ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN - ĐỀ SỐ 12
lượt xem 37
download
Tham khảo tài liệu 'đề ôn thi đại học môn toán - đề số 12', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN - ĐỀ SỐ 12
- Đề số 12 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I: (2 điểm) Cho hàm số y = x3 − 3m 2 x + 2m (Cm). 1) Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = 1 . 2) Tìm m để (Cm) và trục hoành có đúng 2 điểm chung phân biệt. Câu II: (2 điểm) (sin 2 x − sin x + 4) cos x − 2 =0 1) Giải phương trình: 2sin x + 3 2) Giải phương trình: 8 x + 1 = 2 3 2 x +1 − 1 π 2 sin xdx Câu III: (1 điểm) Tính tích phân: I= (sin x + cos x)3 0 Câu IV: (1 điểm) Cho khối chóp S.ABC có SA ⊥ (ABC), ∆ ABC vuông cân đỉnh C và SC = a . Tính góc ϕ giữa 2 mặt phẳng (SCB) và (ABC) để thể tích khối chóp lớn nhất. Câu V: (1 điểm) Tìm m để phương trình sau đây có đúng 2 nghiệm thực phân biệt: 2 − x − 2 + x − (2 − x)(2 + x) = m II. PHẦN RIÊNG (3 điểm): A. Theo chương trình chuẩn: Câu VI.a: (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho đi ểm M(3;1). Vi ết ph ương trình đ ường th ẳng d đi qua M cắt các tia Ox, Oy tại A và B sao cho (OA+3OB) nhỏ nhất. 2) Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(1;2;3) và B(3;4;1). Tìm to ạ đ ộ điểm M thuộc mặt phẳng (P): x − y + z − 1 = 0 để ∆ MAB là tam giác đều. n 2 Câu VII.a: (1 điểm) Tìm hệ số của x trong khai triển Newton của biểu thức � 3 + x5 �, 20 � � � � x 1112 1 1 Cn − Cn + Cn + ... + (−1) n Cn = 0 n biết rằng: n +1 2 3 13 B. Theo chương trình nâng cao: Câu VI.b: (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho 4 điểm A(1;0), B(–2;4), C(–1;4), D(3;5). Tìm toạ độ điểm M thuộc đường thẳng (∆) : 3x − y − 5 = 0 sao cho hai tam giác MAB, MCD có diện tích bằng nhau. 2) Trong không gian với hệ toạ độ Oxyz, cho đường thẳng (∆1 ) có phương trình { x = 2t ; y = t; z = 4 ; (∆2 ) là giao tuyến của 2 mặt phẳng (α ) : x + y − 3 = 0 và ( β ) : 4 x + 4 y + 3 z − 12 = 0 . Chứng tỏ hai đường thẳng ∆1 , ∆2 chéo nhau và viết phương trình mặt cầu nhận đoạn vuông góc chung của ∆1 , ∆2 làm đường kính. x 2 + (2m + 1) x + m 2 + m + 4 Câu VII.b: (1 điểm) Cho hàm số y = . Chứng minh rằng với mọi m, hàm 2( x + m) số luôn có cực trị và khoảng cách giữa hai điểm cực trị không phụ thuộc m.
- Hướng dẫn Đề số 12 www.VNMATH.com y co�� CT C, yC� = 0 hoac yCT = 0 ⇔ m= 1 Câu I: 2) (Cm) và Ox có đúng 2 điểm chung phân biệt � (2cos x − 1)(sin x cos x + 2) = 0 π + k 2π ⇔ x= Câu II: 1) PT ⇔ 2sin x + 3 3 0 2) Đặt 2 = u > 0; 2 −1 = v . x +1 3 x x=0 u=v>0 �3 + 1 = 2v � + 1 = 2v �3 u u � �� � �3 PT ⇔ �3 ⇔ −1 + 5 u − 2u + 1 = 0 � + 1 = 2u �u − v)(u + uv + v + 2) = 0 x = log 2 2 2 v ( 2 π π π 2 2 cos tdt cos xdx Câu III: Đặt x = − t � dx = −dt ⇒ I = � t + cos t )3 = � x + cos x)3 2 (sin (sin 0 0 π π π π4 2 12 dx dx 1 = − cot( x + ) = 1 ⇒ I = 1 2I = � =� ⇒ 2 0 sin 2 ( x + π ) 0 (sin x + cos x ) 2 2 40 2 4 �π� �π� a3 Câu IV: ϕ = ᄋSCA � � � VSABC = (sin ϕ − sin 3 ϕ ) . Xét hàm số y = sin x − sin 3 x trên khoảng � � Từ 0; 0; . � 2� � 2� 6 �π� 1 a3 a3 3 khi sin ϕ = ,ϕ � � BBT � (VSABC ) max = ymax = 0; � 2� 3 6 9 −1 1 Câu V: Đặt t = 2 − x − 2 + x � t ' = − 0) ab 3 1 Cô − si 3 1 M(3; 1) ∈ d 1 � + = ab 12 . 2. a b ab a = 3b a=6 Mà OA + 3OB = a + 3b 2 3ab = 12 � (OA + 3OB) min = 12 � � 1 1 � � 3 b=2 == ab2 xy + = 1 � x + 3y − 6 = 0 Phương trình đường thẳng d là: 62 2) Gọi (Q) là mặt phẳng trung trực của đoạn AB ⇒ (Q): x + y − z − 3 = 0 d là giao tuyến của (P) và (Q) ⇒ d: { x = 2; y = t + 1; z = t M ∈ d ⇒ M (2; t + 1; t ) � AM = 2t 2 − 8t + 11 . Vì AB = 12 nên ∆ MAB đều khi MA = MB = AB � 6 18 4 18 � 4 18 � 2t 2 − 8t − 1 = 0 � t = M� 2; ; � � 2� 2 2 Câu VII.a: Ta có (1 − x) n = Cn0 − Cn x + Cn2 x 2 − .... + (−1)n Cnn x n = B 1 1 1 1 111 1 Vì (1 − x) dx = Bdx = Cn − Cn + Cn2 + ... + (−1) n n 0 Cnn � n + 1 = 13 � n = 12 , n +1 n +1 2 3 0 0 n−k 12 2 2 ( x5 ) k , Tk +1 = C12 .212 − k .x8 k −36 ⇒ 8k − 36 = 20 � k = 7 • ( 3 + x5 ) n = C12 .( 3 ) k k x x k =0 ⇒ Hệ số của x 20 là: C12 .2 = 25344 7 5 x=t Câu VI.b: 1) Phương trình tham số của ∆ : . M ∈ ∆ ⇒ M(t; 3t – 5) y = 3t − 5
- 7 7 S MAB = S MCD � d ( M , AB ). AB = d ( M , CD ).CD ⇔ t = −9 � = ⇒ M (−9; −32), M ( ; 2) t 3 3 2) Gọi AB là đường vuông góc chung của ∆1 , ∆2 : A(2t; t; 4) ∆1 , B(3 + s; − s;0) ∆2 AB ⊥ ∆ 1, AB ⊥ ∆ 2 ⇒ A(2;1; 4), B(2;1;0) ⇒ Phương trình mặt cầu là: ( x − 2) + ( y − 1) + ( z − 2) = 4 2 2 2 Câu VII.b: Hàm số luôn có hai điểm cực trị x1 = −m − 2, x2 = −m + 2 . Khoảng cách giữa hai điểm cực trị là AB = ( y2 − y1 ) 2 + ( x2 − x1 ) 2 = 2 x1 − x2 = 4 2 (không đổi)
CÓ THỂ BẠN MUỐN DOWNLOAD
-
60 đề ôn thi đại học môn toán 2007-2008
90 p | 1885 | 1208
-
Đề ôn thi đại học môn toán
90 p | 555 | 181
-
Chuyên đề ôn thi Đại học môn Hóa - Nitơ và Photpho
8 p | 515 | 115
-
Chuyên đề ôn thi Đại học môn Hóa - Axit cacboxylic
11 p | 463 | 96
-
Chuyên đề ôn thi Đại học môn Hóa: Este
12 p | 514 | 92
-
Chuyên đề ôn thi Đại học môn Hóa - Rượu
9 p | 311 | 66
-
Chuyên đề ôn thi Đại học môn Hóa: Ankin
8 p | 168 | 45
-
Đề ôn thi Đại học môn Toán - Trần Sĩ Tùng - Đề số 1
1 p | 85 | 4
-
Đề ôn thi Đại học môn Toán - Trần Sĩ Tùng - Đề số 3
1 p | 57 | 2
-
Đề ôn thi Đại học môn Toán - Trần Sĩ Tùng - Đề số 2
1 p | 55 | 1
-
Đề ôn thi Đại học môn Toán - Trần Sĩ Tùng - Đề số 4
1 p | 38 | 1
-
Đề ôn thi Đại học môn Toán - Trần Sĩ Tùng - Đề số 5
1 p | 45 | 1
-
Đề ôn thi Đại học môn Toán - Trần Sĩ Tùng - Đề số 6
1 p | 47 | 1
-
Đề ôn thi Đại học môn Toán - Trần Sĩ Tùng - Đề số 7
1 p | 64 | 1
-
Đề ôn thi Đại học môn Toán - Trần Sĩ Tùng - Đề số 8
1 p | 43 | 1
-
Đề ôn thi Đại học môn Toán - Trần Sĩ Tùng - Đề số 9
1 p | 39 | 1
-
Đề ôn thi Đại học môn Toán - Trần Sĩ Tùng - Đề số 10
1 p | 49 | 1
-
Đề ôn thi Đại học môn Toán - Trần Sĩ Tùng - Đề số 11
1 p | 45 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn