intTypePromotion=3

Ứng dụng hệ vi sinh bám dính trong xử lý triệt để nước thải

Chia sẻ: Le Tri Thuc | Ngày: | Loại File: DOC | Số trang:5

1
396
lượt xem
203
download

Ứng dụng hệ vi sinh bám dính trong xử lý triệt để nước thải

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Hiện nay việc xử lý triệt để nước thải đang được quan tâm và nghiên cứu rộng rãi, để đáp ứng tiêu chuẩn thải ra sông ngòi ngày càng gắt gao tại nhiều nước trên thế giới. Ngoài ra, xử lý nước thải triệt để còn rất cần thiết trong hệ thống cấp nước công nghiệp tuần hoàn để sử dụng lại nước thải cho quá trình sản xuất. Xử lý nước thải triệt để (Advanced Wastewater Treatmnt) có thể được hiểu như là công đoạn xử lý bổ sung cần thiết để loại bỏ các hợp chất lơ lửng cũng như hoà tan trong...

Chủ đề:
Lưu

Nội dung Text: Ứng dụng hệ vi sinh bám dính trong xử lý triệt để nước thải

  1. Ứng dụng hệ vi sinh bám dính trong xử lý triệt để nước thải 1. Đặt vấn đề Hiện nay việc xử lý triệt để nước thải đang được quan tâm và nghiên cứu rộng rãi, để đáp ứng tiêu chuẩn thải ra sông ngòi ngày càng gắt gao tại nhiều nước trên thế giới. Ngoài ra, xử lý nước thải triệt để còn rất cần thiết trong hệ thống cấp nước công nghiệp tuần hoàn để sử dụng lại nước thải cho quá trình sản xuất. Xử lý nước thải triệt để (Advanced Wastewater Treatmnt) có thể được hiểu như là công đoạn xử lý bổ sung cần thiết để loại bỏ các hợp chất lơ lửng cũng như hoà tan trong nước thải dưới nồng độ giới hạn sau công đoạn xử lý bậc 2 truyền thống. Các công trình xử lý triệt để nước thải có thể là công trình xử lý cơ học, sinh học, xử lý hoá lý hoặc kết hợp giữa các phương pháp trên. Phương pháp xử lý triệt để nước thải có thể phân ra làm: (1) xử lý bằng hệ vi sinh lơ lửng, hay còn gọi là bùn hoạt tính; (2) hệ vi sinh bám dính, hay còn gọi là màng sinh học và (3) kết hợp. Phương pháp sinh học sử dụng hệ vi sinh bám dính có một số ưu điểm hơn so với các phương pháp khác. 2. Các phương pháp xử lý 2.1 Xử lý hợp chất hữu cơ (theo BOD), Ni-tơ (N) và chất lơ lửng SS Quá trình loại bỏ ammonia nitrogen (NH4+) hay là quá trình nitrate hoá (nitrification) có thể thực hiện theo hai cách: (1) xử lý theo bậc, tức là quá trình xử lý chất hữu cơ BOD và xử lý ammonia nitrogen (NH4+) được thực hiện trong các công trình riêng biệt (hình 1 và 2 ) xử lý đồng thời, tức là loại bỏ chất hữu cơ (theo BOD) và ammonia nitrogen (NH4+) trong cùng một công trình (hình 2). Để thực hiện quá trình xử lý theo bậc, trong thực tế ứng dụng rộng rãi hệ vi sinh bám dính, dưới dạng công trình bể lọc sinh học (strickling filter hay biofilter)và các đĩa sinh học. Bể lọc sinh học ứng dụng cho quá trình nitrat hoá thông thường được bố trí sau bể aeroten, hoặc bể lọc sinh học bậc 1 khi nước thải đã bị loại bỏ hầu hết chất hữu cơ (BOD). Thông dụng nhất là xử lý qua 2 bậc biofilter với các vật liệu lọc bằng chất tổng hợp có bề mặt bám dính riêng cao. Tải trọng thuỷ lực là thông số thiết kế quan trọng để tính toán bể biofilter cho quá trình nitrat hoá riêng. Hiệu suất xử lý ammonia nitrogen (NH4+) giảm đi khi tăng tải trọng thuỷ lực và giảm nhiệt độ nước thải. Trên thực tế, với tải trọng thuỷ lực khoảng 20,37 l/m2.phút thì hiệu quả xử lý nitơ amôn (NH4+) luôn luôn đạt được cao cho mọi mùa trong năm.
