YOMEDIA
ADSENSE
Báo cáo toán học: " Subclasses of Uniformly Starlike and Convex Functions Defined by Certain Integral Operator"
Chia sẻ: Nguyễn Phương Hà Linh Nguyễn Phương Hà Linh | Ngày: | Loại File: PDF | Số trang:16
50
lượt xem 3
download
lượt xem 3
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
báo cáo này, chúng ta xem xét một lớp học của các chức năng starlike thống nhất được định nghĩa bởi nhà điều hành tách rời nhất định. Chúng tôi xác định một điều kiện đủ cho một hàm f được thống nhất starlike chức năng đó cũng là cần thiết khi e có hệ số tiêu cực.
AMBIENT/
Chủ đề:
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Báo cáo toán học: " Subclasses of Uniformly Starlike and Convex Functions Defined by Certain Integral Operator"
- 9LHWQDP -RXUQDO Vietnam Journal of Mathematics 33:3 (2005) 319–334 RI 0$7+(0$7,&6 9$67 Subclasses of Uniformly Starlike and Convex Functions Defined by Certain Integral Operator Maslina Darus1 , Aini Janteng2 , and Suzeini Abdul Halim2 1 School of Mathematical Sciences, Faculty of Sciences and Technology, University Kebangsaan Malaysia 43600 Bangi, Selangor, Malaysia 2 Institute of Mathematical Sciences, University Malaya 50603 Kuala Lumpur, Malaysia Received July 21, 2004 Revised March 2, 2005 Abstract. In this paper, we consider a class of uniformly starlike functions defined by certain integral operator. We determine a sufficient condition for a function f to be uniformly starlike function that is also necessary when f has negative coefficients. Similar results for corresponding subclasses of uniformly convex functions are also obtained. 1. Introduction Let S denote the class of functions f which are analytic and univalent in D = {z : 0 < |z | < 1} and given by ∞ an z n , an ≥ 0 . f (z ) = z + (1) n=2 A function f ∈ S is called a uniformly starlike function if and only if z f (z ) z f (z ) ≥ −1 , z ∈ D. Re f (z ) f (z ) We denote this class by Sp . A function f ∈ S is called a uniformly convex function if and only if
- 320 Maslina Darus, Aini Janteng, and Suzeini Abdul Halim zf (z ) z f (z ) ≥ , z ∈ D. Re 1 + f (z ) f (z ) We denote this class by UCV . Rønning [3] generalized the class Sp and UCV by introducing a parameter α in the following way. Definition 1. [4] A function f ∈ Sp (α), 0 α 1, if f satisfies the analytic characterization z f (z ) z f (z ) −1 −α Re f (z ) f (z ) and f ∈ UCV (α) if and only if zf ∈ Sp (α). In [1], Bharati et al. obtained coefficient characterization for some subclasses of Sp (α) and UCV (α). Definition 2. [5] Let T be the subclass of S consisting of functions f of the form ∞ an z n , an ≥ 0 . f (z ) = z − (2) n=2 Also, Bharati et al. in [1] obtained coefficient characterization for some subclasses of Sp (α) and UCV (α) for f ∈ T . Recently, Jung et al. [2] introduced the following one-parameter families of integral operator for functions f ∈ S : z α−1 α+β α t Qα f (z ) tβ −1 f (t)dt, (α > 0, β > −1) 1− = (3) β zβ β z 0 and z α+1 tα−1 f (t)dt, (α > −1). Jα f (z ) = (4) zα 0 They showed that ∞ Γ(α + β + 1) Γ(β + n) Qα f (z ) = z + an z n , (α > 0, β > −1) (5) β Γ(β + 1) n=2 Γ(α + β + n) and ∞ α+1 an z n , (α > −1). Jα f (z ) = z + (6) α+n n=2
