intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

CHƯƠNG 9: CỘNG HƯỞNG TỪ

Chia sẻ: Vo Minh Han | Ngày: | Loại File: DOC | Số trang:7

303
lượt xem
43
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Cộng hưởng phát sinh khi các mức năng lượng của một hệ thống lượng tử của những khoảnh khắc điện tử hoặc hạt nhân là Zeeman chia bởi một từ trường đồng nhất

Chủ đề:
Lưu

Nội dung Text: CHƯƠNG 9: CỘNG HƯỞNG TỪ

  1. CHƯƠNG 9: CỘNG HƯỞNG TỪ Cộng hưởng phát sinh khi các mức năng lượng của một hệ thống lượng tử của những khoảnh khắc điện tử hoặc hạt nhân là Zeeman chia bởi một từ trường đồng nhất và hệ thống hấp thu năng lượng từ một từ trường mạnh dao động ở tần số xác định, tương ứng với các hiệu ứng chuyển tiếp giữa các cấp. Cổ điển, cộng hưởng xảy ra khi một trường AC ngang được áp dụng ở tần số Larmor. Cộng hưởng phương pháp có giá trị cho nghiên cứu cấu trúc và tính chất từ của chất rắn, và chúng được sử dụng cho chụp ảnh và các ứng dụng khác. Các thời điểm cộng hưởng có thể là một cô lập ion spin hoặc gốc tự do, như trong cộng hưởng điện tử thuận từ (EPR), hoặc một spin hạt nhân như trong cộng hưởng từ hạt nhân (NMR). Nếu không thì nó có thể là từ hóa ra lệnh như trong cộng hưởng sắt từ (FMR). Cộng hưởng hiệu ứng cũng được kết hợp với sóng spin, và tường miền. Các kỹ thuật liên quan của Mo phổ ssbauer ° và cộng hưởng spin muon cung cấp thêm thông tin về tương tác siêu tinh tế trong chất rắn. Một hệ thống được đặt trong một từ trường B0 đồng nhất có thể hấp thụ bức xạ từ elec-tromagnetic tại một tần số xác định chính xác V0 = ω0/2π mà rơi vào tần số vô tuyến hoặc vùng vi sóng. Hiện tượng này có liên quan đến sự tiến động Larmor của thời điểm từ tính, được giới thiệu trong § 3.2.2. Để thực hiện các cộng hưởng, một hình học thực nghiệm với các trường vượt qua tạp chí-netic là cần thiết. Các lĩnh vực ổn định thống nhất xác định các hướng-z, trong khi một AC tần số cao lĩnh vực bx = cos 2b1 ωt được áp dụng trong mặt phẳng vuông góc. Đó là hữu ích để suy nghĩ của bx là tổng của hai counter-luân lĩnh vực 2b1 cos ωt = b1 (eiωt + e-iωt). Cộng hưởng xảy ra khi tiến động là syn-chronized với các thành phần hoặc ngược chiều kim đồng hồ. Không có cộng hưởng xảy ra khi b1 song song với B0. Có một khái niệm lớn trên cộng hưởng từ. Nó hình thành cơ sở tuổi thứ năm của từ trường, trong đó chảy từ sự hiểu biết của cơ học lượng tử mô men động lượng, và sự phát triển của vi sóng cho radar trong thế chiến thứ hai. Hệ thống cộng hưởng là một quần thể của các gốc tự do hay các ion với lẻ điện tử spin cộng hưởng điện tử thuận từ (EPR) - còn được gọi là cộng hưởng spin electron (ESR). Các kết toàn bộ từ thời điểm có thể tạo ra tiếng vang trong cộng hưởng sắt từ (FMR), hoặc nếu không nó có thể được những khoảnh khắc sublattice mà tiến động cộng hưởng phản sắt từ (AFMR). Các hạt nhân thực hiện những khoảnh khắc nhỏ bé mà cộng hưởng ở tần số tương đối thấp trong cộng hưởng từ hạt nhân (NMR). cộng hưởng khác có liên quan đến spin sóng, tường miền và điện tử dẫn. y z x x 2bcoswt B Một trường AC là phân tách thành Một điển hình cộng hưởng từ hai trường chống xoay thí nghiệm
  2. Trong vật liệu từ tính, nó có thể được thể quan sát sự cộng hưởng mà chẳng cần tới một B0 trường bên ngoài, làm cho việc sử dụng khử từ hoặc siêu tinh tế trường nội bộ. Đây là tất cả hiện tượng vật lý đáng chú ý , nhưng từ quan điểm cộng hưởng từ là cho nó cung cấp cái nhìn sâu sắc vào các từ tính của các chất rắn, và cho các ứng dụng như chuyển đổi tần số cao của sự từ hóa và hình ảnh cộng hưởng từ (MRI). Các hệ thống cộng hưởng từ tính thường được các đối tượng lượng tử nhỏ - ion hoặc điện tử hoặc hạt nhân với lẻ spin - do đó, nó là tự nhiên để áp dụng một hình ảnh của quá trình chuyển đổi res-onant giữa lượng, mức năng lượng Zeeman chia. Tuy nhiên, những hình ảnh cổ điển của sự kích thích ở tần số tuế sai Larmor tự nhiên, đó là cần thiết cho các nam châm vĩ mô, cung cấp kiến thức vô giá cho các hệ thống lượng tử quá. Hãy nghĩ đến những trường hợp đơn giản của một ion với m từ thời điểm đó được kết hợp với một mô men động lượng điện tử S. liên tục của tionality-propor γ là tỷ lệ từ hồi chuyển: m = γ   S, (9.1) nơi γ có các đơn vị của s-1 T-1 (hertz mỗi tesla) và S là thứ nguyên. Cả m và S là các nhà khai thác vector. Phương trình, mà đọc như một phương trình vectơ cổ điển, thực sự có nghĩa là tất cả các yếu tố ma trận tương ứng của m và S là tỷ lệ thuận. Sự tương tác Zeeman m • B0 trong lĩnh vực B0 ổn định áp dụng theo Oz được đại diện bởi các Hamilton HZ   = −m ∙ B 0 = −γ  B0 Sz .  (9.2) Giá trị riêng là một tập hợp các mức năng lượng bằng nhau ở                       εi  = −γ  B0 Ms ; Ms  = S , S − 1, . . . , −S . (9.3) Khoảng cách trình độ là ε = γB0 . chuyển từ lưỡng cực giữa các cấp liền kề có thể được dự kiến sẽ cho bức xạ tần số góc ω0, nơi ε = ω0. Do đó điều kiện cộng hưởng                                                            ω0 = γ B0 (9.4) không phụ thuộc vào, hằng số Planck đó cho thấy chúng ta có thể suy ra cùng một kết quả của một đối số cổ điển. Lưu ý rằng γ cho các điện tử là tiêu cực về tài khoản của các điện tích âm để Ms = -S là mức thấp nhất. Các mô-men xoắn trên m mômen từ trong một B0 trường là = m × B0. Điều này tương đương với tốc độ thay đổi của động lượng góc d(S)/ dt. Do đó các phương trình chuyển động là = γ m × B 0 . (9.5) dm/dt Và tương tự như phương trình này xuất hiện với một dấu hiệu tiêu cực, nếu được thông qua mà e, chứ không phải điện tử 1 Zeeman chia enegy cấp cho một hệ thống điện tử với S = 1 0
  3. ∆ε -1 Trả dm, sự thay đổi của m trong một khoảng thời gian ngắn dt, là một vectơ vuông góc với cả hai m và B0, vì thế mà tiến động điểm xung quanh lĩnh vực này, tại tần số góc ω0 = γ B0 Đây là Larmor cổ điển và cộng hưởng xảy ra khi các trường b1 quay ở tần số Larmor. Các yêu cầu đó được áp dụng b1 vuông góc với B0 cho tion cộng hưởng-hấp thu cũng sau từ cơ học lượng tử. Các Hamilton Zeeman (9.2) trong ký hiệu ma trận đường chéo với các trạng thái riêng | MS. Thêm một trường thêm theo hướng-z chỉ đơn thuần là thay đổi các giá trị riêng, nhưng không gây ra bất kỳ tion-transi giữa các bang, vì ngoài yếu tố ma trận đường chéo mà kết hợp khác nhau là tất cả các số không. Tuy nhiên, nếu b1 được áp dụng theo hướng-x, Hamilton trở thành H = −γ  (B0 Sz  + b1 Sx ). (9.6) Các ma trận đại diện cho SX (§ 3.1.4) có các yếu tố khác không off-diagonal [n, n ± 1]. Nó có thể được thể hiện trong điều khoản của các nhà khai thác bậc thang S + và S-do đó, nó hỗn hợp nước với Ms = ± 1. Tại cộng hưởng, trường AC từ pro-Vokes chuyển tiếp giữa các vùng khác nhau do Ms = ± 1. Điều này được biết như là quy tắc lựa chọn lưỡng cực. một mômen từ trong một lĩnh vực áp dụng 9.1 Thuận từ cộng hưởng điện tử Các tần số Larmor cho spin điện tử là FL = ωL/2π = (ge/4πme) B. Từ g = 2,0023, giá trị của γ cho điện tử tự do, - (ge/2me), là 176,1 × 109 s-1 T-1 và FL là 28,02 T-1 GHz. Cộng hưởng xảy ra trong phạm vi vi sóng cho các lĩnh vực sản xuất bởi các điện từ phòng thí nghiệm. X-band (~ 9 GHz) vi ba với c = bước sóng / ν = 33 mm thường được sử dụng, do đó, cộng hưởng là ở khoảng 300 mT. Đôi khi Q-band (~ 40 GHz) bức xạ được sử dụng và lĩnh vực tương ứng cộng hưởng là lớn hơn. Mẫu được đặt trong một khoang cộng hưởng ở phần cuối của ống dẫn sóng một, trong một lĩnh vực ổn định. Các khoang, hoạt động trong một chế độ TM100 và cung cấp các lĩnh vực cần thiết ngang từ b1. Zeeman chia tách các mức năng lượng cho một điện tử cô lập là γ B0 = gμB B0, một năng lượng là nhỏ so với T kB khi B0 = 300 Mt. (ΜB / kB = 0,673 KT-1) nên sự khác biệt giữa các MS= ± 2 menu phụ là nhỏ bé. Sự phân cực spin (N ↑ - N ↓) / (N ↑ ↓ + N) là
  4. −g µB B / kB T  )/(1 + e−g µB B / kB T ). P  = (1 − e I B B Từ lineshape (A) Một EPR dấu vết cho thấy các dẫn xuất của sự hấp thu vi sóng thu được khi quét lĩnh vực DC với một tốc độ không đổi. (B) Các dòng hấp thụ thu được từ hội nhập. B0 M M = 1− exp (−T/T1) T1 t hình 9.1 Thông thường các vùng ↑ luôn được dùng song song với các lĩnh vực ứng dụng; đó là vùng có MS = - 1 trong giá trị của P ≈ case.The gμB B0 / 2kB T trong 300 tấn ở nhiệt độ phòng chỉ 7 × 10 – 4. do đó, một phương pháp phát hiện nhạy cảm là cần thiết để thực hiện các cộng hưởng. Nó thường được thuận tiện hơn để quét từ trường hơn là tần số vi sóng. Độ nhạy được tăng lên bằng cách sử dụng cuộn dây điều chế trường và phát hiện việc hấp thụ năng lượng ở tần số điều chế với một khóa trong bộ khuếch đại. Việc đo dấu vết là đạo hàm của sự hấp thu như là một chức năng của lĩnh vực (Hình 9.1). Dòng hấp thụ là không thể thiếu của các tín hiệu này. Các thông số đo bằng EPR được cường độ của cộng hưởng, B0 về vị trí đó là bình thường thể hiện như một geff g-yếu tố hiệu quả = ω0 / μB B0, nơi ω0 là tần số cộng hưởng, và các B linewidth (đầy đủ chiều rộng tối đa một nửa). Các khoang cộng hưởng rất mạnh, vì vậy linewidth được xác định bởi mẫu. Hấp thụ bức xạ là một quá trình năng động, mà có xu hướng cân bằng dân số Boltzmann của các cấp. Xu hướng này được phản cân bằng bởi những mong muốn của hệ thống để lấy lại cân bằng spin nhiệt của nó. T nhiệt độ của hệ thống được xác định bởi các mạng tinh thể, do đó việc trao đổi năng lượng giữa các spin và các mạng mà là tham gia vào thermalization được gọi là spin-mạng thư giãn. Các B
  5. linewidth là tỉ lệ nghịch với thời gian thư giãn spin-mạng T1. Nếu T1 là rất ngắn, đường trở nên quá rộng để quan sát, trong khi nếu T1 là rất dài dòng là sắc nét, nhưng cường độ của nó sẽ trở thành vanishingly nhỏ bởi vì các quần thể của ↑ và ↓ bang vẫn bằng nhau, không có tiêu tán năng lượng. Các độ của T1 được cung cấp bởi sự không chắc chắn liên quan t ≈ ε, vì vậy nếu B = 1 tấn, ε = gμB B ≈ 2 × 10-26 J, T1 ≈ 5 × 10-9 s. Tỷ lệ hấp thu năng lượng điện từ trong một thí nghiệm sóng liên tục cộng hưởng từ. Các w số lượng tỉ lệ với điện lò vi sóng Hình 9.2 Chuyển đổi xác suất W Các w xác suất của quá trình chuyển đổi giữa các cấp 1 ± kích thích bởi các lĩnh vực vi ba là một số lượng mà là tỷ lệ thuận với năng lượng vi sóng và giống hệt nhau cho quá trình chuyển đổi trong ý nghĩa nào. Tỷ lệ thay đổi là dN↑/dt = w(N –N) (9.7) Trừ những phương trình này, và cài đặt N = N ↑ - N ↓, chúng tôi tìm thấy DN / dt =- 2wN, cho N (t) = N (0) e-2wt. nó có xu hướng cân bằng tại một thời gian dài. Các ε năng lượng của hệ thống là N ↓ ω0, vì vậy dε / dt = - WN ω0 (t). Tốc độ thay đổi của năng lượng có xu hướng không tại một thời gian dài. Tuy nhiên, khi chúng tôi tắt điện lò vi sóng, các quần thể được dự kiến để thư giãn để cân bằng nhiệt với thời gian theo chiều dọc không đổi T1, do đó, N (t) = N0 (1 - e- t/T1), nơi N0 là sự khác biệt. tốc độ thay đổi của sự mất cân bằng trở thành dN(t) = -2w N(t)+ N0-N(t) (9.8) dt T1 Có một phương trình tương tự cho từ hóa, vì M = N μB / V. Trong trạng thái cân bằng, DN (t) / dt = 0, do đó, N (t) = N0 / (1 + 2wT1). Tỷ lệ hấp thu năng lượng điện từ N (t) ωw sau đó de N0w0W
  6. =  1 + 2wT1 dt  (9.9) đó là vẽ hình. 9.2. Tại công suất thấp, tỷ lệ hấp thụ là tỷ lệ thuận với w, nhưng công suất cao nó bão hòa ở một giá trị tỷ lệ thuận với 1/T1. Tương tác spin-quỹ đạo là cơ chế mà theo đó hệ thống các cặp quay về tắm phonon mạng. Good EPR phổ thu được với các ion có thời điểm quỹ đạo là dập tắt hoặc vắng mặt. Loại thứ hai là S-nhà nước ion với vỏ đầy một nửa, chẳng hạn như các gốc tự do (2 S1 / 2), Mn2 + hoặc Fe3 + (6 S5 / 2) và Eu2 + hay Gd3+ (8 S7/2 ).  +1/2 -1/2 Hình 9.3 3/2 -3/2 5/2 -5/2 B ≠ 0 B=0 Năng lượng cấp của chia Ce3 + ion c ủa m ột lĩnh v ực tinh th ể uniaxial. Các MJ = ± 5 Kramers nhà nước song mặt đất trông gi ống như m ột đôi 1 ± với một yếu tố lớn có hiệu quả-g trong EPR Hơn nữa, các ion cộng hưởng nên được pha loãng trong m ạng tinh th ể đ ể giảm thiểu các tương tác lưởng cực và trao đổi gi ữa chúng, mà m ở r ộng linewidth cộng hưởng và dẫn đến dephasing của các spin. Các electron ngoài cùng của ion một tương tác mạnh với các ion xung quanh - s ự tương tác giữa lĩnh vực tinh thể đã được thảo luận trong § 4.4. M ột lĩnh vực trật tự tinh thứ hai có thể bao gồm một A2 hạn đó hỗn hợp nước mà MS (hoặc, nói chung, MJ) khác nhau bởi 2. Mặc dù đó là trạng thái cơ bản có liên quan tới EPR, hiệu quả của lĩnh vực tinh thể là t ạo ra m ột tách zero-trường của các mức năng lượng mà sửa đổi các yếu tố g-hi ệu qu ả của các mức năng lượng thấp nhất, và làm cho nó dị hướng đối với các trục tinh thể. Các ví dụ về Ce3 +, một 1 4e Kramers ion v ới J = 5, đ ược thể hiện trong hình. 9.3. Đó là thông lệ trong EPR để thay thế cho Hamilton của hệ thống bởi một spin Hamilton hiệu quả này mô tả cách các mức năng lượng mặt đất chia tách trong một từ trường. An S spin hiệu quả là lựa chọn, do đó, sự suy đồi từ tính là 2S + 1. Điều khoản trong spin Hamilton phản ánh tính đối xứng tinh thể của các ion cộng hưởng. Hiệu quả của lĩnh vực tinh thể là tạo ra cấu trúc tinh trong quang phổ EPR như hình. 9.4.Có sự tương tác khác, trong 0,1 K để tối đa, mà đổi việc chia trạng thái cơ điện tử. Đây là tương tác siêu tinh tế với hạt nhân
  7. .
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2