Isoparametric hypersurfaces
-
In this paper we give a new proof for the classification result in [3]. We show that isoparametric hypersurfaces with four distinct principal curvatures in spheres are of Clifford type provided that the multiplicities m1 , m2 of the principal curvatures satisfy m2 ≥ 2m1 − 1. This inequality is satisfied for all but five possible pairs (m1 , m2 ) with m1 ≤ m2 .
15p dontetvui 17-01-2013 64 7 Download
-
Let M be an isoparametric hypersurface in the sphere S n with four distinct principal curvatures. M¨nzner showed that the four principal curvatures can u have at most two distinct multiplicities m1 , m2 , and Stolz showed that the pair (m1 , m2 ) must either be (2, 2), (4, 5), or be equal to the multiplicities of an isoparametric hypersurface of FKM-type, constructed by Ferus, Karcher and M¨nzner from orthogonal representations of Clifford algebras. In this paper, u we prove that if the multiplicities satisfy m2 ≥ 2m1 − 1, then the isoparametric hypersurface M must be...
77p noel_noel 17-01-2013 47 7 Download