- Uniformly Starlike and Convex Functions Defined by Certain Integral Operator 321 By virtue (5) and (6), we see that Jα f (z ) = Q1 f (z ), (α > −1). (7) α For f ∈ T , the operator in (5) and (6) becomes ∞ Γ(α + β + 1) Γ(β + n) Qα f (z ) = z − an z n , (α > 0, β > −1) (8) β Γ(β + 1) n=2 Γ(α + β + n) and ∞ α+1 an z n , (α > −1). Jα f (z ) = z − (9) α+n n=2 Using equations (3) and (4), we introduce the following new subclasses of Sp (α). Definition 3. Let T Q(α, β, σ ), α > 0, β > −1 and 0 σ 1 be the class of functions f ∈ T satisfying the condition z (Qα f (z )) z (Qα f (z )) β β −1 − σ, z∈D Re (10) Qα f (z ) Qα f (z ) β β where Qα f is defined as in (3). β Definition 4. Let T J (α, σ ), α > −1 and 0 σ 1 be the class of functions f ∈ T satisfying the condition z (Jα f (z )) z (Jα f (z )) −1 − σ, z∈D Re (11) Jα f (z ) Jα f (z ) where Jα f is defined as in (4). 2. Properties of T Q(α, β, σ ) In this section, we give some results for T Q(α, β, σ ). We first state a preliminary lemma, required for proving our result. Lemma 1. If Qα f ∈ T then β ∞ Γ(α + β + 1) Γ(β + n) nan ≤ 1. Γ(β + 1) Γ(α + β + n) n=2 ∞ Γ(α+β +1) Γ(β +n) Proof. Suppose on the contrary that nan > 1. We can n=2 Γ(α+β +n) Γ(β +1) write ∞ Γ(α + β + 1) Γ(β + n) nan = 1 + ε, (ε > 0). Γ(β + 1) Γ(α + β + n) n=2 Then there exists an integer N such that
- 322 Maslina Darus, Aini Janteng, and Suzeini Abdul Halim N Γ(α + β + 1) Γ(β + n) ε nan > 1 + . Γ(β + 1) Γ(α + β + n) 2 n=2 1 1 N −1 For < z < 1, we have ε ∞ 1+ 2 Γ(α + β + 1) Γ(β + n) (Qα f (z )) = 1 − nan z n−1 β Γ(β + 1) Γ(α + β + n) n=2 N Γ(α + β + 1) Γ(β + n) nan z n−1 1− Γ(β + 1) Γ(α + β + n) n=2 N Γ(α + β + 1) N −1 Γ(β + n) 1− z nan Γ(β + 1) Γ(α + β + n) n=2 ε < 1 − z N −1 1 + 2 < 0. 1 1 N −1 Since (Qα f (0)) = 1 > 0, there exists a real number z0 , 0 < z0 < , β ε 1+ 2 such that (Qα f (z0 )) = 0. Hence Qα f is not univalent. β β Theorem 1. Let the functions f ∈ T . Then ∞ Γ(α + β + 1) Γ(β + n) (2n − 1 − σ )an 1−σ (12) Γ(β + 1) n=2 Γ(α + β + n) for some α > 0, β > −1 and 0 1 if and only if f ∈ T Q(α, β, σ ). σ Proof. First, we have z (Qα f (z )) z (Qα f (z )) z (Qα f (z )) β β β − 1 − Re −1 −1 2 Qα f (z ) Qα f (z ) Qα f (z ) β β β ∞ Γ(α+β +1) Γ(β +n) n−1 n=2 Γ(α+β +n) 2(n − 1)|an ||z | Γ(β +1) ∞ 1 − Γ(α++1)β +1) Γ(β +n) n−1 n=2 Γ(α+β +n) |an ||z | Γ(β ∞ Γ(α+β +1) Γ(β +n) n=2 Γ(α+β +n) 2(n − 1)an Γ(β +1) , ∞ 1 − Γ(α++1)β +1) Γ(β +n) n=2 Γ(α+β +n) an Γ(β where ∞ Γ(α + β + 1) Γ(β + n) 1− |an | > 0 Γ(β + 1) n=2 Γ(α + β + n) by Lemma 1. The above expression is bounded by 1 − σ if and only if (12) is satisfied. Consequently, we can write z (Qα f (z )) z (Qα f (z )) β β − 1 − Re −1 1−σ Qα f (z ) Qα f (z ) β β
