Báo cáo " TÍCH HỢP GIS VÀ PHÂN TÍCH QUYẾT ĐỊNH NHÓM ĐA MỤC TIÊU MỜ TRONG QUY HOẠCH SỬ DỤNG ĐẤT NÔNG NGHIỆP "
lượt xem 13
download
Bố trí sử dụng đất nông nghiệp là một trong những nội dung quan trọng trong quy hoạch phát triển nông nghiệp - nông thôn, nó thường thực hiện dựa trên kết quả đánh giá khả năng thích nghi đất đai (FAO, 1976, 1993b, 2007). Khó khăn gặp phải trong quá trình bố trí sử dụng đất là bố trí mỗi loại đất với diện tích bao nhiêu để cho phương án sử dụng đất đáp ứng đồng thời nhiều mục tiêu về phát triển kinh tế, xã hội và bảo vệ môi trường. Do vậy, bài toán...
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Báo cáo " TÍCH HỢP GIS VÀ PHÂN TÍCH QUYẾT ĐỊNH NHÓM ĐA MỤC TIÊU MỜ TRONG QUY HOẠCH SỬ DỤNG ĐẤT NÔNG NGHIỆP "
- HỘI THẢO ỨNG DỤNG GIS TOÀN QUỐC 2011 TÍCH HỢP GIS VÀ PHÂN TÍCH QUYẾT ĐỊNH NHÓM ĐA MỤC TIÊU MỜ TRONG QUY HOẠCH SỬ DỤNG ĐẤT NÔNG NGHIỆP (THE INTEGRATION OF GIS AND FUZZY MULTI-OBJECTIVE GROUP DECISION ANALYSIS FOR AGRICULTURAL LAND-USE PLANNING) Lê Cảnh Định (*), Trần Trọng Đức (**) (*) Phân viện Quy hoạch và Thiết kế Nông nghiệp (miền Nam) (**) Trường Đại học Bách khoa - ĐH Quốc gia Tp. Hồ Chí Minh Abstract: The decision makers are facing with the multi-objective optimization problem in allocation of land-use planning - economic efficiency, employment, and environment - in agricultural land-use planning. In this research, a model of integration of GIS and FMOGDA is built to solve multi-objective optimization in the allocation of agricultural land-use. This model is applied Lam Dong province. In which, the first, GIS is used to evaluate land suitability, the result is a proposal map of land use; Then, based on the proposed land-use and development requirements of socio-economic, the fuzzy multi-objective programming (FMOLP) is formulated with three objectives: maximize gross margin (Z1), maximize employment (Z2), maximize land cover in order to reduce soil erosion (Z3). The FMOLP is solved by the interactive fuzzy satisficing method (Sakawa, 2002) with FAHP-GDM to support to determine the weights of objectives in the group decision making environment. A result of selected land-use plans optimized to meet the requirements of socioeconomic development and protected environment of Lam Dong province. Keywords: GIS, Fuzzy multi-objective linear programming (FMOLP), fuzzy AHP-group, allocation of land-use, spatial land-use planning. 1. MỞ ĐẦU Bố trí sử dụng đất nông nghiệp là một trong những nội dung quan trọng trong quy hoạch phát triển nông nghiệp - nông thôn, nó thường thực hiện dựa trên kết quả đánh giá khả năng thích nghi đất đai (FAO, 1976, 1993b, 2007). Khó khăn gặp phải trong quá trình bố trí sử dụng đất là bố trí mỗi loại đất với diện tích bao nhiêu để cho phương án sử dụng đất đáp ứng đồng thời nhiều mục tiêu về phát triển kinh tế, xã hội và bảo vệ môi trường. Do vậy, bài toán bố trí sử dụng đất nông nghiệp là bài toán tối ưu đa mục tiêu (multi-objective programming: MOP). Bài toán MOP (k mục tiêu, k∈Z+ và k ≥ 2) có nhiều cách tiếp cận để giải quyết: (i). Tiếp cận một mục tiêu: Tối ưu hóa 1 mục tiêu quan trọng nhất và biến đổi (k-1) mục tiêu còn lại thành hệ ràng buộc, cách tiếp cận này đôi khi không nhận được lời giải khả thi (Burke và Kendall, 2005); (ii). Tiếp cận đa mục tiêu: Biến đổi bài toán tối ưu k mục tiêu thành bài toán tối ưu 1 mục tiêu thông qua trọng số các mục tiêu, cách tiếp cận này khá thích hợp cho việc tìm phương án tối ưu (Abdelaziz, 2007). Như vậy, việc giải bài toán MOP liên quan đến hai kỹ thuật chính: (i) biểu diễn mức độ thỏa dụng của hàm mục tiêu và (ii) xác định trọng số các mục tiêu. − Đối với việc biểu diễn mức độ thỏa dụng các hàm mục tiêu: Phương pháp tương tác thỏa hiệp mờ rất phù hợp cho giải bài toán MOP (Sakawa, 2002), trong đó các mục 22
- HỘI THẢO ỨNG DỤNG GIS TOÀN QUỐC 2011 tiêu được chuyển sang biểu diễn dưới dạng mờ với đơn vị thống nhất là hàm thuộc (μk(Zk) ∈[0,1]) đo độ thỏa dụng của người quyết định (DM) đối với các mục tiêu. − Đối với việc xác định trọng số các mục tiêu: Kỹ thuật phân tích thứ bậc (AHP) (Saaty, 1980) như là giải pháp kỹ thuật hỗ trợ DM xác định trọng số các mục tiêu (Lê Cảnh Định và Trần Trọng Đức, 2009). Trong đó, người đánh giá sử dụng các số chính xác aij = 1/aji ∈ [1/9,1] ∪ [1,9] để so sánh mức độ quan trọng của từng cặp mục tiêu (i, j). Tuy nhiên, do sự mơ hồ và không chắc chắn của người đánh giá, nên kết quả đánh giá chưa đủ và chưa chính xác để ra quyết định (Chen et al., 2011). Để khắc phục hạn chế của AHP gốc trong môi trường rõ (original crisp AHP), nhiều nghiên cứu đề xuất giải pháp kết hợp hai kỹ thuật AHP và logic mờ (FAHP) trong so sánh cặp, cho phép mô tả chính xác hơn trong quá trình ra quyết định (L.C. Định và T.T. Đức, 2011). Thêm nữa, trong quá trình ra quyết định chọn phương án sử dụng đất, thường có nhiều người tham gia, do vậy trong nghiên cứu này giới thiệu mô hình xác định trọng số các mục tiêu mờ trong ra quyết định nhóm (fuzzy AHP- group decision making: FAHP-GDM) hỗ trợ DM xác định vector trọng số trong giải bài toán MOP bằng phương pháp tương tác thỏa hiệp mờ. Mô hình tích hợp GIS và phân tích quyết định nhóm đa mục tiêu mờ (fuzzy multi- objective group decision analysis: FMOGDA), trong đó: GIS đóng vai trò phân tích không gian (xây dựng bản đồ đơn vị đất đai, đánh giá thích nghi đất đai, mô phỏng bản đồ quy hoạch…); FMOGDA với kỹ thuật tối ưu mờ nhóm (mờ hóa và biểu diễn mức độ thỏa dụng của hàm mục tiêu và xác định trọng số các mục tiêu bằng kỹ thuật FAHP-GDM), khả năng hiệp lực giữa hai lĩnh vực GIS và FMOGDA tạo ra công cụ thật sự hữu ích trong phân tích ra quyết định nhóm đa mục tiêu bán cấu trúc không gian (spatial MOGDA) như quy hoạch sử dụng đất. 2. THUẬT TOÁN TƯƠNG TÁC THỎA HIỆP MỜ 2.1. Mô tả bài toán tối ưu đa mục tiêu: Mô hình MOLP được mô tả như sau: Hàm mục tiêu (objective function): Max (Min) Z ( x) = ( Z1 ( x), Z 2 ( x), K Z k ( x))T Hệ ràng buộc (subject to): x ∈ D = { x ∈ R n | Ax ≤ B, x ≥ 0 }, Trong đó: + Zi(x) là các mục tiêu, Zi(x) = Cix với Ci = (Ci1, Ci2,…, Cin)T , i=1,2,…,k; + A ma trận cấp m x n; B là ma trận cấp 1x m; D là miền ràng buộc. + x là biến quyết định (là diện tích các hệ thống sử dụng đất). 2.2. Thuật giải: Bài toán MOLP được giải bằng phương pháp tương tác thỏa hiệp mờ (Interactive fuzzy satisficing method) với thuật giải như hình 1: (i) Giải bài toán quy hoạch tuyến tính cho từng mục tiêu trên miền ràng buộc D; tính giá trị hàm mục tiêu tại các phương án (Z1, ,…, Zk); xác định hàm thỏa hiệp mờ cho từng mục tiêu (µ1(Z1), µ2(Z2),…, µk(Zk)). 23
- HỘI THẢO ỨNG DỤNG GIS TOÀN QUỐC 2011 Begin - (ii) Xác định mức độ ưu tiên cho các mục tiêu (trọng số [w1, w2,…wk]). Sakawa (2002) không đưa ra kỹ thuật xác định vector - Giải bài toán cho từng mục tiêu với trọng số, trong quá trình ứng dụng vào thực tập ràng buộc D, tiễn quy hoạch sử dụng đất, nghiên cứu này - Tính Z1, Z2,… , Zk đề xuất kỹ thuật FAHP-GDM trong xác định - Tính độ thuộc µ1(Z1),…, µk(Zk) [wk] như mục 2.3. (iii) Lập hàm mục tiêu tổng hợp: - DM xác định trọng số [w1,…wk], U = w1μ1 (z1 ) + w2μ2 (z2 ) +...+ wk μk (zk ) →max - U = w1µ1(Z1)+…+ wkµk(Zk), (iv) Giải bài toán quy hoạch tuyến tính với - Giải bài toán max (u) với tập ràng hàm mục tiêu tổng hợp trên miền ràng buộc buộc D, tìm tập nghiệm X. D, tìm phương án tối ưu X*. - Nếu DM chưa thỏa mãn với X* thì quay về bước (ii). DM thỏa mãn No tập nghiệm X*? - Nếu X* thỏa mãn mong muốn của DM thì X* là phương án chọn. Yes Chọn phương án X* End Hình 1: Thuật giải tương tác thỏa hiệp mờ (M.Sakawa, 2002) 2.3. AHP mờ trong ra quyết định nhóm (FAHP-GDM): (1). Lựa chọn phương pháp AHP mờ (FAHP): Theo Kahraman (2008), hiện nay có các phương pháp FAHP cơ bản thu hút nhiều nhà nghiên cứu: Phương pháp của V. Laarhoven, Pedrycz (1983) và Buckley (1985) có yêu cầu tính toán rất lớn ngay cả đối với vấn đề rất nhỏ; Phương pháp Cheng (1996) dựa trên cả hai phương pháp tính xác suất (probability) và khả năng (possibility) nên rất khó xác định; Phương pháp Chang (1996): yêu cầu tính toán tương đối thấp và trình tự thực hiện giống như phương pháp AHP trong môi trường rõ. Do vậy, trong nghiên cứu này chọn phương pháp FAHP (Chang, 1996) để xác định trọng số các tiêu chuẩn trong đánh giá đất đai. (2). Biến ngôn ngữ và giá trị mờ của biến ngôn ngữ trong so sánh cặp: Theo Onut, Efendigil và Kara (2010), mối quan hệ giữa các biến ngôn ngữ mô tả mức độ quan trọng giữa 2 tiêu chuẩn [giá trị so sánh rõ, Saaty(1980)] với giá trị mờ của biến ngôn ngữ (các số mờ tam giác) trong so sánh cặp thể hiện như bảng 1. 24
- HỘI THẢO ỨNG DỤNG GIS TOÀN QUỐC 2011 Bảng 1: Biến ngôn ngữ và giá trị mờ của biến ngôn ngữ trong so sánh cặp Giá trị so sánh Biến ngôn ngữ mô tả mức độ Số mờ Nghịch đảo rõ quan trọng (giữa 2 tiêu chuẩn) tam giác số mờ tam giác (Saaty,1980) (l, m, u) (1/u, 1/m, 1/l) Chỉ bằng nhau (just equal) (1, 1, 1) (1, 1, 1) Quan trọng bằng nhau 1 (1, 1, 2) (1/2, 1, 1) (equal importance) Quan trọng yếu 3 (2, 3, 4) (1/4, 1/3, 1/2) (weak importance) Quan trọng mạnh 5 (4, 5, 6) (1/6, 1/5, 1/4) (essential or strong importance) Quan trọng rất mạnh 7 (6, 7, 8) (1/8, 1/7, 1/6) (very strong importance) Vô cùng quan trọng 9 (8, 9, 9) (1/9, 1/9, 1/8) (extremely preferred) (x-1, x, x+1); (1/(x+1), 1/x, 1/(x-1)); 2,4,6,8 Mức trung gian giữa các mức nêu trên x=2,4,6,8. x=2,4,6,8. Nguồn: Onut, Efendigil và Kara (2010). (3). Phương pháp FAHP-GDM: Giả sử có tập đối tượng X ={x1, x2, … xn} và tập mục tiêu U ={u1, u2,…, um}. M (i = 1,2,..., n; j = 1,2,..., m) là số mờ tam giác thể hiện mức độ ảnh hưởng của đối tượng xi j gi đối với mục tiêu uj. ~ Số mờ aijk = (lijk , mijk , uijk ) là kết quả đánh giá mờ của chuyên gia k về mức độ ảnh hưởng của đối tượng xi với mục tiêu uj; Với lijk ≤ mijk ≤ uijk và lijk, mijk, uijk ∈ [1/9,1]∪[1,9]. Tổng hợp kết quả đánh giá của k chuyên gia (Jaskowski et al., 2010): 1/ n ~ ⎛ n ⎞ Aij = ( Lij , M ij , U ij ), với: Lij = min (lijk), M ij = ⎜ ∏ mijk ⎟ ⎜ ⎟ , Uij = max(uijk) ⎝ k =1 ⎠ ~ Sau khi có ma trận đánh giá tổng hợp mờ của nhóm k chuyên gia ( Aij ) , sử dụng thuật toán FAHP (Chang, 1996) và được chi tiết bởi Kahraman (2008), để tính trọng số các tiêu chuẩn, bao gồm các bước như sau: Bước 1: Tổng hợp mức độ ảnh hưởng mờ của đối tượng i: −1 m ⎡ n m ⎤ Si = ∑ M ⊗ ⎢∑∑ M gi ⎥ j gi j (1); Trong đó: j =1 ⎣ i =1 j =1 ⎦ m m m m n m n n n ∑M j =1 j gi = (∑ l j , ∑ m j , ∑ u j ) j =1 j =1 j =1 (2); ∑∑ M i =1 j =1 j gi = (∑ li , ∑ mi , ∑ ui ) i =1 i =1 i =1 (3); Nghịch đảo số mờ (3): ⎛ ⎞ −1 ⎜ ⎟ ⎡ n m ⎤ ⎜ 1 1 1 ⎟ (4) ⎢∑∑ M gi ⎥ = ⎜ n , j , n n ⎟ ⎣ i=1 j =1 ⎦ ⎜ ∑ ui ∑ mi ∑ li ⎟ ⎝ i =1 i =1 i =1 ⎠ 25
- HỘI THẢO ỨNG DỤNG GIS TOÀN QUỐC 2011 Bước 2: So sánh cặp số mờ M2 (l2,m2,u2) ≥ M1 (l1,m1,u1) được xác định như sau: V ( M 2 ≥ M 1 ) = sup[min(μ M 1 ( x), μ M 2 ( y ))] (5) y≥ x ⎧1, if m2 ≥ m1 ⎪0, if l ≥ u ⎪ ⎪ 1 2 ⇔ V ( M 2 ≥ M 1 ) = hgt ( M 1 ∩ M 2 ) = μ M 2 (d ) = ⎨else : (6) ⎪ l1 − u2 ⎪ , ⎪ (m2 − u2 ) − (m1 − l1 ) ⎩ Trong đó d là độ cao của các hàm thuộc μ M 1 , μ M 2 của hai số mờ M1 và M2. Khi so sánh hai số mờ M1 và M2 thì so sánh cả V(M2 ≥ M1) và V(M2 ≤ M1). Bước 3: So sánh số mờ M với k số mờ khác V(M ≥ M1, M2, …, Mk) = V[(M≥ M1) and (M≥ M2) and…and (M≥ Mk)] = minV(M≥ Mi), với i=1,2,…, k; Đặt d’(Ai)= minV(Si ≥ Sk), với i=1,..., n; k=1,2,…, n; k ≠ i; [W’] = [d’(A1), d’(A2),…, d’(An)]T, Bước 4: Chuẩn hóa vector [W’] được vector trọng số [W] cần tìm, [W]= [d(A1), d(A2),…, d(An)]T, [W] là số rõ (nonfuzzy number). 3. ỨNG DỤNG GIẢI BÀI TOÁN BỐ TRÍ SỬ DỤNG ĐẤT Khu vực nghiên cứu là tỉnh Lâm Đồng. Trên địa bàn Lâm Đồng chọn 7 loại hình sử dụng đất (LUT) chính để đưa vào đánh giá thích nghi và bố trí sử dụng đất: LUT1 (2 vụ lúa), LUT2 (1 vụ lúa), LUT3 (Chuyên màu), LUT4 (Rau - hoa), LUT5 (Cà phê), LUT6 (Chè), LUT7 (Điều). Bước 1: Ứng dụng GIS đánh giá thích nghi đất đai tỉnh Lâm Đồng, kết quả được bản đồ đề xuất sử dụng đất bền vững với thuộc tính như bảng 2. Bảng 2: Đề xuất sử dụng đất nông nghiệp bền vững LUT1 LUT2 LUT Phân Vùng Đơn vị Lúa 2 Lúa 1 3 LUT4 LUT5 LUT6 LUT7 D.tích định thích đất đai vụ vụ Màu Rau-hoa Cà phê Chè Điều T.nhiên N.Nghiệp nghi LMU (ha) (ha) 1 3 S3 N S1 S1 S1 N N 13.467 8.273 2 1 S3 N S1 N S1 N N 3.037 2.000 3 5 S3 N S3 S1 S1 N N 3.469 2.126 4 2, 4 S3 N S3 N N N N 35.714 24.321 5 6, 7 N N S1 N N S1 S1 6.942 2.845 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 33, 34, 42, 6 N N S3 S1 S1 S1 N 260.126 136.427 43, 44, 47, 48, 56, 57, 58, 64, 65, 73, 74, 87, 88, 92 26
- HỘI THẢO ỨNG DỤNG GIS TOÀN QUỐC 2011 LUT1 LUT2 LUT Phân Vùng Đơn vị Lúa 2 Lúa 1 3 LUT4 LUT5 LUT6 LUT7 D.tích định thích đất đai vụ vụ Màu Rau-hoa Cà phê Chè Điều T.nhiên N.Nghiệp nghi LMU (ha) (ha) 9, 10, 11, 28, 32, 36, 7 37, 38, 50, 51, 52, 71, N N S3 N S1 S1 S1 45.321 13.268 84, 98 8 12, 39, 40, 53, 85 N N N N S1 S1 S1 30.068 7.686 8, 35, 45, 59, 60, 66, 9 N N N N S1 S1 N 71.842 23.190 75, 82, 89, 93, 99, 101 10 69 N N N N N S1 N 11.409 290 13, 29, 41, 54, 55, 72, 11 N N N N N N S1 103.699 10.809 79, 81, 86 46, 49, 61, 62, 63, 67, 68, 70, 76, 77, 78, 80, 12 N N N N N N N 362.506 45.581 83, 90, 91, 94, 95, 96, 97, 100, 102, 103, 104 Sông suối, ao-hồ,… 29.754 Diện tích tự nhiên 977.354 276.816 Ghi chú: S1: rất thích nghi, S2: thích nghi trung bình, S3 ít thích nghi, N: không đề xuất cho sản xuất nông nghiệp. Bước 2: Xây dựng các điều kiện của bài toán Lâm Đồng là tỉnh nông nghiệp, cơ cấu giá trị sản xuất khu vực I (ngành nông- lâm nghiệp và thuỷ sản) chiếm 48,5% tổng giá trị sản xuất toàn Tỉnh. Ngành nông nghiệp chiếm 97,5% giá trị sản xuất khu vực I, trong đó giá trị sản xuất ngành trồng trọt chiếm 79,5% (UBND tỉnh Lâm Đồng, 2010). Lao động nông nghiệp chiếm khoảng 71% lao động xã hội, thời gian lao động nhàn rỗi trong năm ở khu vực nông thôn chiếm khoảng 30% (dự kiến sẽ giảm xuống còn 18-20% sau năm 2015). Vậy quy hoạch sử dụng đất nông nghiệp phải tập trung nâng cao hiệu quả kinh tế, giải quyết việc làm cho lao động nông nghiệp và hạn chế đến mức thấp nhất tác động xấu của sản xuất nông nghiệp đến môi trường. Cụ thể, phương án sử dụng đất nông nghiệp thỏa mãn đồng thời các mục tiêu: Tối đa lãi thuần (Z1), tối đa nhu cầu lao động (Z2), tối đa độ che phủ (Z3) nhằm giảm đến mức thấp nhất hiện tượng rửa trôi và xói mòn đất. Dựa vào các yêu cầu trên, bài toán tối ưu đa mục tiêu tuyến tính (MOLP) được cài đặt như sau: (1). Hàm mục tiêu: Gọi Xij là diện tích LUTj (j=1,…,7) trên LMUi (i =1,…,104), Xij ≥ 0, Xij∈Z, Gọi GMij là lãi thuần/1ha khi sản xuất LUTj trên LMUi, Gọi LBij là nhu cầu công lao động/1ha cho sản xuất LUTj trên LMUi, Gọi CVij là hệ số che phủ khi sản xuất LUTj trên LMUi. Các tham số lãi thuần (GM), nhu cầu lao động (LB) được xác định trong quá trình đánh giá thích nghi kinh tế (Lê Cảnh Định, 2010), riêng tham số về độ che phủ (CV) tính theo quy định của bộ NN&PTNT (cây hàng năm: CV= 0; cây điều: CV=1; cây cà phê và cây chè thì CV=0,7). Trên cơ sở đó, các hàm mục tiêu được cài đặt như sau: 27
- HỘI THẢO ỨNG DỤNG GIS TOÀN QUỐC 2011 104 7 Mục tiêu tối đa lãi thuần (Z1): ∑∑ GM i =1 j =1 ij X ij → max 104 7 Mục tiêu tối đa nhu cầu lao động (Z2): ∑∑ LB X i =1 j =1 ij ij → max 104 7 Mục tiêu tối đa độ che phủ (Z3): ∑∑ CV X i =1 j = 5 ij ij → max (2). Các hệ ràng buộc: + Ràng buộc về tài nguyên đất: Tổng diện tích vùng thích nghi (bảng 2): 7 ∑X j =1 ij ≤ Si , i = 1,..., 104 , trong đó: Si là diện tích được phân định cho sản xuất nông nghiệp trên LMUi (i=1,…, 104). Ví dụ: vùng thích nghi 1 (LMU3), tổng diện tích bố trí cho các LUT 7 nhỏ hơn 8.273ha, hay ∑X j =1 ij ≤ 8.273, i = 3; + Ràng buộc về yêu cầu phát triển (theo định hướng phát triển các LUT): 104 104 Diện tích LUT1: 8.000 ≤ ∑ X ij ≤ 12.000, j = 1 ; Diện tích LUT2: ∑X ij = 0, j = 2 i =1 i =1 104 (trong quy hoạch bỏ lúa 1 vụ); Diện tích LUT3: 30.000 ≤ ∑ X ij ≤ 40.000, j = 3 ; Diện tích i =1 104 104 LUT4: 10.000 ≤ ∑ X ij ≤ 20.000, j = 4 ; Diện tích LUT5: 110.000 ≤ ∑ X ij ≤ 150.000, j = 5 ; i =1 i =1 104 Diện tích LUT6: 25.000 ≤ ∑ X ij ≤ 32.000, j = 6 ; Diện tích LUT7: i =1 104 10.000 ≤ ∑ X ij ≤ 15.000, j = 7 i =1 + Ràng buộc về lao động nông nghiệp: Tổng lao động nông nghiệp: 104 7 ∑∑ LB X i =1 j =1 ij ij / 260 ≤ 230.000 . Bước 3: Giải bài toán đa mục tiêu: Ứng dụng thuật giải tương tác thỏa hiệp mờ (sakawa, 2002) để giải bài toán MOLP, các bước thực hiện như hình 1. (i). Giải bài toán quy hoạch tuyến tính cho từng mục tiêu: Kết quả như bảng 3. Bảng 3: Giá trị hàm mục tiêu của các phương án Z1: Z2: Z3: Các phương án Lãi thuần Nhu cầu lao động Diện tích che phủ (triệu đồng) (ngày công) (ha) Z1: Tối đa lãi thuần 16.088.910.617 50.414.165 123.230 Z2: Tối đa về nhu cầu lao động 9.860.014.929 59.483.035 117.255 Z3: Tối đa độ che phủ 9.550.924.473 44.965.719 132.513 28
- HỘI THẢO ỨNG DỤNG GIS TOÀN QUỐC 2011 Các hàm mục tiêu có đơn vị tính khác nhau (đơn vị tính của Z1 là triệu đồng, Z2 là ngày công lao động, Z3 là ha che phủ), do vậy nên được chuyển sang biểu diễn dưới dạng mờ với đơn vị thống nhất là hàm thuộc (μk(Zk) ∈[0,1]) đo độ thỏa dụng của DM đối với các mục tiêu, cách biểu diễn như vậy rất gần gũi với suy nghĩ của DM, do đó sẽ dễ dàng hơn cho DM trong việc lựa chọn các phương án. (ii). Mức độ ưu tiên các mục tiêu: Phương pháp FAHP-GDM (mục 2.3) như là giải pháp kỹ thuật hỗ trợ DM xác định trọng số các mục tiêu trong ra quyết định nhóm. (iii). Hàm mục tiêu tổng hợp: Z1 − 9.550.924.473 Z − 44.965.719 Z −117.255 w1 × + w2 × 2 + w3 × 3 → max (**) 6.537.986.144 14.517.316 15.257 Trong đó: w1, w2, w3 là trọng số các mục tiêu Z1, Z2, Z3. (iv). Giải bài toán: Việc giải bài toán (**) trên miền ràng buộc ban đầu để tìm phương án sử dụng đất tối ưu chỉ phụ thuộc vào việc xác định bộ trọng số [w1, w2, w3] của các mục tiêu Z1, Z2, Z3, ứng với 1 bộ trọng số sẽ có 1 phương án sử dụng đất tối ưu. Trong trường hợp tỉnh Lâm Đồng: Quan điểm phát triển: Kinh tế được ưu tiên phát triển trên cơ sở đáp ứng được lợi ích của toàn xã hội và hạn chế đến mức thấp nhất tác hại đến môi trường. Như vậy, bố trí sử dụng đất nông nghiệp có 2 kịch bản (scenarios) xếp theo thứ tự ưu tiên như sau: − Kịch bản I: Kinh tế (Z1) ≥ Môi trường (Z3) ≥ Xã hội (Z2); − Kịch bản II: Kinh tế (Z1) ≥ Xã hội (Z2) ≥ Môi trường (Z3). + Đối với kịch bản I: Nhóm ra quyết định gồm 9 người, kết quả so sánh cặp mục tiêu trong môi trường rõ (crisp) như bảng 4. Bảng 4: Giá trị so sánh cặp mục tiêu trong môi trường rõ Mục tiêu Kết quả đánh giá của Chuyên gia thứ i j 1 2 3 4 5 6 7 8 9 Kinh tế (Z1) Xã hội 2 3 3 6 8 5 4 8 7 Môi trường 2 4 2 7 7 4 5 7 6 Môi trường (Z3) Xã hội (Z2) 2 2 2 2 3 2 2 2 3 Tỷ số nhất quán (CR ) 4,6% 9,3% 0,8% 6,9% 9,0% 2,1% 8,1% 3,0% 8,6% Tiếp theo, mờ hóa các ma trận so sánh cặp rõ (bảng 4) của từng chuyên gia (thang phân loại mờ như bảng 1). Ví dụ mờ hóa ma tra so sánh cặp của chuyên gia thứ 1: Bảng 5: Ma trận so sánh rõ Bảng 6: Ma trận so sánh mờ Mục tiêu Z1 Z2 Z3 Mờ hóa Z1 Z2 Z3 Z1 1 2 2 1 1 1 1/1 2/1 3/1 1/1 2/1 3/1 Z2 1/2 1 1/2 1/3 1/2 1/1 1 1 1 1/3 1/2 1/1 Z3 1/2 2 1 1/3 1/2 1/1 1/1 2/1 3/1 1 1 1 29
- HỘI THẢO ỨNG DỤNG GIS TOÀN QUỐC 2011 Tương tự, mờ hóa ma trận so sánh của các chuyên gia còn lại. Tổng hợp tất cả các ma trận so sánh mờ của các chuyên gia (Jaskowski et al., 2010), kết quả như bảng 7. Bảng 7: Ma trận tổng hợp mờ Mục tiêu Kinh tế (Z1) Xã hội (Z2) Môi trường (Z3) Z1 1 1 1 1/1 37/8 9/1 1/1 31/7 8/1 Z2 1/9 2/9 1/1 1 1 1 1/4 1/2 1/1 Z3 1/8 2/9 1/1 1/1 11/5 4/1 1 1 1 Cuối cùng, từ bảng ma trận tổng hợp mờ (bảng 7), tính trọng số của các yếu tố, các bước như sau (xem mục 2.3): - Bước 1: Tổng hợp mức độ ảnh hưởng mờ của các yếu tố: SZ1 = (3/1; 10/1; 18/1) (1/27; 6/91; 2/13) = (0,1111; 0,6640; 2,7752) SZ2 = (4/3; 5/3; 3/1) (1/27; 6/91; 2/13) = (0,0504; 0,1105; 0,4625) SZ3 = (17/8; 17/5; 6/1) (1/27; 6/91; 2/13) = (0,0787; 0,2255; 0,9251) - Bước 2: So sánh các cặp số mờ: V(SZ1 ≥ SZ2) = 1,00; V(SZ1 ≥ SZ3) = 1,00 V(SZ2 ≥ SZ1) = 0,39; V(SZ2 ≥ SZ3) = 0,77 V(SZ3 ≥ SZ1) = 0,65; V(SZ3 ≥ SZ2) = 1,00 - Bước 3: Giá trị nhỏ nhất của mỗi cặp số mờ: d’(Z1) = MinV(SZ1 ≥ Si) = 1,00; Si = SZ2 , SZ3 d’(Z2)= MinV(SZ2 ≥ Si) = 0,39; Si = SZ1, SZ3 d’(Z3)= MinV(SZ3 ≥ Si) = 0,65; Si = SZ1, SZ2 [W’] = [d’(Z1); d’(Z2); d’(Z3)]T = [1,00; 0,39; 0,65]T - Bước 4: Chuẩn hóa [W’] được vector trọng số rõ (crisp) cần tìm: [W] = [wZ1; wZ2; wZ3]T = [0,490; 0,191; 0,319]T + Đối với kịch bản II: Kết quả so sánh cặp mục tiêu trong môi trường rõ (crisp) như bảng 8, với phương pháp tương tự, xác định được vector trọng số [wZ1; wZ2; wZ3]T = [0,531; 0,340; 0,129]T. Bảng 8: Giá trị so sánh cặp mục tiêu trong môi trường rõ Mục tiêu Kết quả đánh giá của Chuyên gia thứ i j 1 2 3 4 5 6 7 8 9 Kinh tế (Z1) Xã hội 2 3 4 5 4 4 4 4 5 Môi trường 3 4 6 8 6 5 5 5 6 Môi trường (Z3) Xã hội (Z2) 1 1 1/4 1 1/4 1/3 1/2 1/3 1/3 Tỷ số nhất quán (CR ) 1,6% 0,8% 9,3% 2,1% 9,3% 7,4% 2,1% 7,4% 8,1% 30
- HỘI THẢO ỨNG DỤNG GIS TOÀN QUỐC 2011 Thế từng bộ trọng số vào bài toán (**), giải bài toán (**) với hệ ràng buộc ban đầu, sử dụng phần mềm SALUP (Lê Cảnh Định và ctg, 2010), từ đó tìm được diện tích tối ưu các phương án, giá trị hàm mục tiêu tổng hợp U và độ thuộc của từng mục tiêu thể hiện trong bảng 9. Bảng 9: Giá trị hàm mục tiêu tổng hợp của các phương án sử dụng đất Kịch Bộ trong số [W] U Độ thuộc các mục tiêu bản w1 w2 w3 (*) µ(Z1) µ(Z2) µ(Z3) I 0,490 0,191 0,319 0,785 0,980 0,691 0,541 II 0,531 0,340 0,129 0,825 0,980 0,718 0,459 Từ bảng 9 cho thấy: So với kịch bản I, kịch bản II có giá trị hàm mục tiêu tổng hợp cao hơn (U2 =0,825 > U1 =0,785), do vậy chọn kịch bản II. Ứng với kịch bản chọn, diện tích từng loại đất như sau: LUT1 (2 vụ lúa): 8.360ha, LUT2 (1 vụ lúa): không sản xuất, LUT3 (Chuyên màu): 30.000ha, LUT4 (Rau - hoa): 20.000ha, LUT5 (Cà phê): 125.875ha, LUT6 (Chè): 32.000, LUT7 (Điều): 15.000ha. Kết nối với phần mềm SALUP (Lê Cảnh Định và ctg, 2010) để mô phỏng bản đồ quy hoạch sử dụng đất nông nghiệp tỉnh Lâm Đồng (hình 1). 180 1000 ha 160 140 120 100 80 60 40 20 0 LUT1: LUT2: LUT3: LUT4: LUT5: LUT6: LUT7: 2 luù a 1 luù a Maø u Rau-hoa Caø pheâ Cheø Ñieà u Hieän traïng PA_SALUP PA_Tænh Hình 1: Kết quả mô phỏng bản đồ quy hoạch Hình 2: So sánh kết quả của tỉnh (theo bằng phần mềm SALUP phương pháp truyền thống) với kết quả của nghiên cứu này (PA_SALUP) + Nhận xét: Cả hai nghiên cứu đều chuyển toàn bộ diện tích lúa 1 vụ sang trồng màu, rau-hoa, diện tích đất màu tương đương nhau. Diện tích đất 2 lúa của PA tỉnh cao hơn vì một số địa phương đề xuất giữ lại diện tích hiện sản xuất lúa 2 vụ (kể cả một số nằm trong lâm phần), còn mô hình của nghiên cứu này không xem xét phần diện tích ngoài phân định cho sản xuất nông nghiệp. Diện tích chè và cà phê cả hai nghiên cứu đều bằng nhau. Cây điều có tính bền vững cao nên được chọn trồng ở các Huyện phía Nam thay thế cho màu và cà phê. + Tóm lại: So với PA sử dụng đất của Tỉnh (theo phương pháp truyền thống), PA của nghiên cứu này có các mục tiêu đều tốt hơn (giá trị sản xuất, nhu cầu lao động và độ che phủ cao hơn) nên có tính bền vững cao hơn. 31
- HỘI THẢO ỨNG DỤNG GIS TOÀN QUỐC 2011 4. KẾT LUẬN Trong bài toán bố trí sử dụng đất, GIS đóng vai trò cung cấp dữ liệu đầu vào cho mô hình tối ưu đa mục tiêu tuyến tính mờ (FMOLP), SALUP là phần mềm dùng để giải bài toán FMOLP, kỹ thuật FAHP-GDM hỗ trợ xác định vector trọng số các mục tiêu trong môi trường ra quyết định nhóm để giải tìm phương án tối ưu. Phối hợp các công cụ và kỹ thuật trên và vận dụng phương pháp tương tác thỏa hiệp mờ (Sakawa, 2002) để giải bài toán FMOLP trong phân bổ diện tích các loại cây trồng là giải pháp khá hợp lý trong quy hoạch sử dụng đất nông nghiệp. Giải bài toán FMOLP trong quy hoạch sử dụng đất nông nghiệp bằng phương pháp tương tác thỏa hiệp mờ nhóm cho phép tương tác trực tiếp với nhóm người ra quyết định trong việc bố trí đất đai. Trong đó, các quan điểm phát triển của địa phương cũng như mong muốn của chính quyền và các đối tượng sử dụng đất được đưa vào mô hình thông qua việc thay đổi mức độ ưu tiên các mục tiêu. Do vậy, kết quả bố trí sử dụng đất phù hợp với điều kiện thực tiễn và định hướng phát triển kinh tế-xã hội của địa phương nên có tính khả thi cao. Mô hình tích hợp GIS và FMOGDA hỗ trợ nhóm người ra quyết định giải quyết bài toán ra quyết định đa mục tiêu không gian (spatial MCDM) một cách trực quan thông qua bản đồ số trong hệ GIS; hỗ trợ xây dựng nhiều phương án khác nhau, nên lựa chọn phương án sử dụng đất khách quan và hợp lý. Tài liệu tham khảo C. Kahraman (2008), Fuzzy Multi-Criteria Decision Making: Theory and Application with Recent Developments, Springer, USA. E.K., Burke, G. Kendall (2005), Search mrthodologies: introductory tutorials in optimization and decision support techniques, Springer, USA. F.B. Abdelaziz (2007), Multiobjective programming and Goal programming: New trend and Application, European Journal of Operation Research, vol. 177, pp. 1520-1522, ScienceDirect. Le Canh Dinh, Tran Trong Duc (2009), The Integration of GIS and Fuzzy Multi-Objective Linear Programming (FMOLP)- An Interactive Decision Making Tool in Sustainable Use of Agricultural Land, presented at the 7th FIG Regional Conference, Spatial Data Serving People: Land Governance and the Environment - Building the Capacity, Hanoi, VN, 19-22 Oct. 2009. Le Canh Dinh, Tran Trong Duc (2011), The Integration of GIS and Fuzzy AHP-Group for Land Suitability Analysis, presented at the 10th Annual Asian Conference and Exhibition on Geospatial Information, Technology & Application: Geospatial Convergence –Paradigm for Future, Jakarta, Indonesia, 17-19 Oct. 2011. Lê Cảnh Định, Cao Duy Trường, Trần Trọng Đức (2010), Mô hình tích hợp Callular Automata và GIS trong mô phỏng không gian các phương án quy hoạch sử dụng đất nông nghiệp, kỷ yếu hội thảo ứng dụng GIS toàn quốc 2010, Đại học Nông Lâm TpHCM, 5-6/11/2010, trang 33-40. P. Jaskowski, S. Biruk, R. Bucon (2010), Assessing contractor selection criteria weight with fuzzy AHP method application in group decision making, Automation in construction 19 (2010), Elsevier. S. Onut, T. Efendigil, S.S. Kara (2010), A combined fuzzy MCDM approach for selecting shopping center site: An example from Istanbul, Turkey, Expert system with application 37 (2010), 1973- 1980, Science Direct, Elsevier. V.Y.C. Chen, H.P. Lien, C.H. Liu, J.J.H. Liou, G.H Tzeng, L.S Yang (2011), Fuzzy MCDM approach for selecting the best environment-watershed plan, Applied Soft Computing 11 (2011) 265–275, ScienceDirect. 32
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bài báo cáo: Kế hoạch marketing
42 p | 1567 | 123
-
Đồ án tốt nghiệp "Tìm hiểu các kỹ thuật giấu tin trong ảnh, xây dựng ứng dụng tích hợp mật mã vào giấu kín trong ảnh"
126 p | 340 | 107
-
ĐỀ TÀI " PHÂN TÍCH HIỆU QUẢ HOẠT ĐỘNG KINH DOANH TẠI CÔNG TY CỔ PHẦN THƯƠNG MẠI CẦN THƠ "
68 p | 228 | 92
-
Bài thuyết trình "Phân tích tiến trình hoạch định nhân sự hiện nay? Trong trường hợp đơn vị khiếm dụng nhân viên, đơn vị sẽ làm gì? Giải thích?"
5 p | 394 | 86
-
Báo cáo " ỨNG DỤNG GIS TRONG QUẢN LÝ LÃNH THỔ DU LỊCH VƯỜN QUỐC GIA BIDOUP – NÚI BÀ "
8 p | 267 | 60
-
ĐỀ TÀI " PHÂN TÍCH KẾT QUẢ HOẠT ĐỘNG KINH DOANH TẠI CÔNG TY TNHH ĐẦU TƯ VÀ PHÁT TRIỂN CÔNG NGHỆ TIN HỌC CÁT TƯỜNG "
91 p | 137 | 45
-
Báo cáo " ỨNG DỤNG GIS VÀ VIỄN THÁM XÂY DỰNG BẢN ĐỒ BIẾN ĐỘNG QUỸ ĐẤT LÚA DO TÁC ĐỘNG CỦA BIẾN ĐỔI KHÍ HẬU GIAI ĐOẠN 2000 – 2010: TRƯỜNG HỢP NGHIÊN CỨU TẠI 3 XÃ THUỘC HUYỆN PHÚ VANG, TỈNH THỪA THIÊN HUẾ "
9 p | 245 | 41
-
Báo cáo " TÍCH HỢP GIS VÀ PHÂN TÍCH ĐA TIÊU CHUẨN (MCA) TRONG ĐÁNH GIÁ THÍCH NGHI ĐẤT ĐAI "
10 p | 214 | 24
-
Báo cáo nghiên cứu khoa học: " CẦN PHẢI LÀM GÌ ĐỂ XÂY DỰNG Ý THỨC CHÍNH TRỊ CHO SINH VIÊN ĐẠI HỌC ĐÀ NẴNG HIỆN NAY"
7 p | 109 | 18
-
Báo cáo "TÍCH HỢP VIỄN THÁM VÀ GIS THÀNH LẬP BẢN ĐỒ HOANG MẠC HÓA Ở VIỆT NAM "
11 p | 142 | 18
-
ỨNG DỤNG GIS DỰ BÁO TRUNG HẠN KHẢ NĂNG NHIỄM RẦY NÂU TRÊN LÚA – TRƯỜNG HỢP NGHIÊN CỨU Ở ĐỒNG THÁP
7 p | 90 | 16
-
Báo cáo tổng kết dự án: Bảo tồn di sản thế giới Mỹ Sơn
68 p | 97 | 11
-
Ứng dụng GIS đánh giá thích hợp đất đai phục vụ sản xuất nông nghiệp huyện Sơn Động - tỉnh Bắc Giang
9 p | 95 | 8
-
Báo cáo " Khảo sát một số phương pháp sinh bộ kiểm thử trong kiểm thử hộp đen "
2 p | 101 | 8
-
Báo cáo khoa học: "CÁC HỆ THỐNG CUNG CẤP DỊCH VỤ DỰA TRÊN VỊ TRÍ"
8 p | 88 | 8
-
Luận văn Thạc sĩ Khoa học nông nghiệp: Tích hợp tư liệu viễn thám và GIS để giám sát biến động hiện trạng rừng tại khu bảo tồn thiên nhiên An Toàn, huyện An Lão, tỉnh Bình Định
140 p | 39 | 7
-
PHÂN TÍCH KHÔNG GIAN ĐỂ ĐÁNH GIÁ KẾT HỢP TRỒNG TRỌT VÀ CHĂN NUÔI TRÊN DIỆN RỘNG Ở 4 TỈNH THÀNH: ĐỒNG NAI, BÌNH DƯƠNG, LONG AN VÀ TP. HỒ CHÍ MINH
5 p | 60 | 5
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn