Isomonodromy transformations
-
We introduce and study “isomonodromy” transformations of the matrix linear difference equation Y (z + 1) = A(z)Y (z) with polynomial A(z). Our main result is construction of an isomonodromy action of Zm(n+1)−1 on the space of coefficients A(z) (here m is the size of matrices and n is the degree of A(z)). The (birational) action of certain rank n subgroups can be described by difference analogs of the classical Schlesinger equations, and we prove that for generic initial conditions these difference Schlesinger equations have a unique solution. ...
43p tuanloccuoi 04-01-2013 66 7 Download