  2. + Bảng 1. Tải trọng hữu cơ tính toán cho bể lọc sinh học xử lý NH 4 Bể lọc sinh học (biofilter) Hiệu quả xử Tải trọng hữu cơ theo BOD5 (kgO2/m3.ngđ) lý(%) + theo NH 4 − N Biofilter với VLL là sỏi cuội, đá 75 - 85 0,16 - 0,096 dăm 85 - 95 0,096 - 0,048 Biofilter dạng tháp, và biofilter 75 - 85 0,288 - 0,192 với 0,192 - 0,096 VLL là chất dẻo Biofilter Biofilter methanol Biofilter 2 1 3 Nước Nước sau Xlý thải vào Xlý Xlý L L L xử lý + NH 4 BOD NO3− Xả bùn L: bể lắng Cấp khí Hình 1. Sơ đồ công nghệ xử lý triệt để nước thải riêng biệt bằng bể lọc + sinh học (biofilter) - xử lý BOD, NH 4 và NO3 Biofilter Biofilter methanol 1 2 Nước Nước sau Xlý thải vào Xlý L L xử lý + NO3− BOD và NH 4 Xả bùn Cấp khí L: lắng Hình 2. Sơ đồ công nghệ xử lý triệt để nước thải riêng biệt bằng bể lọc + sinh học(biofilter)-xử lý BOD và NH 4 cùng trong một bể biofilter,xử lý NO3.riêng Quá trình xử lý đồng thời chất hữu cơ (BOD) và ammonia nitrogen (NH4+) trong bể sinh học được xác định bởi tải trọng BOD. Tải trọng BOD tính toán cho bể sinh học được trình bày trong bảng 1. Quá trình khử ammonia nitrogen (NH4+) trong bể sinh học (strickling filter) với vật liệu lọc là sỏi cuội được biểu diễn bằng công thức toán học. amm.Nout = 134.amm.Nin 0,86.SS in 0,15 Với: - amm.Nout : nồng độ ammonia nitrogen (NH4+) sau khi xử lý (mg/l)
  3. - amm.Nin, SSin, BODin: tải trọng nitơ amôn (g/m2.ngđ), tải trọng chất lơ lửng (g/ m2.ngđ) và tải trọng hữu cơ (kg/m2/ngđ). IV: tải trọng thuỷ lực (m3/ m2ngđ). Để xử lý tiếp tục Nitrogen (N), quá trình khử nitrat (definication: NO 3 =>NO2.=>N2) thường được thực hiện trong khối công trình riêng biệt với nguồn carbon ngoài (thông dụng là methanol CH3OH). Lượng methanol được tình theo công thức: Cm = 2,47N0 + 1,53N1 + 0,87D0 Trong đó: Cm - nồng độ methanol cần thiết để cung cấp mg/l N0 , N1 , D0 - nồng độ nitrat (mg/l), nồng độ nitrite (mg/l) và nồng độ o-xy ban đầu, mg/l. Phát hiện công nghệ sinh học và hoá sinh trong những năm cuối thế kỷ 20, đầu thế kỷ 21 quá trình anamox - quá trình o-xy hoá ammonia nitrogen (NH4+) với điều kiện yếm khí NH4+ + NO2 => 2H2O + N2 cho phép áp dụng chúng trong thực tế để loại bỏ Nitrogen (N) khỏi nước thải. Quá trình anamox hay nói một cách khác là ôxy hoá NH4+ thông qua nitrite NO2 (hình3). Trên hình 3, rõ ràng rằng việc áp dụng anamox để loại bỏ hợp chất N ra khỏi nước thải có ưu thế lớn so với công nghệ truyền thống là tiết kiệm được năng lượng sục khí và không cần dùng nguồn carbon (C) bên ngoài. 2.2 Xử lý phôtpho (P) của nước thải bằng hệ vi sinh bám dính Các hợp chất nitrogen (N) và phosphorus (P) trong nước thải là nguyên nhân gây ra hiện tượng phú dưỡng. Trên thế giới phương pháp phổ biến để loại bỏ P ra khỏi nước thải vẫn là phương pháp lý hoá kết hợp. Việc loại bỏ phosphorus (P) theo phương pháp sinh học bằng hệ bùn hoạt tính đơn lơ lửng (single sludge system) chạy qua các vùng yếm khí (anaerobic), thiếu khí (anoxic) và háo khí (aerobic) là phổ biến nhất, ví dụ: loại bỏ phosphorus (P) bằng A/O process, PhoTrip process, loại bỏ N và P đồng thời - A2/O, Brandenpho process, UTC,… đòi hỏi mức đầu tư cao và chi phí vận hành lớn (lưu lượng tuần hoàn tới 300% - 600%). Mặt khác, việc sao chép 100% công nghệ nước ngoài sẽ không có hiệu quả xử lý như mong muốn, do thành phần nước thải các thành phố trên thế giới khác nhau. Bên cạnh đó việc xử lý loại bỏ phosphorus (P), giảm nồng độ (P) dưới tiêu chuẩn cho phép bằng phương pháp sinh học sử dụng hệ vi sinh bám dính là không thể được. Tuy vậy, việc kết hợp phương pháp sinh học với quá trình xử lý hoá học có thể mang lại hiệu quả mong muốn. NO3− NO3− NO3− NO3− O2 O2 COD COD NO3− NO3− NO3− NO3− NO3− NO3− O2 O2 2 COD COD COD + + N2 NH 4 NH 4 N2
  4. a) b) Hình 3. (a) Quá trình nitrat hoá (nitrification) và khử nitrat truyền thống (denitrification) (b) Quá trình anammox hay là xi hoá nitơ amôn qua nitrit Một nghiên cứu tại Đại học Xây dựng Mát-xcơ-va (MGSU), Liên bang Nga cho phép loại bỏ P ra khỏi nước thải sinh hoạt bằng hệ vi sinh bám dính dựa trên nguyên tắc ăn mòn sinh học (hình 4). Vật liệu bám dính có cốt sắt (Fe) được sử dụng trong bể aeroten. Các màng sinh học bám dính lên bề mặt kim loại thực hiện quá trình ăn mòn sinh học liên tục làm nồng độ sắt Fe trong aeroten tăng đột ngột, tạo điều kiện cho quá trình keo tụ hoá lý phosphate được diễn ra nhanh chóng. Nồng độ bùn hoạt tính lơ lửng tăng, đồng thời chỉ số bùn giảm mạnh, khi đó hiệu quả loại bỏ phosphorus (P) đạt 100% cho nước thải sinh hoạt (bảng 2). Số lượng cốt sắt cần thiết được tính theo công thức: Với: AFe : bề mặt cốt sắt cần thiết (m2) 0,319.(C EN ( PO4 + ) − C EX ( PO4 + )).Q 3 3 AFe = D.q ( PO4 + ) 3 Q: lưu lượng nước thải giờ max (m3/h). C EN ( PO4 + ), C EX ( PO4 + ) : nồng độ phosphate vào và ra khỏi công trình xử lý. 3 3 D: đường kính sợi cốt thép q ( PO4 + ) : tải trọng phosphat trên diện tích sợi thép, g ( PO4 + ) / m 2 .ngd 3 3 Kết quả thực nghiệm nghiên cứu xử lý P trên mô hình thực nghiệm. . Nước Nước thải sau 1 Bể lắng thải vào xử lý aeroten Bùn hoạt tính 1.Vật liệu bám dính cốt sắt thừa Hình 4. Sơ đồ xử lý phosphrus (P) bằng phương pháp sinh học sử dụng vật liệu bám dính cốt sắt (Fe) không có bùn hoạt tính tuần hoàn Bảng 2 Chỉ số thành phần nước thải Vào(trước xử lý) Ra(sau xử lý)
  5. KXD** - 1 4 - 12 Phosphate ( PO4 + ), mg/l 3 BOD5 , mg/l 100 - 250 3 – 10 15 - 25 8 - 12 + NH 4 , mg/l **KXD - không xác định được trên máy Xử lý thuỷ ngân (Hg) Sử dụng hệ vi sinh bám dính còn có thể loại bỏ được kim loại nặng ra khỏi nước thải. Công nghệ loại bỏ Hg2+ khỏi nước thải xí nghiệp hoá chất bằng vi sinh vật chịu được thuỷ ngân được phát minh và ứng dụng tại Trung tâm công nghệ sinh học GBF, Brauschweig, Đức. Các chủng vi sinh vật dòng Psedomonas được cấy lên các vật liệu bám dính của bể phản ứng sinh học bioreactor. Nước thải công nghiệp hoá chất có nồng độ thuỷ ngân 3-10mg Hg/l được trung hoà và cung cấp liên tục vào bể bioreactor với lưu lượng 0,7m3/h - 1,2m3/h. Hiệu quả xử lý thuỷ ngân đạt 97% với thời gian xử lý 10h. Nồng độ thuỷ ngân trong nước sau khi xử lý là 50µ g Hg/l. Trong trường hợp kết hợp bể bioreactor với hấp thụ bằng than hoạt tính, nồng độ thuỷ ngân (Hg) sau khi xử lý đạt 10µ g Hg/l . 3. Kết luận Việc nghiên cứu và ứng dụng hệ vi sinh bám dính để xử lý triệt để nước thải sinh hoạt và công nghiệp mở ra các khả năng mới trong việc giảm thiểu các chỉ tiêu như BOD, SS, N, P và thậm chí là kim loại nặng (VD: thuỷ ngân Hg) xuống dưới nồng độ cho phép. Phương pháp này có ưu điểm là đơn giản và tiết kiệm trong vận hành. Lượng bùn dư của hệ vi sinh bám dính ít hơn nhiều so với hệ bùn hoạt tính lơ lửng, do đó chi phí để xử lý bùn cũng ít hơn. Các công trình xử lý dùng hệ vi sinh bám dính cũng gọn nhẹ và dễ hợp khối, mở ra triển vọng ứng dụng rộng rãi, đặc biệt là đối với các công trình xử lý vừa và nhỏ trong dân dụng và công nghiệp. Ở Việt Nam hoàn toàn có thể áp dụng các mô hình công nghệ ở trên. Tuy nhiên do điều kiện khí hậu nhiệt đới, thêm vào đó là thành phần nước thải của Việt Nam như BOD, COD, N, P khác nhiều so với thành phần nước thải của các nước phát triển (Âu, Mỹ) mà việc áp dụng có hiệu quả các công nghệ xử lý triệt để nước thải sinh học tiên tiến cần phải được nghiên cứu bổ sung bằng mô hình pilot thực nghiệm trong phòng thí nghiệm hoặc tại các khu đô thị và công nghiệp để lựa chọn các thông số kỹ thuật công nghệ, thích hợp với điều kiện Việt Nam. (Nguồn tin: T/C Xây dựng, số 3/2007)

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản