Bài giảng Lý thuyết mạch điện 1: Chương 4 - TS. Trần Thị Thảo
lượt xem 4
download
Bài giảng Lý thuyết mạch điện 1 - Chương 4: Các phương pháp giải mạch tuyến tính ở chế độ xác lập hình sin. Chương này cung cấp cho sinh viên những nội dung gồm: khái niệm; giải mạch ở chế độ xác lập hình sin; phương pháp dòng nhánh; phương pháp dòng vòng; phương pháp điện thế nút;... Mời các bạn cùng tham khảo chi tiết nội dung bài giảng!
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài giảng Lý thuyết mạch điện 1: Chương 4 - TS. Trần Thị Thảo
- Chương 4: Các phương pháp giải mạch tuyến tính ở chế độ xác lập hình sin ➢ Khái niệm ➢ Phương pháp dòng nhánh ➢ Phương pháp dòng vòng ➢ Phương pháp điện thế nút https://sites.google.com/site/thaott3i/ 1
- Giải mạch ở chế độ xác lập hình sin ▪ Giải mạch dạng phức • Nếu cho mạch ở dạng đã phức hóa -> Giải mạch dạng phức • Nếu cho mạch ở dạng miền thời gian, với các nguồn (dòng, áp) cùng một tần số → Cần phức hóa sơ đồ mạch → Giải mạch dạng phức Lưu ý: Tổng trở của phần tử (R,L,C) trên từng nhánh có thể được gộp lại thành tổng trở chung cho toàn nhánh → Giải mạch dạng phức https://sites.google.com/site/thaott3i/ 2
- Lập sơ đồ mạch dạng phức (1) i1 L1 i3 L3 i5 I1 j L1 j L3 I3 I5 i4 I4 R1 R5 R1 j2 C4 1 R5 J2 jC4 e1 e5 E1 E5 R1 = 200; C4 = 1 F; R5 = 240; L1 = 0, 2H; L3 = 0,15H; = 314rad/s; e1 = 100 2 sin(t )V; e5 = 50 2 sin(t + 150 )V; j2 = 0,3 2 sin(t − 300 )A; https://sites.google.com/site/thaott3i/ 3
- Lập sơ đồ mạch dạng phức (2) ▪ Có thể thay tổng trở trên phần tử bằng tổng trở chung cho toàn nhánh I1 j L1 I3 j L3 I5 I1 Z1 I3 Z3 Z5 I5 I4 I4 R1 1 R5 J2 J2 E1 jC4 Z4 E5 E1 E5 R1 = 200; C4 = 1 F; R5 = 240; L1 = 0, 2H; L3 = 0,15H; Z1 = R1 + j L1 ; Z 5 = R5 = 314rad/s; e1 = 100 2 sin(t )V; 1 Z 3 = j L3 ; Z 4 = jC4 e5 = 50 2 sin(t + 150 )V; j2 = 0,3 2 sin(t − 300 )A; https://sites.google.com/site/thaott3i/ 4
- Phương pháp dòng nhánh (1) ▪ Ẩn số: là các dòng điện trên nhánh (N) Số lượng ẩn số=số nhánh không kể nguồn dòng ▪ Lập hệ phương trình dòng nhánh,gồm: Số phương trình Kirchhoff 1: K1=d-1 với d là số nút của mạch Số phương trình Kirchhoff 2: K2=N-d+1 https://sites.google.com/site/thaott3i/ 5
- Phương pháp dòng nhánh (2) ❑ Ví dụ 1: Số ẩn=số nhánh (trừ nguồn dòng) N=4 j L1 j L3 I1 a I3 b I5 Số nút : d=3 I4 R1 R5 Số phương trình Kirchhoff 1: (d-1) J2 1 jC4 − I1 − J 2 + I 3 = 0 − I1 + I 3 = J 2 E1 E5 − I 3 + I 4 − I 5 = 0 − I 3 + I 4 − I 5 = 0 Số phương trình Kirchhoff 2: K2=N-d+1 1 R1 I1 + j L1 I1 + j L3 I 3 + I 4 = E1 jC4 1 U R1 + U L1 + U L3 + U C 4 = E1 ( R1 + j L1 ) I1 + j L3 I 3 + I 4 = E1 jC4 −U C 4 − U R5 = − E5 −1 I 4 − R5 I 5 = − E5 jC4 https://sites.google.com/site/thaott3i/ 6
- Phương pháp dòng nhánh (3) i1 L1 L3 j L1 j L3 i3 i5 I1 a I3 b I5 i4 I4 R1 R5 R1 j2 C4 1 R5 J2 jC4 e1 e5 E1 E5 c − I1 + I 3 = J 2 − I 3 + I 4 − I 5 = 0 1 ( R1 + j L1 ) I1 + j L3 I 3 + I 4 = E1 jC4 1 − I 4 − R5 I 5 = − E5 jC4 https://sites.google.com/site/thaott3i/ 7
- Phương pháp dòng nhánh (3) I1 j L1 a j L3 b I3 I5 I1 Z1 aI 3 Z3 b Z5 I5 I4 I4 R1 1 R5 J2 J2 jC4 E1 Z4 E5 E1 E5 c c Z1 = R1 + j L1 ; Z 5 = R5 1 − I1 + I 3 = J 2 Z3 = j L3 ; Z 4 = jC4 − I 3 + I 4 − I 5 = 0 − I1 + I 3 = J 2 1 − I 3 + I 4 − I 5 = 0 ( R1 + j L1 ) I1 + j L3 I 3 + I 4 = E1 jC4 Z1 I1 + Z 3 I 3 + Z 4 I 4 = E1 − 1 I 4 − R5 I 5 = − E5 − Z I − Z I = − E 44 55 jC4 5 https://sites.google.com/site/thaott3i/ 8
- Phương pháp dòng nhánh (4) ▪ Hệ phương trình dòng nhánh: I1 Z1 a I3 Z3 b Z5 I5 − I1 + I 3 = J 2 I1 − I 3 = − J 2 I4 − I 3 + I 4 − I 5 = 0 I3 − I 4 + I5 = 0 J2 E1 Z1 I1 + Z 3 I 3 + Z 4 I 4 = E1 Z4 E5 − Z I − Z I = − E Z1 I1 + Z 3 I 3 + Z 4 I 4 = E1 4 4 55 Z I + Z I = E 44 55 5 5 c • Dạng ma trận: I = A −1B A I B https://sites.google.com/site/thaott3i/ 9
- I1 − I 3 = − J 2 I3 − I 4 + I5 = 0 Phương pháp dòng nhánh (5) Z1 I1 + Z 3 I 3 + Z 4 I 4 = E1 ▪ Thay số: Z I + Z I = E 44 55 5 i1 L1 a i3 L3 b i5 I1 Z1 aI Z3 b Z5 I5 3 i4 I4 R1 R5 j2 C4 J2 E1 Z4 E5 e1 e5 c c E1 = 100 0o V; E5 = 50 15o = 48, 296 + j12,941V; J 2 = 0,3 − 30o = 0, 26 − j 0,15A; = 314rad/s; e1 = 100 2 sin(t )V; e5 = 50 2 sin(t + 15 )V; 0 j2 = 0,3 2 sin(t − 300 )A; = 314rad/s; 1 Z1 = R1 + j L1 ; Z 5 = R5 ; Z 3 = j L3 ; Z 4 = R1 = 200; C4 = 1 F; jC4 R5 = 240; L1 = 0, 2H; L3 = 0,15H; Z1 = 200 + j 62,8; Z 3 = j 47,1; Z 4 = − j3185,7; Z 5 = 240 https://sites.google.com/site/thaott3i/ 10
- I1 − I 3 = − J 2 I3 − I 4 + I5 = 0 ▪ Thay số: Phương pháp dòng nhánh (6) Z1 I1 + Z 3 I 3 + Z 4 I 4 = E1 Z I + Z I = E E1 = 100 0o V; E5 = 50 15o = 48, 296 + j12,941V; 44 55 5 J 2 = 0,3 − 30o = 0, 26 − j 0,15A; = 314rad/s; I1 Z1 I3 Z3 Z5 I5 C4 = 1 F;R1 = 200; R5 = 240; I4 L1 = 0, 2H; L3 = 0,15H; E1 J2 Z4 E5 Z1 = 200 + j 62,8; Z 3 = j 47,1; Z 4 = − j 3185,7; Z 5 = 240 I1 = −0,025 + j 0,049 = 0,055 117, 24o A i1 (t ) = 0,055 2 sin(314t + 117, 24o )A I 3 = 0, 235 − j 0,102 = 0, 255 − 23,36o A i3 (t ) = 0, 255 2 sin(314t − 23,36o )A I 4 = 0,006 + j 0,032 = 0,033 79, 47 A o i4 (t ) = 0,033 2 sin(314t + 79, 47 o )A I 5 = −0, 229 + j 0,134 = 0, 264 149,68 A o i5 (t ) = 0, 264 2 sin(314t + 149,68o )A Công suất phát, thu https://sites.google.com/site/thaott3i/ 11
- https://sites.google.com/site/thaott3i/ 12
- I1 Z1 a I3 Z3 Z5 I5 - Tính công suất: I4 J2 E1 Z4 E5 c ❖ Công suất phát: ❖ Công suất thu: Se1 = E1 I1* E1 Iˆ1 = Pe1 + jQe1 ( ) S z1 = U1 I1* U1 Iˆ1 = ( Z1 I1 ) Iˆ1 = Z1 I1 Iˆ1 = Z1 I12 = Pz1 + jQz1 Se5 = E5 I 5* E5 Iˆ5 = Pe5 + jQe5 ( ) S z 3 = U 3 I 3* U 3 Iˆ3 = ( Z 3 I 3 ) Iˆ3 = Z 3 I 3 Iˆ3 = Z 3 I 32 = Pz 3 + jQz 3 S j 2 = U ac J 2* ˆ U ac J 2 = Pj 2 + jQ j 2 ( ) S z 4 = U 4 I 4* U 4 Iˆ4 = ( Z 4 I 4 ) Iˆ4 = Z 4 I 4 Iˆ4 = Z 4 I 42 = Pz 4 + jQz 4 Tác dụng/tiêu tán/tiêu thụ (đơn vị Watt, không Joule) Phản kháng (Var) 5 5 5 5 ( 5 5 ) S = U I * U Iˆ = Z I Iˆ = Z I Iˆ = Z I 2 = P z5 5 5 ( 5 5 ) 5 5 z5 + jQz 5 https://sites.google.com/site/thaott3i/ 13
- I1 Z1 a I3 Z3 Z5 I5 - Tính công suất: I4 J2 E1 Z4 E5 c ❖ Công suất phát: ❖ Công suất thu: Se1 = E1 I1* E1 Iˆ1 = Pe1 + jQe1 S z1 = U1 I1* U1 Iˆ1 = ( Z1 I1 ) Iˆ1 = Z1 I1 Iˆ1 = Z1 I12 = Pz1( ) + jQz1 Se5 = E5 I 5* E5 Iˆ5 = Pe5 + jQe5 ( S z 3 = U 3 I 3* U 3 Iˆ3 = ( Z 3 I 3 ) Iˆ3 = Z 3 I 3 Iˆ3 = Z 3 I 32 = Pz 3 ) + jQz 3 ˆ S j 2 = U ac J 2* U ac J 2 = Pj 2 + jQ j 2 ( S z 4 = U 4 I 4* U 4 Iˆ4 = ( Z 4 I 4 ) Iˆ4 = Z 4 I 4 Iˆ4 = Z 4 I 42 = Pz 4 ) + jQz 4 Tác dụng/tiêu tán/tiêu thụ (đơn vị Watt, không Joule) Phản kháng (Var) 5 5 5 5 ( S = U I * U Iˆ = Z I Iˆ = Z I Iˆ = Z I 2 = P z5 5 5 ) 5 5 ( 5 5 ) 5 5 z5 + jQz 5 S = S S + S + S = S + S phat thu e1 j2 e5 z1 z3 + Sz 4 + Sz5 P = P P + P + P = P + P phat thu e1 j2 e5 z1 z3 + Pz 4 + Pz 5 Q = Q Q + Q + Q = Q + Q phat thu e1 j2 e5 z1 z3 + Qz 4 + Qz 5 https://sites.google.com/site/thaott3i/ 14
- - Tính công suất: tại sao lại dùng công thức liên hiệp? I1 Z1 a I3 Z3 Z5 I5 I4 J2 E1 Z4 E5 c ❖ Công suất phát: ❖ Công suất thu: Se1 = E1 I1* E1 Iˆ1 = Pe1 + jQe1 ( S z1 = U1 I1* U1 Iˆ1 = ( Z1 I1 ) Iˆ1 = Z1 I1 Iˆ1 = Z1 I12 = Pz1 ) + jQz1 Se5 = E5 I 5* E5 Iˆ5 = Pe5 + jQe5 ( ) S z 3 = U 3 I 3* U 3 Iˆ3 = ( Z 3 I 3 ) Iˆ3 = Z 3 I 3 Iˆ3 = Z 3 I 32 = Pz 3 + jQz 3 ˆ S j 2 = U ac J 2* U ac J 2 = Pj 2 + jQ j 2 ( ) S z 4 = U 4 I 4* U 4 Iˆ4 = ( Z 4 I 4 ) Iˆ4 = Z 4 I 4 Iˆ4 = Z 4 I 42 = Pz 4 + jQz 4 z5 5 5 5 5 ( 5 5 ) S = U I * U Iˆ = Z I Iˆ = Z I Iˆ = Z I 2 = P 5 5 ( 5 5 ) 5 5 z5 + jQz 5 Tại sao lại dùng công thức liên hiệp? U 3 = U 3 u ; I 3 = I 3 i ; Iˆ3 = I 3 − i ; = u − i U 3 Iˆ3 = U 3 I 3 (u − i ) = Pz 3 + jQz 3 = U 3 I 3 cos + jU 3 I 3 sin Nếu không dùng công thức liên hiệp: U 3 I3 = U 3 I3 (u + i ) = S sai :( Nhất là khi góc pha đầu của dòng điện khác 0 (lấy ví dụ góc của u là 60 độ, i là 30 độ) https://sites.google.com/site/thaott3i/ 15
- Phương pháp dòng nhánh (7) ▪ Thay số, tính công suất phát, thu S phat =E1 I1* + E5 I 5* + U ac J 2 * I1 Z1 a I3 Z3 b Z5 I5 = E1 I1* + E5 I 5* + U ac J 2 * I4 = E1 I1* + E5 I 5* + ( Z 3 I 3 + Z 4 I 4 ) J 2 * J2 E1 Z4 E5 = 17,486 - j0,19VA c Pphat =17,486W; Q phat = − 0,19VAr S phat = Sthu S thu =U1I1* + U 3 I 3* + U 4 I 4 + U 5 I 5* * P phat = Pthu = Z1 I1I1* + Z 3 I 3 I 3* + Z 4 I 4 I 4 + Z 5 I 5 I 5* * Q phat = Qthu = Z1 I12 + Z 3 I 32 + Z 4 I 42 + Z 5 I 52 • Có thể tính công suất tiêu tán = 17,486 - j0,19VA Pthu =17,486W, Qthu = − 0,19VAr P thu =R1 I 12 + R5 I 5 = 17, 486W 2 https://sites.google.com/site/thaott3i/ 16
- Phương pháp dòng nhánh ▪ Ẩn số: là các dòng điện trên nhánh (N) Số lượng ẩn số=số nhánh không kể nguồn dòng ▪ Lập hệ phương trình dòng nhánh,gồm: Số phương trình Kirchhoff 1: K1=d-1 , với d là số nút của mạch Số phương trình Kirchhoff 2: K2=N-d+1 ▪ Nhược điểm: Số ẩn nhiều→ phức tạp nếu mạch có nhiều nhánh https://sites.google.com/site/thaott3i/ 17
- Phương pháp dòng vòng (mesh analysis) ▪ Ẩn số: là các dòng điện phụ (dòng vòng) Số lượng ẩn =số phương trình Kirchhoff 2 ▪ Giả sử trong mỗi vòng (để viết phương trình K2) có một dòng điện vòng chảy qua ▪ Với nguồn dòng: chọn một vòng kín nào đó để khép dòng điện (tránh chọn vòng có nguồn dòng khác) ▪ Biểu diễn các dòng nhánh theo các dòng vòng ▪ Viết hệ phương trinh Kirchhoff 2 cho dòng các nhánh, sau đó đưa về hệ phương trình dòng vòng ▪ Giải hệ phương trình dòng vòng→ dòng điện trên các nhánh. https://sites.google.com/site/thaott3i/ 18
- Phương pháp dòng vòng (2) ❑ Ví dụ 2 ▪ Giả sử trong mỗi vòng 1 và 2 (để viết phương trình K2) có một dòng điện vòng chảy qua, tương ứng là I v1 , I v 2 ▪ Khép nguồn dòng vào Z3, Z4, ▪ Biểu diễn các dòng nhánh theo các dòng vòng: I1 Z1 Z3 Z5 I5 I1 = I v1 ; I 3 = I v1 + J 2 ; I3 I4 I 4 = I v1 + J 2 − I v 2 ; I 5 = − I v 2 J2 E1 Iv1 J 2 Z4 Iv2 E5 ▪ Hệ phương trinh Kirchhoff 2 cho dòng các nhánh: Z1 I1 + Z3 I 3 + Z 4 I 4 = E1 − Z 4 I 4 − Z5 I 5 = − E5 ▪ Thay các dòng nhánh bởi các dòng vòng: Z I + Z ( I + J ) + Z ( I + J − I ) = E 1 v1 3 v1 2 4 v1 2 v2 1 − Z 4 ( I v1 + J 2 − I v 2 ) + Z5 I v 2 = − E5 https://sites.google.com/site/thaott3i/ 19
- Phương pháp dòng vòng (3) Z I 1 v1 + Z3 ( I v1 + J 2 ) + Z 4 ( I v1 + J 2 − I v 2 ) = E1 Z 4 ( I v1 + J 2 − I v 2 ) − Z5 I v 2 = E5 ▪ Thay các dòng nhánh bởi các dòng vòng: I1 Z1 Z3 Z5 I3 I5 I4 Z1 I v1 + Z3 ( I v1 + J 2 ) + Z 4 ( I v1 + J 2 − I v 2 ) = E1 E1 I v1 J 2 J2 Z4 Iv2 E5 − Z 4 ( I v1 + J 2 − I v 2 ) + Z5 I v 2 = − E5 ▪ Hệ phương trình dòng vòng ( Z1 + Z3 + Z 4 ) I v1 − Z 4 I v 2 = E1 − (Z3 + Z 4 ) J 2 I v1 − Z 4 I v1 + ( Z 4 + Z5 ) I v 2 = − E5 + Z 4 J 2 Iv2 I1 = I v1 I 3 = I v1 + J 2 I 4 = I v1 + J 2 − I v 2 I = −I 5 v2 https://sites.google.com/site/thaott3i/ 20
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bài giảng Lý thuyết mạch điện - Cung Thành Long
213 p | 51 | 10
-
Bài giảng Lý thuyết mạch điện: Chương 1 - Cung Thành Long
23 p | 52 | 6
-
Bài giảng Lý thuyết mạch điện 1 - TS. Nguyễn Việt Sơn
246 p | 14 | 6
-
Bài giảng Lý thuyết mạch điện 2: Chương 2.1 - TS. Trần Thị Thảo
44 p | 26 | 6
-
Bài giảng Lý thuyết mạch điện 2: Chương 1 - TS. Trần Thị Thảo
24 p | 18 | 6
-
Bài giảng Lý thuyết mạch điện 1: Chương 5 - TS. Trần Thị Thảo
55 p | 10 | 4
-
Bài giảng Lý thuyết mạch điện 1: Chương 1 - TS. Trần Thị Thảo
61 p | 10 | 4
-
Bài giảng Lý thuyết mạch điện 1: Chương 11 - TS. Trần Thị Thảo
44 p | 14 | 4
-
Bài giảng Lý thuyết mạch điện 1 - Chương 8: Mạch điện ba pha
42 p | 10 | 4
-
Bài giảng Lý thuyết mạch điện 1 - Chương 5: Mạch điện tuyến tính có kích thích chu kỳ
11 p | 15 | 4
-
Bài giảng Lý thuyết mạch điện 1 - Chương 2: Mạch tuyến tính ở chế độ xác lập điều hòa
17 p | 9 | 4
-
Bài giảng Lý thuyết mạch điện 1 - Chương 1: Khái niệm về mô hình mạch Kirchhoff
28 p | 8 | 4
-
Bài giảng Lý thuyết mạch điện 1: Chương 12 - TS. Trần Thị Thảo
40 p | 11 | 4
-
Bài giảng Lý thuyết mạch điện 2: Chương 6 - TS. Trần Thị Thảo
45 p | 14 | 3
-
Bài giảng Lý thuyết mạch điện 2: Chương 4 - TS. Trần Thị Thảo
46 p | 15 | 3
-
Bài giảng Lý thuyết mạch điện 2: Chương 3 - TS. Trần Thị Thảo
16 p | 14 | 3
-
Bài giảng Lý thuyết mạch điện: Chương 7 - Cung Thành Long
25 p | 25 | 3
-
Bài giảng Lý thuyết mạch điện: Chương 4 - Cung Thành Long
20 p | 31 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn