Tên đề tài: Phân tích các nhân tố ảnh hưởng đến kết quả sản xuất kinh doanh (GDP) ngành thủy sản tại thành phố HCM thời kỳ 2000 - 2009
lượt xem 12
download
Nhà nghiên cứu kinh tế sử dụng hàm hồi quy tổng thể để dự báo khoảng. Với kết quả dự báo không cho giá trị cụ thể nhưng cho kết quả giới hạn đầu và cuối. Trong chừng mực nào đó dự báo khoảng mang tính khái quát hơn cho nhà nghiên cứu thấy được xu thế chung của vấn đề dự báo.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Tên đề tài: Phân tích các nhân tố ảnh hưởng đến kết quả sản xuất kinh doanh (GDP) ngành thủy sản tại thành phố HCM thời kỳ 2000 - 2009
- KHOA: QUẢN TRỊ KINH DOANH Tiểu luận môn: KINH TẾ LƯỢNG Tên đề tài: Phân tích các nhân tố ảnh hưởng đến kết quả sản xuất kinh doanh (GDP) ngành thủy sản tại thành phố HCM thời kỳ 2000 - 2009
- NHÓM BANK CURRENCY Đỗ Đức Đông 11011327 Chu Thị Thúy Nga 11009287 Trần Trọng Nghĩa 11011187 Nguyễn Tiến Sáu 11010727 Nguyễn Trọng Quý 11009217 Kiều Duy Đại 11010397
- ĐẶT VẤN ĐỀ
- TRÌNH BÀY CHƯƠNG 1 CHƯƠNG 2 CHƯƠNG 3 CHƯƠNG 4 PHƯƠNG PHÁP NGHIÊN CỨU, THU NHẬN THẬP SỐ THIẾT ĐỊNH, LIỆU VÀ LẬP MÔ ĐÁNH GIÁ THỰC HÌNH THỰC V À ĐỀ HIỆN ĐỀ TỔNG HIỆN DỰ XUẤT – TÀI QUÁT HẠN CHẾ BÁO
- CHƯƠNG 1: PHƯƠNG PHÁP NGHIÊN CỨU, THU THẬP SỐ LIỆU VÀ THỰC HIỆN ĐỀ TÀI Phương pháp nghiên cứu q Phương pháp thu thập số liệu q và thực hiện đề tài 2000 2001 … 2008 2009
- Phương pháp nghiên cứu q Dựa trên các cơ sở… Sau khi thu thập số liệu từ 10 năm Thiết lập mô hình các nhân tố ảnh hưởng kết quả sản xuất kinh doanh ngành thủy sản Kết quả sản xuất kinh doanh là một v yếu tố định lượng có được sau quá trình hoàn thành sản xuất.
- Phương pháp thu thập số liệu và thực hiện đề q tài Nhóm đã tiến hành thu thập số liệu của thành phố Hồ Chí Ø Minh trên trang web của Tổng cục thống kê. Nhóm đã tiến hành chọn lọc thông tin và số liệu, tiến hành hồi Ø quy, kiểm định hệ số hồi quy và sự phù hợp của mô hình, hệ số xác định và thực hiện dự báo dựa trên 10 mẫu quan sát thu thập được. Trong quá trình tiến hành thực hiện đề tài, nhóm đã sử Ø dụng kiến thức của môn kinh tế lượng cùng với sự hỗ trợ của các phần mềm như: word, excel, spss để hoàn thành đề tài.
- CHƯƠNG 2: THIẾT LẬP MÔ HÌNH TỔNG QUÁT Mô hình tổng quát: v Y = C1 + C2X2i + C3X3i + C4X4i + C5X5i + C6X6i + C7X7i + Ui Mô hình hồi quy gốc: v Mô hình hồi quy sửa đổi lần 1: v Mô hình hồi quy sửa đổi lần 2: v Mô hình hồi quy cuối cùng được chấp nhận: v
- Mô hình hồi quy gốc: v Y = -553,952 + 22,587X2i – 6,211X3i + 3,404X4i + 0,003X5i + 0,000X6i + 0,119X7i
- Mô hình hồi quy gốc: v Kiểm định độ chặt chẽ của mô hình H0: Không có mối quan hệ giữa biến phụ thuộc và các biến độc lập (R2 = 0). H1: Tồn tại mối quan hệ giữa biến phụ thuộc và các biến độc lập (R2 ≠ 0). Theo kết quả báo cáo, ta có F = 125,812 > F(α, 6, n-7) = 8,9406=> Bác b ỏ H0, chấp nhận H1. Vậy, mô hình có ý nghĩa với độ tin cậy là 95%. Sig là mức ý nghĩa của hàm số hồi quy sig = 0,001 < 0,05 là hàm số được ch ấp nhận. Model Summary Adjusted R Std. Error of the Model R R Square Square Estimate 1 .998a .996 .988 10.4928869
- Mô hình hồi quy gốc: v Kiểm định độ chặt chẽ của mô hình ANOVAb Sum of Mean Model Squares df Square F Sig. 1 Regressio 125.81 83112.034 6 13852.006 .001a n 2 Residual 330.302 3 110.101 Total 83442.336 9
- Mô hình hồi quy gốc: v Kiểm định ý nghĩa thống kê của các tham số: + Kiểm định C2: H0: Không có mối quan hệ giữa biến phụ thuộc và biến X2i (C2 = 0). H1: Biến X2i có ảnh hưởng đến biến phụ thuộc (C2 ≠ 0). Theo kết quả hồi quy, ta có tc2 = 3,198 > t(α/2;n-7) = 3,1824 => Bác bỏ H0, chấp nhận H1. Vậy, biến X2i có ý nghĩa thống kê trong mô hình với độ tin cậy là 95%. + Kiểm định C3: H0: Không có mối quan hệ giữa biến phụ thuộc và biến X3i (C3 = 0). H1: Biến X3i có ảnh hưởng đến biến phụ thuộc (C3 ≠ 0). Theo kết quả hồi quy, ta có tc3 = -2,551 > - t(α/2;n-7) = -3,1824 => Ch ấp nhận H0, bác bỏ H1. Vậy, biến X3i không có ý nghĩa thống kê trong mô hình với độ tin cậy 95%.
- Mô hình hồi quy gốc: v Kiểm định ý nghĩa thống kê của các tham số: + Kiểm định C4: H0: Không có mối quan hệ giữa biến phụ thuộc và biến X4i (C4 = 0). H1: Biến X4i có ảnh hưởng đến biến phụ thuộc (C4 ≠ 0). Theo kết quả hồi quy, ta có tc4 = 3,490 > t(α/2;n-7) = 3,1824 => Bác b ỏ H0, ch ấp nhận H1. Vậy, biến X4i có ý nghĩa thống kê trong mô hình với độ tin cậy 95%. + Kiểm định C5: H0: Không có mối quan hệ giữa biến phụ thuộc và biến X5i (C5 = 0). H1: Biến X5i có ảnh hưởng đến biến phụ thuộc (C5 ≠ 0). Theo kết quả hồi quy, ta có tc5 = 1,249 < t(α/2;n-7) = 3,1824 => Chấp nh ận H0, bác bỏ H1. Vậy, biến X5i không có ý nghĩa thống kê trong mô hình với độ tin cậy 95%.
- Mô hình hồi quy gốc: v Kiểm định ý nghĩa thống kê của các tham số: + Kiểm định C6: H0: Không có mối quan hệ giữa biến phụ thuộc và biến X6i (C6 = 0). H1: Biến X6i có ảnh hưởng đến biến phụ thuộc (C6 ≠ 0). Theo kết quả hồi quy, ta có tc6 = -0,352 > - t(α/2;n-7) = -3,1824 => Ch ấp nh ận H0, bác bỏ H1. Vậy, biến X6i không có ý nghĩa thống kê trong mô hình với độ tin cậy 95%. + Kiểm định C7: H0: Không có mối quan hệ giữa biến phụ thuộc và biến X7i (C7 = 0). H1: Biến X7i có ảnh hưởng đến biến phụ thuộc (C7 ≠ 0). Theo kết quả hồi quy, ta có tc7 = 5,726 > t(α/2;n-7) = 3,1824 => Bác bỏ H0, chấp nhận H1. Vậy, biến X7i có ý nghĩa thống kê trong mô hình với độ tin cậy 95%.
- Mô hình hồi quy sửa đổi lần 1 v Y = -426,904 + 14,293X2i +2,008X4i + 0,109X7i
- Mô hình hồi quy sửa đổi lần 1 v Kiểm định độ chặt chẽ của mô hình: H0: Không có mối quan hệ giữa biến phụ thuộc và các biến độc lập (R2 = 0). H1: Tồn tại mối quan hệ giữa biến phụ thuộc và các biến độc lập (R2 ≠ 0). Theo kết quả báo cáo, ta có F = 85,039 > F(α, 3, n-4) = 4,7571=> Bác b ỏ H0, ch ấp nhận H1. Vậy, mô hình có ý nghĩa với độ tin cậy là 95%. Sig là mức ý nghĩa của hàm số hồi quy sig = 0,000 < 0,05 là hàm số đ ược ch ấp nhận. Model Summary Std. Error of the Model R R Square Adjusted R Square Estimate 1 .988a .977 .966 17.8762628
- Mô hình hồi quy sửa đổi lần 1 v Kiểm định độ chặt chẽ của mô hình: ANOVAb Sum of Mean Model Squares df Square F Sig. 1 Regressio 81524.97 27174.99 n 3 85.039 .000a 1 0 Residual 1917.365 6 319.561 Total 83442.33 9 6
- Mô hình hồi quy sửa đổi lần 1 v Kiểm định ý nghĩa thống kê của các tham số: + Kiểm định C2: H0: Không có mối quan hệ giữa biến phụ thuộc và biến X2i (C2 = 0). H1: Biến X2i có ảnh hưởng đến biến phụ thuộc (C2 ≠ 0). Theo kết quả hồi quy, ta có tc2 = 1,558 < t(α/2;n-4) = 2,4469 => Chấp nhận H0, bác bỏ H1. Vậy, biến X2i không có ý nghĩa thống kê trong mô hình với độ tin cậy là 95%. + Kiểm định C4: H0: Không có mối quan hệ giữa biến phụ thuộc và biến X4i (C4 = 0). H1: Biến X4i có ảnh hưởng đến biến phụ thuộc (C4 ≠ 0). Theo kết quả hồi quy, ta có tc4 = 4,336 > t(α/2;n-4) = 2,4469 => Bác bỏ H0, chấp nhận H1. Vậy, biến X4i có ý nghĩa thống kê trong mô hình với độ tin cậy 95%.
- Mô hình hồi quy sửa đổi lần 1 v Kiểm định ý nghĩa thống kê của các tham số: + Kiểm định C7: H0: Không có mối quan hệ giữa biến phụ thuộc và biến X7i (C7 = 0). H1: Biến X7i có ảnh hưởng đến biến phụ thuộc (C7 ≠ 0). Theo kết quả hồi quy, ta có tc7 = 3,109 > t(α/2;n-4) = 2,4469 => Bác bỏ H0, chấp nhận H1. Vậy, biến X7i có ý nghĩa thống kê trong mô hình với độ tin cậy 95%.
- Mô hình hồi quy sửa đổi lần 2 v Y = -684,857 + 2,639X4i + 0,161X7i
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Nghề phân tích tài chính
0 p | 481 | 178
-
Phương pháp tính chỉ số giá cổ phiếu
10 p | 411 | 155
-
Nghề phân tích tài chính
2 p | 254 | 77
-
Cơ chế tài phán đầu tư trong EVFTA và sự chuẩn bị của Việt Nam
11 p | 76 | 8
-
Giáo trình phân tích thuật toán hiệu chỉnh trong phân phối các cặp đường chạy tự nhiên p8
5 p | 66 | 4
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn