trụ đó là A. S =  rh + 2 r 2 . B. S =  rh +  r 2 . C. S = 2 rh + 2 r 2 . D. S = 2 rh +  r 2 . Lời giải Chọn C Hình trụ có S đáy =  r 2 , Sxq = 2 rh . Do đó diện tích toàn phần hình trụ bằng S = 2 rh + 2 r 2 . Câu 6: Cho khối nón tròn xoay có bán kính đáy r = 3 và chiều cao h = 4 . Tính thể tích V của khối nón đã cho A. V = 16 3 . B. V = 4 . C. V = 4 . D. V = 12 . Lời giải Chọn B 1 1 ( 3 ) .4 = 4 . 2 Ta có V =  r 2 h =  3 3 Câu 7: Tập nghiệm của bất phương trình 3x  9 là A. ( 2;+  ) . B. ( 0;2 ) . C. ( 0;+  ) . D. ( −2; +  ) . Lời giải Chọn A Ta có 3x  9  3x  32  x  2  x  ( 2; +  ) . Tập nghiệm của bất phương trình 3x  9 là ( 2;+  ) . − 2 x −3 = 1 là 2 Câu 8: Tập nghiệm của bất phương trình 2 x A. S = 1; − 3 . B. S = 2 . C. S = −1;3 . D. S = 0 . Lời giải Chọn C  x = −1 Ta có 2 x −2 x−3 = 1  x 2 − 2 x − 3 = 0   2 . x = 3
  10. − 2 x −3 = 1 là S = −1;3 . 2 Tập nghiệm của bất phương trình 2 x Câu 9: Nếu một hình trụ có diện tích đáy bằng 2cm 2 và chiều cao bằng 3cm thì có thể tích bằng A. 6cm3 . B. 6 cm3 . C. 12 cm3 . D. 2cm3 . Lời giải Chọn A Ta có V = B.h = 2.3 = 6 cm3. Câu 10: Giải phương trình log3 ( x − 1) = 2 . A. x = 7 . B. x = 9 . C. x = 8 . D. x = 10 . Lời giải Chọn D Điều kiện: x  1. log3 ( x −1) = 2  x −1 = 32  x = 10. Câu 11: Tính thể tích khối chóp có đáy là tam giác đều cạnh a và chiều cao của khối chóp bằng 3a . a3 3 a3 3 A. . B. a 3 . C. a3 3 . D. . 4 12 Lời giải Chọn B a2 3 Ta có đáy là tam giác đều cạnh a nên diện tích đáy là S = . 4 1 1 a2 3 a3 3 Vậy thể tích khối chóp là V = S.h = . .3a = . 3 3 4 4 Câu 12: Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng? A. 6 . B. 5 . C. 4 . D. 3 . Lời giải Chọn A Hình lăng trụ tam giác đều có 4 mặt phẳng đối xứng. Câu 13: Cho hàm số f ( x ) liên tục trên đoạn  −1;2 và có đồ thị như hình vẽ bên. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn  −1;2 . Giá trị của M .m bằng
  11. A. −3 . B. 1 . C. −2 . D. 3 . Lời giải Chọn A Từ đồ thị ta có M = 3 và m = −1. Vậy M .m = −3 . Câu 14: Cho hàm số y = ax4 + bx2 + c ( a, b, c  ) có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số đã cho là A. 3 . B. 2 . C. 1 . D. 0 . Lời giải Chọn A Từ đồ thị, ta có hàm số có có 3 điểm cực trị. 1 1 Câu 15: Cho hàm số y = − x3 + x 2 + 6 x − 1 . Khẳng định nào dưới đây là đúng? 3 2 A. Hàm số đồng biến trên khoảng ( −2;3) . B. Hàm số đồng biến trên khoảng ( 3;+ ) . C. Hàm số nghịch biến trên khoảng ( −2;3) . D. Hàm số nghịch biến trên khoảng ( −;0) . Lời giải Chọn A Ta có y = −x2 + x + 6  x = −2 y = 0  − x 2 + x + 6 = 0   . x = 3 Bảng biến thiên
  12. Từ bảng biến thiên ta có hàm số đồng biến trên khoảng ( −2;3) . Câu 16: Đường cong trong hình bên là đồ thị của hàm số nào? 1 3 3 2 A. y = x + x − 2x + 1 . B. y = x3 − 3x2 +1. 2 2 1 9 1 3 9 C. y = − x3 + 3x 2 + x + 1 . D. y = x − 3x 2 + x + 1 . 2 2 2 2 Lời giải Chọn D Dựa vào dạng đồ thị ta có a  0 . 1 3 3 2 y= x + x − 2 x + 1  y (1) = 1 loại. 2 2 y = x3 − 3x2 + 1  y (1) = −1 loại. 1 3 9 3 9 Xét hàm y = x − 3 x 2 + x + 1 , y = x 2 − 6 x + 2 2 2 2 x = 1 y = 3 y = 0    x = 3  y = 1. 1 3 9 Vậy đồ thị là của hàm số y = x − 3x 2 + x + 1 . 2 2 Câu 17: Cho tứ diện SABC có các cạnh SA , SB , SC đôi một vuông góc với nhau. Biết SA = 3a , SB = 4a , SC = 5a . Tính theo a thể tích V của khối tứ diện SABC . 5a3 A. V = 10a3 . B. V = . C. V = 20a3 . D. V = 5a3 . 2 Lời giải Chọn A
  13. 1 Ta có V = .3a.4a.5a = 10a 3 . 6 Câu 18: Tính đạo hàm của hàm số y = log 2 x + e x . ( ) 1 + ex 1 + ex 1 1 + ex A. . B. . C. . D. . ( x + e x ) ln 2 x + ex ( x + e x ) ln 2 ln 2 Lời giải Chọn A ( x + e ) x 1+ e x Ta có y = = . ( x + e ) ln 2 ( x + e ) ln 2 x x Câu 19: Tính thể tích V của khối cầu có đường kính bằng 3cm . 9 9 A. V = 36 cm3 . B. V = cm3 . C. V = 9 cm3 . D. V = cm3 . 2 8 Lời giải Chọn B 3 4 9 Bán kính R = nên thể tích của khối cầu bằng V =  R3 = cm3 . 2 3 2 AD Câu 20: Cho hình thang ABCD vuông tại A và B với AB = BC = = a . Quay hình thang và miền 2 trong của nó quanh đường thẳng chứa cạnh BC . Tính thể tích V của khối tròn xoay được tạo thành. 4 a3 7 a3 5 a3 A. V = . B. V =  a3 . C. V = . D. V = . 3 3 3 Lời giải Chọn D Thể tích của khối tròn xoay được tạo thành bằng 1 1 5 a 3 V =  R2 hT −  R2 hN =  .a 2 .2a −  .a 2 .a = . 3 3 3 Câu 21: Phương trình 32 x +1 − 4.3x + 1 = 0 có hai nghiêm x1 , x2 trong đó x1  x2 chọn phát biểu đúng
  14. A. x1 + x2 = −2 . B. 2x1 + x2 = 0 . C. x1x2 = −1 . D. x1 + 2x2 = −1 . Lời giải Chọn D Ta có 32 x +1 − 4.3x + 1 = 0  3. ( 3x ) − 4.3x + 1 = 0 2 t = 1 Đặt t = 3 ( t  0 ), phương trình trở thành: 3t − 4t + 1 = 0   1 x 2 t =  3 + Với t = 1 suy ra 3x = 1  x = 0 1 1 + Với t = suy ra 3x =  x = −1 3 3 Từ đó suy ra x1 = −1 , x2 = 0 Vậy x1 + 2x2 = −1 . Câu 22: Tìm tập xác định D của hàm số y = ( x 2 + x − 2 ) −3 là A. D = \ −2;1 . B. D = ( −; −2)  (1; + ) . C. D = . D. D = ( 0; + ) . Lời giải Chọn A  x  −2 Hàm số xác định khi x 2 + x − 2  0   x  1 Vậy tập xác định D = \ −2;1 Câu 23: Diện tích mặt cầu ngoại tiếp hình lập phương cạnh a bằng  a2 3 A. 4 a 2 . B.  a2 3 . C. . D. 3 a 2 . 2 Lời giải Chọn D Xét hình lập phương ABCD.A ' B ' C ' D ' Bán kính mặt cầu ngoại tiếp hình lập phương là R = OD (trong đó O là trung điểm cạnh BD ) ( ) 2 Xét BDB vuông tại B ta có B ' D = BB '2 + BD 2 = a 2 + a 2 =a 3
  15. BD a 3 Suy ra R = = 2 2 2 a 3 Vậy diện tích mặt cầu ngoại tiếp hình lập phương là S = 4 R = 4 .  2  = 3 a . 2  2  Câu 24: Biết 4 = 5 , 5 = 6 , 6 = 7 , …, 6 = 64 , khi đó x1x2 .x2 ...x60 bằng x1 x2 x3 x60 3 5 A. 4 . B. 3 . C. . D. . 2 2 Lời giải Chọn B Ta có 4 x1 = 5  x1 = log 4 5  x2  x = log 6 5 = 6  2 5  x3 6 = 7   x3 = log 6 7  x1 x2 .x3 ...x60 = log 4 5.log 5 6.log 6 7. ... .log 63 64 = log 4 64 = 3 . ... ...   63x60 = 64  x60 = log 63 64  Câu 25: Tập nghiệm của bất phương trình log 1 ( x 2 − 6 x + 5) + log3 ( x − 1)  0 là 3 A. S = ( 5;6 . B. S = (1; +) . C. S = 1;6 . D. S = 6; +) . Lời giải Chọn D ( ) Bất phương trình  − log3 x 2 − 6 x + 5 + log3 ( x − 1)  0 ( )  log3 x2 − 6 x + 5  log3 ( x − 1)  x  1  x2 − 6x + 5  x −1  x2 − 7 x + 6  0      x  6  x  6 . x −1  0 x  1 x  1  Tập nghiệm của bất phương trình S = 6; +) . 2x + y = 8 Câu 26: Hệ phương trình  x có bao nhiêu nghiệm? 2 + 2 = 5 y A. 1 . B. 2 . C. 4 . D. 0 . Lời giải Chọn D  x+ y 2 = 8  2 .2 = 8 x y Ta có  x  x 2 + 2 = 5   2 + 2 = 5 y y Suy ra 2x ,2 y là 2 nghiệm dương của phương trình t 2 − 5t + 8 = 0 . Mà phương trình t 2 − 5t + 8 = 0 vô nghiệm nên hệ phương trình đã cho vô nghiệm.
  16. x+m Câu 27: Hàm số y = đồng biến trên từng khoảng xác định khi và chỉ khi tham số m thỏa mãn x +1 A. m  1 . B. m  1 . C. m  1 . D. m  1. Lời giải Chọn A Tập xác định D = \ −1 . x+m 1− m y=  y = . x +1 ( x + 1) 2 Hàm số đã cho đồng biến trên từng khoảng xác định  y  0, x  −1  1 − m  0  m  1 . Câu 28: Cho hàm số y = f ( x ) có bảng biến thiên như hình vẽ. Mệnh đề nào dưới đây đúng? A. Hàm số đồng biến trên khoảng ( −;1) . B. Hàm số nghịch biến trên khoảng ( −1;1) . C. Hàm số nghịch biến trên khoảng ( −1;3) . D. Hàm số đồng biến trên khoảng ( −1; +  ) . Lời giải Chọn B Dựa vào bảng biến thiên, ta thấy hàm số nghịch biến trên khoảng ( −1;1) . Câu 29: Hàm số y = ax4 + bx2 + c có đồ thị như hình vẽ Mệnh đề nào sau đây là đúng? A. a  0, b  0, c  0 . B. a  0, b  0, c  0 . C. a  0, b  0, c  0 . D. a  0, b  0, c  0 . Lời giải Chọn D Dựa vào đồ thị hàm số, ta thấy: + lim y = −  a  0 . x → + Hàm số có 3 cực trị nên a.b  0  b  0 . + Đồ thị hàm số cắt trục tung tại điểm có tung độ âm nên c  0 .
  17. Câu 30: Tìm giá trị lớn nhất của hàm số f ( x ) = x3 − 8x2 + 16x − 9 trên đoạn 1;3 13 A. max f ( x ) = 5 . B. max f ( x ) = . C. max f ( x ) = −6 . D. max f ( x ) = 0 . x1;3 x1;3 27 x1;3 x1;3 Lời giải Chọn B Hàm số đã cho xác định trên đoạn 1;3 . Ta có f ( x ) = x3 − 8x2 + 16x − 9  f  ( x ) = 3x2 −16x + 16 .  x = 4  1;3 Nên f  ( x ) = 0  3x − 16 x + 16 = 0   2 .  x = 4  1;3  3  4  13 Khi đó f (1) = 0; f ( 3) = −6; f   = .  3  27 13 Vậy max f ( x ) = . x1;3 27 x 2 − 3x + 2 Câu 31: Số đường tiệm cận đứng và ngang của đồ thị hàm số y = là x2 + 2 x − 3 A. 4. B. 3. C. 2. D. 1. Lời giải Chọn C lim y = 1  y = 1 là tiệm cận ngang x →+  1  xlim + y=− →1 4  x =1 Do  không là tiệm cận đứng  lim y = − 1  x →1− 4 lim + y = −  x = −3 là tiệm cận đứng x →( −3) Vậy tổng số đường tiệm cận đứng và ngang của đồ thị là 2. Câu 32: Giá trị cực đại của hàm số y = x3 − 3x + 2 là A. yCÑ = 1 B. yCÑ = 4 C. yCÑ = 0 D. yCÑ = −1 Lời giải Chọn B  x = −1 y = 3 x 2 − 3 = 0   x = 1 y = 6 x, y ( −1) = −6  0, y ( −1) = 4  Hàm số đạt cực đại tại x = −1 và giá trị cực đại là 4. Câu 33: Trong các khối đa diện sau, khối đa diện nào có số đỉnh và số mặt bằng nhau? A. Khối tứ diện đều. B. Khối bát diện đều.
  18. C. Khối lập phương. D. Khối mười hai mặt đều. Lời giải Chọn A Khối tứ diện đều có số đỉnh bằng số mặt bằng 4. Câu 34: Cho tứ diện ABCD . Các điểm M , N , P lần lượt thuộc các cạnh AB, AC , AD sao cho MA MB, NA 2 NC , PA 3PD. Biết thể tích khối tứ diện AMNP bằng V thì khối tứ diện ABCD tính theo V có giá trị là A. 6V . B. 4V . C. 8V . D. 12V . Lời giải Chọn B 1 2 3 Ta có: AM AB, AN AC , AP AD 2 3 4 1 2 3 AB. AC. AD VAMNP V AM . AN . AP 2 3 4 1 VABCD 4V . VABCD VABCD AB. AC. AD AB. AC. AD 4 Câu 35: Cho hàm số y = f ( x ) có bảng biến thiên như hình bên dưới. Đồ thị hàm số y = f ( x ) có tổng số bao nhiêu đường tiệm cận đứng và ngang? A. 3. B. 2. C. 1. D. 0. Lời giải Chọn B Từ bảng biến thiên của hàm số y = f ( x ) ta có: lim f ( x ) = −1; lim f ( x ) = − . Suy ra đồ thị hàm số y = f ( x ) có một TCN là đường thẳng x →− x →+ y = −1 . lim f ( x ) = − . Suy ra đồ thị hàm số y = f ( x ) có một TCĐ là đường thẳng x = 1 . x →1+  1  2x +x 1 Câu 36: Tính tích tất cả các nghiệm thực của phương trình log 2  + x  + 2 = 5.  2x  1 A. . B. 2. C. 0. D. 1. 2 Lời giải Chọn A ĐKXĐ: x  0
  19.  1  1 +x  1  log 2  + x  + 2 2 x = 5  f  + x  = f ( 2 ) (1) , với f ( t ) = log2 t + 2t là hàm số đồng biến  2x   2x  trên khoảng ( 0; +  ) . 1 Vậy (1)  + x = 2  2 x2 − 4 x + 1 = 0 . 2x 1 Suy ra tích tất cả các nghiệm thực của phương trình đã cho bằng . 2 x+3 Câu 37: Cho hàm số y = . Có bao nhiêu giá trị nguyên thuộc đoạn x − ( 3m + 2 ) x 2 + 3m + 1 4 −2019;2019 của tham số m để đồ thị hàm số có 5 đường tiệm cận? A. 2018. B. 2019. C. 2021. D. 2020. Lời giải Chọn B  x  1 2  x  1 Hàm số đã cho xác định khi: x4 − ( 3m + 2) x2 + 3m + 1  0   2  2 .   x  3m + 1  x  3m + 1 Ta có: lim f ( x ) = 0 . Suy ra đồ thị hàm số có một TCN là đường thẳng y = 0 . x → Vậy đồ thị hàm số có 5 đường tiệm cận khi nó có 4 đường TCĐ  phương trình x 2 = 3m + 1  1  m− 3m + 1  0 3   có hai nghiệm phân biệt khác 1, − 3  3m + 1  1  m  0 . 3m + 1  9   m  8  3 Suy ra số giá trị nguyên thuộc đoạn  −2019;2019 của tham số m để đồ thị hàm số có 5 đường tiệm cận là 2019. Câu 38: Cho hàm số y = f ( x ) thỏa mãn f ( x ) = 4 và có bảng biến thiên như hình bên dưới Tìm tất cả các giá trị của tham số m để đường thẳng y = m cắt đồ thị hàm số y = f ( x ) tại 6 điểm phân biệt. A. 3  m  5 . B. 0  m  5 . C. 3  m  4 . D. 4  m  5 . Lời giải Chọn D Hàm số y = f ( x ) là hàm chẵn nên đồ thị nhận trục tung làm trục đối xứng.
  20. Từ bảng biến thiên của hàm y = f ( x ) ta suy ra bảng biến thiên của hàm y = f ( x ) như sau: Đường thẳng y = m cắt đồ thị hàm số y = f ( x ) tại 6 điểm phân biệt khi 4  m  5 . Câu 39: Cho hàm số y = f ( x ) . Hàm số y = f  ( x ) có đồ thị như hình bên dưới. Hàm số y = f ( 2 − x ) đồng biến trên khoảng A. ( 2;+ ) . B. ( −2;1) . C. (1;3) . D. ( −; −2) . Lời giải Chọn B Ta có  f ( 2 − x ) = − f  ( 2 − x ) . Hàm số y = f ( 2 − x) đồng biến  2 − x  −1 x  3  − f (2 − x)  0  f (2 − x)  0    1  2 − x  4  −2  x  1 Câu 40: Có bao nhiêu số nguyên x thỏa mãn log 3 ( x 2 + 1) − log3 ( x + 31)  ( 32 − 2 x −1 )  0 ?   A. Vô số. B. 28 . C. 26 . D. 27 . Lời giải Chọn D Điều kiện: x  −31 .  log3 ( x 2 + 1) − log3 ( x + 31)  0   32 − 2 x −1  0 Ta có  3 (  ) 3 ( ) (  ) x −1 log x 2 + 1 − log x + 31 32 − 2  0    log3 ( x 2 + 1) − log3 ( x + 31)  0   32 − 2 x −1  0
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2