- Uniformly Starlike and Convex Functions Defined by Certain Integral Operator 323 which is equivalent to (10). Conversely, if f ∈ T Q(α, β, σ ) and z is real, then Definition 3 yields ∞ Γ(α+β +1) Γ(β +n) n−1 1− n=2 Γ(α+β +n) nan z Γ(β +1) −σ ∞ Γ(α+β +1) Γ(β +n) n−1 − Γ(β +1) 1 n=2 Γ(α+β +n) an z ∞ Γ(α+β +1) Γ(β +n) n−1 n=2 Γ(α+β +n) (n − 1)an z Γ(β +1) ≥ . ∞ 1 − Γ(α++1) β +1) Γ(β +n) n−1 n=2 Γ(α+β +n) an z Γ(β Let z → 1− along the real axis, then we get ∞ ∞ Γ(α+β +1) Γ(β +n) Γ(α+β +1) Γ(β +n) 1− n=2 Γ(α+β +n) (n − 1)an n=2 Γ(α+β +n) nan Γ(β +1) Γ(β +1) − ≥σ ∞ ∞ Γ(α+β +1) Γ(β +n) 1 − Γ(α++1) β +1) Γ(β +n) − Γ(β +1) 1 n=2 Γ(α+β +n) an n=2 Γ(α+β +n) an Γ(β or ∞ Γ(α + β + 1) Γ(β + n) 1− (2n − 1)an Γ(β + 1) n=2 Γ(α + β + n) ∞ Γ(α + β + 1) Γ(β + n) ≥σ 1− an Γ(β + 1) n=2 Γ(α + β + n) which gives the required result. Our assertion in Theorem 1 is sharp, for functions of the form Γ(β + 1) Γ(α + β + n) 1 − σ Fn (z ) = Qα fn (z ) = z − z n , n ≥ 2 (13) β Γ(α + β + 1) Γ(β + n) 2n − 1 − σ which belong to the class T Q(α, β, σ ). Corollary 1. If f ∈ T Q(α, β, σ ) then Γ(β + 1) Γ(α + β + n) 1 − σ , n ≥ 2. an (14) Γ(α + β + 1) Γ(β + n) 2n − 1 − σ Proof. Since f ∈ T Q(α, β, σ ), Theorem 1 gives ∞ Γ(α + β + 1) Γ(β + n) (2n − 1 − σ )an 1 − σ. Γ(β + 1) n=2 Γ(α + β + n) Next, note that Γ(α + β + 1) Γ(β + n) (2n − 1 − σ )an Γ(β + 1) Γ(α + β + n) ∞ Γ(α + β + 1) Γ(β + n) (2n − 1 − σ )an . Γ(β + 1) n=2 Γ(α + β + n) Therefore Γ(β + 1) Γ(α + β + n) 1 − σ , n ≥ 2. an Γ(α + β + 1) Γ(β + n) 2n − 1 − σ
- 324 Maslina Darus, Aini Janteng, and Suzeini Abdul Halim Corollary 2. If f ∈ T Q(α, β, σ ) and |z | = r < 1, then 1−σ 2 (i) |Qα f (z )| r + r β 3−σ 1−σ 2 (ii) |Qα f (z )| ≥ r − r. β 3−σ The results are sharp. Proof. First, it is obvious that ∞ Γ(α + β + 1) Γ(β + 2) (3 − σ ) an Γ(β + 1) Γ(α + β + 2) n=2 ∞ Γ(α + β + 1) Γ(β + n) (2n − 1 − σ )an Γ(β + 1) n=2 Γ(α + β + n) and as f ∈ T Q(α, β, σ ), using the inequality in Theorem 1 yields ∞ Γ(β + 1) Γ(α + β + 2) 1 − σ an . (15) Γ(α + β + 1) Γ(β + 2) 3 − σ n=2 From (8) with |z | = r(r < 1), we have ∞ Γ(α + β + 1) Γ(β + n) |Qα f (z )| an r n r+ β Γ(β + 1) n=2 Γ(α + β + n) ∞ Γ(α + β + 1) Γ(β + 2) an r 2 r+ Γ(β + 1) Γ(α + β + 2) n=2 and ∞ Γ(α + β + 1) Γ(β + n) |Qα f (z )| ≥ r − an r n β Γ(β + 1) n=2 Γ(α + β + n) ∞ Γ(α + β + 1) Γ(β + 2) an r 2 . ≥r− Γ(β + 1) Γ(α + β + 2) n=2 Finally, using (15) in the above inequalities gives us both results (i) and (ii). We note that (i) and (ii) are sharp for the following function Γ(β + 1) Γ(α + β + 2) 1 − σ 2 Qα f2 (z ) = z − z β Γ(α + β + 1) Γ(β + 2) 3 − σ at z = ±ir, ±r. Definition 5. Let T Q(α, β, σ, γ ) be the class of functions f ∈ T satisfying the condition z (Qα f (z )) z (Qα f (z )) β β ≥σ −1 +γ, α > 0, β > −1, 0 Re σ 1, 0 γ 1 Qα f (z ) Qα f (z ) β β (16) where Qα f is defined as in (3). β We write T Q(α, β, 1, γ ) = T Q(α, β, γ ).
- Uniformly Starlike and Convex Functions Defined by Certain Integral Operator 325 Theorem 2. Let the functions f ∈ T . A function f ∈ T Q(α, β, σ, γ ) for some α > 0, β > −1, 0 σ 1 and 0 γ 1 if and only if ∞ Γ(α + β + 1) Γ(β + n) [n(1 + σ ) − (σ + γ )]an 1 − γ. (17) Γ(β + 1) n=2 Γ(α + β + n) Proof. In view of Definition 5, it suffices to show that z (Qα f (z )) z (Qα f (z )) β β −1 − γ. σ Re (18) Qα f (z ) Qα f (z ) β β The condition (18) is equivalent to z (Qα f (z )) z (Qα f (z )) β β − 1 − Re −1 1 − γ. σ Qα f (z ) Qα f (z ) β β Then z (Qα f (z )) z (Qα f (z )) z (Qα f (z )) β β β − 1 − Re −1 −1 σ (σ + 1) Qα f (z ) Qα f (z ) Qα f (z ) β β β ∞ Γ(α+β +1) Γ(β +n) n−1 n=2 Γ(α+β +n) (σ + 1)(n − 1)|an ||z | Γ(β +1) ∞ Γ(α+β +1) Γ(β +n) n−1 1− n=2 Γ(α+β +n) |an ||z | Γ(β +1) ∞ Γ(α+β +1) Γ(β +n) n=2 Γ(α+β +n) (σ + 1)(n − 1)an Γ(β +1) . ∞ Γ(α+β +1) Γ(β +n) 1− n=2 Γ(α+β +n) an Γ(β +1) The above expression is bounded by 1 − γ if and only if (17) is satisfied. Conversely, if f ∈ T Q(α, β, σ, γ ) and z is real, we get ∞ Γ(α+β +1) Γ(β +n) n−1 1− n=2 Γ(α+β +n) nan z Γ(β +1) ∞ Γ(α+β +1) Γ(β +n) n−1 − Γ(β +1) 1 n=2 Γ(α+β +n) an z ∞ Γ(α+β +1) Γ(β +n) n−1 n=2 Γ(α+β +n) (n − 1)an z Γ(β +1) ≥σ + γ. ∞ 1 − Γ(α++1) β +1) Γ(β +n) n−1 n=2 Γ(α+β +n) an z Γ(β Let z → 1− along the real axis, which gives ∞ Γ(α+β +1) Γ(β +n) 1− n=2 Γ(α+β +n) nan Γ(β +1) ∞ Γ(α+β +1) Γ(β +n) − Γ(β +1) 1 n=2 Γ(α+β +n) an ∞ Γ(α+β +1) Γ(β +n) n=2 Γ(α+β +n) (n − 1)an Γ(β +1) ≥σ + γ, ∞ 1 − Γ(α++1) β +1) Γ(β +n) n=2 Γ(α+β +n) an Γ(β that is equivalent to ∞ Γ(α + β + 1) Γ(β + n) 1− (n + σn − σ )an Γ(β + 1) n=2 Γ(α + β + n) ∞ Γ(α + β + 1) Γ(β + n) ≥γ 1− an Γ(β + 1) n=2 Γ(α + β + n)
- 326 Maslina Darus, Aini Janteng, and Suzeini Abdul Halim and gives the required result. Then, the proof is complete. Our assertion in Theorem 2 is sharp for functions of the form 1−γ Γ(β + 1) Γ(α + β + n) Fn (z ) = Qα fn (z ) = z − zn, n ≥ 2 β Γ(α + β + 1) Γ(β + n) n(1 + σ ) − (σ + γ ) (19) which belong to the class T Q(α, β, σ, γ ). Corollary 3. If f ∈ T Q(α, β, σ, γ ) then 1−γ Γ(β + 1) Γ(α + β + n) , n ≥ 2. an (20) Γ(α + β + 1) Γ(β + n) n(1 + σ ) − (σ + γ ) Proof. Since f ∈ T Q(α, β, σ, γ ), Theorem 2 yields ∞ Γ(α + β + 1) Γ(β + n) [n(1 + σ ) − (σ + γ )]an 1 − γ. Γ(β + 1) n=2 Γ(α + β + n) Next, note that Γ(α + β + 1) Γ(β + n) [n(1 + σ ) − (σ + γ )]an Γ(β + 1) Γ(α + β + n) ∞ Γ(α + β + 1) Γ(β + n) [n(1 + σ ) − (σ + γ )]an . Γ(β + 1) n=2 Γ(α + β + n) Therefore 1−γ Γ(β + 1) Γ(α + β + n) , n ≥ 2. an Γ(α + β + 1) Γ(β + n) n(1 + σ ) − (σ + γ ) Corollary 4. If f ∈ T Q(α, β, σ, γ ) and |z | = r < 1, then 1−γ r2 , (i) |Qα f (z )| r + β 2+σ−γ 1−γ r2 . (ii) |Qα f (z )| ≥ r − β 2+σ−γ Proof. First, it is obvious that ∞ Γ(α + β + 1) Γ(β + 2) (2 + σ − γ ) an Γ(β + 1) Γ(α + β + 2) n=2 ∞ Γ(α + β + 1) Γ(β + n) [n(1 + σ ) − (σ + γ )]an , Γ(β + 1) n=2 Γ(α + β + n) and as f ∈ T Q(α, β, σ, γ ), using the inequality in Theorem 2 yields ∞ Γ(β + 1) Γ(α + β + 2) 1 − γ an . (21) Γ(α + β + 1) Γ(β + 2) 2 + σ − γ n=2 From (8) with |z | = r(r < 1), we have
- Uniformly Starlike and Convex Functions Defined by Certain Integral Operator 327 ∞ Γ(α + β + 1) Γ(β + n) |Qα f (z )| an r n r+ β Γ(β + 1) n=2 Γ(α + β + n) ∞ Γ(α + β + 1) Γ(β + 2) an r 2 r+ Γ(β + 1) Γ(α + β + 2) n=2 and ∞ Γ(α + β + 1) Γ(β + n) |Qα f (z )| ≥ r − an r n β Γ(β + 1) n=2 Γ(α + β + n) ∞ Γ(α + β + 1) Γ(β + 2) an r 2 . ≥r− Γ(β + 1) Γ(α + β + 2) n=2 Finally, using (21) in the above inequalities gives us both results (i) and (ii). We note that (i) and (ii) are sharp for the following function Γ(β + 1) Γ(α + β + 2) 1 − γ Qα f2 (z ) = z − z2 β Γ(α + β + 1) Γ(β + 2) 2 + σ − γ at z = ±ir, ±r. Remark 1. By taking β = α and α = 1 in (8), analogous results for T J (α, σ ) are also obtained. 3. Properties of UCV QT (α, β, σ ) Now, let us draw our attention to the following new subclasses of UCV (α) and find their coefficient criterion. Definition 6. Let UCV QT (α, β, σ ), α > 0, β > −1 and 0 σ 1 be the class of functions f ∈ T which satisfy the condition z (Qα f (z )) z (Qα f (z )) β β −σ , z∈D Re 1+ (22) (Qα f (z )) (Qα f (z )) β β where Qα f is defined as in (3). β Definition 7. Let UCV JT (α, σ ), α > −1 and 0 σ 1 be the class of functions f ∈ T which satisfy the condition z (Jα f (z )) z (Jα f (z )) − σ , z ∈ D, Re 1+ (23) (Jα f (z )) (Jα f (z )) where Jα f is defined as in (4). Next, we give some results for UCV QT (α, β, σ ) as the following. Theorem 3. Let the functions f ∈ T . Then
- 328 Maslina Darus, Aini Janteng, and Suzeini Abdul Halim ∞ Γ(α + β + 1) Γ(β + n) (2n − 1 − σ )nan 1−σ (24) Γ(β + 1) n=2 Γ(α + β + n) for some α > 0, β > −1 and 0 1 if and only if f ∈ UCV QT (α, β, σ ). σ Proof. First, we consider z (Qα f (z )) z (Qα f (z )) z (Qα f (z )) β β β − Re 2 (Qα f (z )) (Qα f (z )) (Qα f (z )) β β β ∞ Γ(α+β +1) Γ(β +n) n−1 n=2 Γ(α+β +n) 2n(n − 1)|an ||z | Γ(β +1) ∞ 1 − Γ(α++1)β +1) Γ(β +n) n−1 n=2 Γ(α+β +n) n|an ||z | Γ(β ∞ Γ(α+β +1) Γ(β +n) n=2 Γ(α+β +n) 2n(n − 1)an Γ(β +1) , ∞ 1 − Γ(α++1)β +1) Γ(β +n) n=2 Γ(α+β +n) nan Γ(β ∞ where 1 − Γ(α++1) β +1) Γ(β +n) n=2 Γ(α+β +n) n|an | > 0 by getting use of Lemma 1. Γ(β The above expression is bounded by 1 − σ if and only if (24) is satisfied. Consequently, we can write z (Qα f (z )) z (Qα f (z )) β β + 1 − σ. Re (Qα f (z )) (Qα f (z )) β β which is equivalent to (22). Conversely, if f ∈ UCV QT (α, β, σ ) and z is real, then Definition 6 yields ∞ Γ(α+β +1) Γ(β +n) n−1 n=2 Γ(α+β +n) n(n − 1)an z Γ(β +1) 1− −σ ∞ 1 − Γ(α++1) β +1) Γ(β +n) n−1 n=2 Γ(α+β +n) nan z Γ(β ∞ Γ(α+β +1) Γ(β +n) n−1 n=2 Γ(α+β +n) n(n − 1)an z Γ(β +1) ≥ . ∞ 1 − Γ(α++1) β +1) Γ(β +n) n−1 n=2 Γ(α+β +n) nan z Γ(β Let z → 1− along the real axis, then we get ∞ Γ(α+β +1) Γ(β +n) n=2 Γ(α+β +n) 2n(n − 1)an Γ(β +1) (1 − σ ) ≥ ∞ 1 − Γ(α++1)β +1) Γ(β +n) n=2 Γ(α+β +n) nan Γ(β or ∞ Γ(α + β + 1) Γ(β + n) (1 − σ ) 1 − nan Γ(β + 1) n=2 Γ(α + β + n) ∞ Γ(α + β + 1) Γ(β + n) ≥ 2n(n − 1)an , Γ(β + 1) n=2 Γ(α + β + n) which gives the required result. Our assertion in Theorem 3 is sharp for functions of the form
- Uniformly Starlike and Convex Functions Defined by Certain Integral Operator 329 1−σ Γ(β + 1) Γ(α + β + n) Fn (z ) = Qα fn (z ) = z − z n, n≥2 β Γ(α + β + 1) Γ(β + n) n(2n − 1 − σ ) (25) which belong to the class UCV QT (α, β, σ ). Corollary 5. If f ∈ UCV QT (α, β, σ ) then 1−σ Γ(β + 1) Γ(α + β + n) , n ≥ 2. an (26) Γ(α + β + 1) Γ(β + n) n(2n − 1 − σ ) Proof. Since f ∈ UCV QT (α, β, σ ), Theorem 3 gives ∞ Γ(α + β + 1) Γ(β + n) n(2n − 1 − σ )an 1 − σ. Γ(β + 1) n=2 Γ(α + β + n) Next, note that Γ(α + β + 1) Γ(β + n) n(2n − 1 − σ )an Γ(β + 1) Γ(α + β + n) ∞ Γ(α + β + 1) Γ(β + n) n(2n − 1 − σ )an . Γ(β + 1) n=2 Γ(α + β + n) Therefore 1−σ Γ(β + 1) Γ(α + β + n) , n ≥ 2. an Γ(α + β + 1) Γ(β + n) n(2n − 1 − σ ) Corollary 6. If f ∈ UCV QT (α, β, σ ) and |z | = r < 1, then 1−σ r2 , (i) |Qα f (z )| r + β 2(3 − σ ) 1−σ r2 . (ii) |Qα f (z )| ≥ r − β 2(3 − σ ) Proof. First, it is obvious that ∞ Γ(α + β + 1) Γ(β + 2) 2(3 − σ ) an Γ(β + 1) Γ(α + β + 2) n=2 ∞ Γ(α + β + 1) Γ(β + n) n(2n − 1 − σ )an , Γ(β + 1) n=2 Γ(α + β + n) and as f ∈ UCV QT (α, β, σ ), using the inequality in Theorem 3 yields ∞ Γ(β + 1) Γ(α + β + 2) 1 − σ an . (27) Γ(α + β + 1) Γ(β + 2) 2(3 − σ ) n=2 From (8) with |z | = r(r < 1), we have ∞ Γ(α + β + 1) Γ(β + n) |Qα f (z )| an r n r+ β Γ(β + 1) n=2 Γ(α + β + n) ∞ Γ(α + β + 1) Γ(β + 2) an r 2 r+ Γ(β + 1) Γ(α + β + 2) n=2
- 330 Maslina Darus, Aini Janteng, and Suzeini Abdul Halim and ∞ Γ(α + β + 1) Γ(β + n) |Qα f (z )| an r n ≥r− β Γ(β + 1) n=2 Γ(α + β + n) ∞ Γ(α + β + 1) Γ(β + 2) an r 2 . ≥r− Γ(β + 1) Γ(α + β + 2) n=2 Finally, using (27) in the above inequalities gives us both results (i) and (ii). We note that (i) and (ii) are sharp for the following function Γ(β + 1) Γ(α + β + 2) 1 − σ Qα f2 (z ) = z − z2 β Γ(α + β + 1) Γ(β + 2) 2(3 − σ ) at z = ±ir, ±r. Definition 8. Let UCV QT (α, β, σ, γ ) be the class of functions f ∈ T satisfying the condition z (Qα f (z )) z (Qα f (z )) β β ≥σ +γ, α > 0, β > −1, 0 Re 1+ σ 1, 0 γ 1. (Qα f (z )) (Qα f (z )) β β (28) where Qα f is defined as in (3). β We write UCV QT (α, β, 1, γ ) = UCV QT (α, β, γ ). Theorem 4. Let the functions f ∈ T . A function f ∈ UCV QT (α, β, σ, γ ) for some α > 0, β > −1, 0 σ 1 and 0 γ 1 if and only if ∞ Γ(α + β + 1) Γ(β + n) n[n(1 + σ ) − (σ + γ )]an 1 − γ. (29) Γ(β + 1) n=2 Γ(α + β + n) Proof. In view of Definition 8, it suffices to show that z (Qα f (z )) z (Qα f (z )) β β − γ. σ Re +1 (30) (Qα f (z )) (Qα f (z )) β β Then, we have z (Qα f (z )) z (Qα f (z )) z (Qα f (z )) β β β − Re σ (σ + 1) (Qα f (z )) (Qα f (z )) (Qα f (z )) β β β ∞ Γ(α+β +1) Γ(β +n) n−1 n=2 Γ(α+β +n) (σ + 1)n(n − 1)|an ||z | Γ(β +1) ∞ Γ(α+β +1) Γ(β +n) n−1 1− n=2 Γ(α+β +n) n|an ||z | Γ(β +1) ∞ Γ(α+β +1) Γ(β +n) n=2 Γ(α+β +n) (σ + 1)n(n − 1)an Γ(β +1) . ∞ Γ(α+β +1) Γ(β +n) 1− n=2 Γ(α+β +n) nan Γ(β +1)
- Uniformly Starlike and Convex Functions Defined by Certain Integral Operator 331 The above expression is bounded by 1 − γ if and only if (29) is satisfied. Conversely, if f ∈ UCV QT (α, β, σ, γ ) and z is real, we get ∞ Γ(α+β +1) Γ(β +n) n−1 n=2 Γ(α+β +n) n(n − 1)an z Γ(β +1) 1− ∞ 1 − Γ(α++1) β +1) Γ(β +n) n−1 n=2 Γ(α+β +n) nan z Γ(β ∞ Γ(α+β +1) Γ(β +n) n−1 n=2 Γ(α+β +n) n(n − 1)an z Γ(β +1) ≥σ + γ. ∞ 1 − Γ(α++1) β +1) Γ(β +n) n−1 n=2 Γ(α+β +n)n an z Γ(β Let z → 1− along the real axis, which gives ∞ Γ(α+β +1) Γ(β +n) n=2 Γ(α+β +n) n(n − 1)an Γ(β +1) (1 − γ ) ≥ (1 + σ ) , ∞ 1 − Γ(α++1) β +1) Γ(β +n) n=2 Γ(α+β +n) nan Γ(β and equivalent to ∞ Γ(α + β + 1) Γ(β + n) (1 − γ ) 1 − nan Γ(β + 1) n=2 Γ(α + β + n) ∞ Γ(α + β + 1) Γ(β + n) ≥ (1 + σ ) n(n − 1)an . Γ(β + 1) n=2 Γ(α + β + n) Thus, the proof is complete. Our assertion in Theorem 4 is sharp for functions of the form 1−γ Γ(β + 1) Γ(α + β + n) Fn (z ) = Qα fn (z ) = z − zn, n ≥ 2 β Γ(α + β + 1) Γ(β + n) n[n(1 + σ ) − (σ + γ )] (31) which belong to the class UCV QT (α, β, σ, γ ). Corollary 7. If f ∈ UCV QT (α, β, σ, γ ) then 1−γ Γ(β + 1) Γ(α + β + n) , n ≥ 2. an (32) Γ(α + β + 1) Γ(β + n) n[n(1 + σ ) − (σ + γ )] Proof. Since f ∈ UCV QT (α, β, σ, γ ), Theorem 4 gives ∞ Γ(α + β + 1) Γ(β + n) n[n(1 + σ ) − (σ + γ )]an 1 − γ. Γ(β + 1) n=2 Γ(α + β + n) Next, note that Γ(α + β + 1) Γ(β + n) n[n(1 + σ ) − (σ + γ )]an Γ(β + 1) Γ(α + β + n) ∞ Γ(α + β + 1) Γ(β + n) n[n(1 + σ ) − (σ + γ )]an . Γ(β + 1) n=2 Γ(α + β + n)
- 332 Maslina Darus, Aini Janteng, and Suzeini Abdul Halim Therefore 1−γ Γ(β + 1) Γ(α + β + n) , n ≥ 2. an Γ(α + β + 1) Γ(β + n) n[n(1 + σ ) − (σ + γ )] Corollary 8. If f ∈ UCV QT (α, β, σ, γ ) and |z | = r < 1, then (i) |Qα f (z )| r + 2(2+σγ γ ) r2 1− β − (ii) |Qα f (z )| ≥ r − 2(2+σγ γ ) r2 . 1− β − The results are sharp. Proof. First, it is obvious that Γ(α + β + 1) Γ(β + 2) 2(2 + σ − γ )an Γ(β + 1) Γ(α + β + 2) ∞ Γ(α + β + 1) Γ(β + n) n[n(1 + σ ) − (σ + γ )]an , Γ(β + 1) n=2 Γ(α + β + n) and as f ∈ UCV QT (α, β, σ, γ ), using the inequality in Theorem 4 yields ∞ 1−γ Γ(β + 1) Γ(α + β + 2) an . (33) Γ(α + β + 1) Γ(β + 2) 2(2 + σ − γ ) n=2 From (8) with |z | = r(r < 1), we have ∞ Γ(α + β + 1) Γ(β + n) |Qα f (z )| an r n r+ β Γ(β + 1) n=2 Γ(α + β + n) ∞ Γ(α + β + 1) Γ(β + 2) an r 2 r+ Γ(β + 1) Γ(α + β + 2) n=2 and ∞ Γ(α + β + 1) Γ(β + n) |Qα f (z )| ≥ r − an r n β Γ(β + 1) n=2 Γ(α + β + n) ∞ Γ(α + β + 1) Γ(β + 2) an r 2 . ≥r− Γ(β + 1) Γ(α + β + 2) n=2 Finally, using (33) in the above inequalities gives us both results (i) and (ii). We note that (i) and (ii) are sharp for the following function 1−γ Γ(β + 1) Γ(α + β + 2) Qα f2 (z ) = z − z2 β Γ(α + β + 1) Γ(β + 2) 2(2 + σ − γ ) at z = ±ir, ±r. Definition 9. Let C QT (α, β, σ ) z (Qα f (z )) z (Qα f (z )) β β f ∈T; +1−σ + 1 + σ , α > 0, β > −1, σ > 0 = Re (Qα f (z )) (Qα f (z )) β β
- Uniformly Starlike and Convex Functions Defined by Certain Integral Operator 333 Theorem 5. Let f ∈ T . Then f ∈ C QT (α, β, σ ) if and only if ∞ Γ(α + β + 1) Γ(β + n) n(n − 1 + σ )an σ. (34) Γ(β + 1) n=2 Γ(α + β + n) Proof. By Definition 9, it is sufficient to prove the inequality z (Qα f (z )) z (Qα f (z )) β β −σ 1+ Re +1+σ (Qα f (z )) (Qα f (z )) β β or equivalently z (Qα f (z )) z (Qα f (z )) β β − σ − Re 1 + −σ 1+ 2σ. (Qα f (z )) (Qα f (z )) β β We have z (Qα f (z )) z (Qα f (z )) β β α f (z )) − σ − Re 1 + (Qα f (z )) − σ 1+ (Qβ β z (Qα f (z )) β −σ 2 1+ (Qα f (z )) β ∞ Γ(α+β +1) Γ(β +n) n−1 n=2 Γ(α+β +n) n(n − 1)|an ||z | Γ(β +1) +1−σ 2 ∞ 1 − Γ(α++1) β +1) Γ(β +n) n−1 n=2 Γ(α+β +n) n|an ||z | Γ(β ∞ Γ(α+β +1) Γ(β +n) n=2 Γ(α+β +n) n(n − 1)an Γ(β +1) +1−σ . 2 ∞ 1 − Γ(α++1) β +1) Γ(β +n) n=2 Γ(α+β +n) nan Γ(β The above expression is bounded by 2σ if and only if (34) is satisfied. Conversely, if f ∈ C QT (α, β, σ ) and z is real, we get ∞ Γ(α+β +1) Γ(β +n) n−1 n=2 Γ(α+β +n) n(n − 1)an z Γ(β +1) 1− ∞ 1 − Γ(α++1) β +1) Γ(β +n) n−1 n=2 Γ(α+β +n) nan z Γ(β ∞ Γ(α+β +1) Γ(β +n) n−1 n=2 Γ(α+β +n) n(n − 1)an z Γ(β +1) ≥ + 1 − 2σ. ∞ 1 − Γ(α++1) β +1) Γ(β +n) n−1 n=2 Γ(α+β +n) nan z Γ(β Let z → 1− along the real axis, which gives ∞ Γ(α+β +1) Γ(β +n) n=2 Γ(α+β +n) n(n − 1)an Γ(β +1) σ ∞ 1 − Γ(α++1) β +1) Γ(β +n) n=2 Γ(α+β +n) nan Γ(β and gives the required result. Corollary 9. If f ∈ C QT (α, β, σ ) and |z | = r < 1, then for 0 < σ 1 σ (i) |Qα f (z )| r + 2(1+σ) r2 , β σ (i) |Qα f (z )| ≥ r − 2(1+σ) r2 . β Proof. First, it is obvious that
- 334 Maslina Darus, Aini Janteng, and Suzeini Abdul Halim Γ(α + β + 1) Γ(β + 2) 2(1 + σ )an Γ(β + 1) Γ(α + β + 2) ∞ Γ(α + β + 1) Γ(β + n) n(n − 1 + σ )an , Γ(β + 1) n=2 Γ(α + β + n) and as f ∈ C QT (α, β, σ ), using the inequality in Theorem 5 yields ∞ Γ(β + 1) Γ(α + β + 2) σ an . (35) Γ(α + β + 1) Γ(β + 2) 2(1 + σ ) n=2 From (8) with |z | = r(r < 1), we have ∞ Γ(α + β + 1) Γ(β + n) Qα f (z )| an r n r+ β Γ(β + 1) n=2 Γ(α + β + n) ∞ Γ(α + β + 1) Γ(β + 2) an r 2 r+ Γ(β + 1) Γ(α + β + 2) n=2 and ∞ Γ(α + β + 1) Γ(β + n) |Qα f (z )| ≥ r − an r n β Γ(β + 1) n=2 Γ(α + β + n) ∞ Γ(α + β + 1) Γ(β + 2) an r 2 . ≥r− Γ(β + 1) Γ(α + β + 2) n=2 Finally, using (35) in the above inequalities gives us both results (i) and (ii). We note that (i) and (ii) are sharp for the following function Γ(β + 1) Γ(α + β + 2) σ Qα f2 (z ) = z − z2 β Γ(α + β + 1) Γ(β + 2) 2(1 + σ ) at z = ±ir, ±r. Remark 2. By taking β = α and α = 1 in (8), analogous results for UCV JT (α, σ ) are also obtained. References 1. R. Bharati, R. Parvatham, and A. Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math. 28 (1997) 17–33. 2. I. B. Jung, Y. C. Kim, and H. M. Srivastava, The Hardy space of analytic func- tions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl. 176 (1993) 138–147. 3. F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993) 189–196. 4. F. Rønning, Integral representations for bounded starlike functions, Annales Polon. Math., 60 (1995) 289–297. 5. H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975) 109–116.
ADSENSE
CÓ THỂ BẠN MUỐN DOWNLOAD
Thêm tài liệu vào bộ sưu tập có sẵn:
Báo xấu
LAVA
AANETWORK
TRỢ GIÚP
HỖ TRỢ KHÁCH HÀNG
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn