intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề ôn thi đại học môn toán - Đề số 7

Chia sẻ: Long La | Ngày: | Loại File: PDF | Số trang:4

62
lượt xem
9
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'đề ôn thi đại học môn toán - đề số 7', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Đề ôn thi đại học môn toán - Đề số 7

  1. Bé gi¸o dôc vµ ®µo t¹o kú thi tèt nghiÖp trung häc phæ th«ng n¨m 2006 M«n thi: To¸n - Trung häc phæ th«ng kh«ng ph©n ban §Ò thi chÝnh thøc h−íng dÉn chÊm THi B¶n h−íng dÉn chÊm gåm 04 trang I. H−íng dÉn chung 1. NÕu thÝ sinh lµm bµi kh«ng theo c¸ch nªu trong ®¸p ¸n mµ vÉn ®óng th× cho ®ñ ®iÓm tõng phÇn nh− h−íng dÉn quy ®Þnh. 2. ViÖc chi tiÕt ho¸ thang ®iÓm (nÕu cã) so víi thang ®iÓm trong h−íng dÉn chÊm ph¶i ®¶m b¶o kh«ng sai lÖch víi h−íng dÉn chÊm vµ ®−îc thèng nhÊt thùc hiÖn trong Héi ®ång chÊm thi. 3. Sau khi céng ®iÓm toµn bµi míi lµm trßn ®iÓm thi theo nguyªn t¾c: §iÓm toµn bµi ®−îc lµm trßn ®Õn 0,5 ®iÓm ( lÎ 0,25 lµm trßn thµnh 0,5; lÎ 0,75 lµm trßn thµnh 1,0 ®iÓm). II. §¸p ¸n vµ thang ®iÓm §¸p ¸n §iÓm C©u 1 1. (2,5 ®iÓm) 0,25 (3,5 ®iÓm) a) TËp x¸c ®Þnh: R b) Sù biÕn thiªn: 0,25 • ChiÒu biÕn thiªn: y' = 3x − 12x + 9 ; y' = 0 ⇔ x = 1 hoÆc x = 3. 2 y' > 0 trªn c¸c kho¶ng (−∞;1) vµ ( 3; +∞ ) , y' < 0 trªn kho¶ng (1; 3). Kho¶ng ®ång biÕn (−∞;1) vµ ( 3; +∞ ) , kho¶ng nghÞch biÕn (1; 3). 0,25 • Cùc trÞ: Hµm sè ®¹t cùc ®¹i t¹i x = 1, yC§ = y(1) = 4; hµm sè ®¹t cùc tiÓu t¹i x = 3, yCT = y(3) = 0. 0,25 • Giíi h¹n: lim y = −∞; lim y = +∞ . 0,25 x →−∞ x →+∞ • TÝnh låi, lâm vµ ®iÓm uèn: y '' = 6x − 12, y '' = 0 ⇔ x = 2 . +∞ −∞ x 2 − y" 0 + 0,25 §å thÞ låi §iÓm uèn lâm U(2; 2) • B¶ng biÕn thiªn: x −∞ 1 2 3 +∞ − y' + 0 0 + y 4 +∞ 0,50 2 −∞ 0 1
  2. c) §å thÞ: y Giao ®iÓm cña ®å thÞ víi c¸c trôc täa ®é: (0; 0), (3; 0). (C) §å thÞ cã t©m ®èi xøng 4 U(2; 2). 0,50 §å thÞ (C) nh− h×nh bªn. 2 x 0 1 2 3 4 2. (0,5 ®iÓm) §iÓm uèn U(2; 2), y' ( 2 ) = −3 . 0,25 Ph−¬ng tr×nh tiÕp tuyÕn cña (C) t¹i ®iÓm uèn: y − 2 = − 3(x − 2) ⇔ y = − 3x + 8. 0,25 3. (0,5 ®iÓm) §iÓm cùc ®¹i (1; 4), ®iÓm cùc tiÓu (3; 0). 0,25 Trung ®iÓm ®o¹n th¼ng nèi hai ®iÓm C§, CT lµ ®iÓm uèn U(2; 2). §−êng th¼ng y = x + m2 − m ®i qua U(2; 2) ⇔ 2 = 2 + m2 − m ⇔ m = 0 hoÆc m = 1. 0,25 C©u 2 1. (0,75 ®iÓm) Gi¶i ph−¬ng tr×nh: ex = 2 ⇔ x = ln2. 0,25 (1,5 ®iÓm) 1 1 ∫ ∫ (e e − 2 dx = − 2)dx x x 0,25 DiÖn tÝch h×nh ph¼ng cÇn t×m: S = ln 2 ln 2 ( ) 1 = e x − 2x = (e − 2) − (2 − 2ln2) = e + 2ln2 − 4 (®vdt). 0,25 ln 2 2. (0,75 ®iÓm) 0,25 §Æt t = 4 − cos2x. π dt = 2sinxcosx dx = sin2xdx; x = 0 ⇒ t = 3, x = ⇒ t = 4. 0,25 2 4 dt 4 0,25 I=∫ 4 = ln t = ln 4 − ln3 = ln . 3 t 3 3 1. (1,0 ®iÓm) C©u 3 x2 y2 0,25 Ph−¬ng tr×nh (H) cã d¹ng: 2 − 2 = 1 ⇒ a2 = 4, b2 = 5 ⇒ c2 = 9. (2,0 ®iÓm) a b Täa ®é c¸c tiªu ®iÓm: ( − 3; 0), (3; 0), c¸c ®Ønh: ( − 2; 0), (2; 0). 0,50 5 5 Ph−¬ng tr×nh c¸c tiÖm cËn: y = x; y = − x. 0,25 2 2 2
  3. 2. (1,0 ®iÓm) Ph−¬ng tr×nh ®−êng th¼ng qua M(2; 1): m(x − 2) + n(y − 1) = 0 ⇔ mx + ny − 2m − n = 0 , víi m2 + n2 ≠ 0. 0,25 §iÒu kiÖn tiÕp xóc: 4m2 − 5n2 = (2m + n)2 , víi 2m + n ≠ 0 ⎡n = 0 ⇔⎢ 0,25 ⎣3n + 2m = 0. • n = 0, chän m = 1. Ph−¬ng tr×nh tiÕp tuyÕn: x − 2 = 0. 0,25 • 3n + 2m = 0, chän m = 3, n = − 2. Ph−¬ng tr×nh tiÕp tuyÕn: 3x − 2y − 4 = 0 . 0,25 1. (0,75 ®iÓm) C©u 4 ⎛2 4 ⎞ (2,0 ®iÓm) To¹ ®é ®iÓm G ⎜ ; ; 0 ⎟ . 0,25 ⎝3 3 ⎠ ⎛2 4 ⎞ VÐc t¬ chØ ph−¬ng cña ®−êng th¼ng OG: OG = ⎜ ; ; 0 ⎟ . ⎝3 3 ⎠ 0,25 xyz Ph−¬ng tr×nh ®−êng th¼ng OG: = = . 0,25 120 2. (0,75 ®iÓm) Ph−¬ng tr×nh mÆt cÇu (S) cã d¹ng: x 2 + y 2 + z 2 + 2ax + 2by + 2cz + d = 0 . 0,25 O, A, B, C ∈ (S), ta cã hÖ ph−¬ng tr×nh: ⎧d = 0 ⎧d = 0 ⎧a = −1 ⎪2a − 2c + d + 2 = 0 ⎪b = −1 ⎪b = −1 ⎪ ⎪ ⎪ ⇔⎨ ⇔⎨ ⎨ ⎪2a + 4b + 2c + d + 6 = 0 ⎪a − c = −1 ⎪c = 0 0,25 ⎪4b + d + 4 = 0 ⎪a + c = −1 ⎪d = 0. ⎩ ⎩ ⎩ Ph−¬ng tr×nh mÆt cÇu (S): x + y + z − 2x − 2y = 0 . 2 2 2 0,25 3. (0, 5 ®iÓm) Gäi (P) lµ mÆt ph¼ng cÇn t×m. ⎛2 4 ⎞ OG = ⎜ ; ; 0 ⎟ ⇒ VÐc t¬ ph¸p tuyÕn cña (P): (1;2;0). ⎝3 3 ⎠ 0,25 Ph−¬ng tr×nh (P) cã d¹ng: x + 2y + D = 0. MÆt cÇu (S) cã t©m I = (1; 1; 0), b¸n kÝnh R = 2 . ⎡ D = −3 + 10 3+D = 2⇔⎢ §iÒu kiÖn tiÕp xóc: ⎢ D = −3 − 10. 5 ⎣ VËy, cã hai mÆt ph¼ng (P) lÇn l−ît cã ph−¬ng tr×nh: x + 2y − 3 + 10 = 0; x + 2y − 3 − 10 = 0. 0,25 Chó ý: MÆt cÇu qua O, A, B, C cã ®−êng kÝnh AB . 3
  4. Khai triÓn (1 + x)n = C 0 + C1 x + ... + C n x n . 0,25 n C©u 5 n n (1,0 ®iÓm) n ∑ C k = 2 n. 0,25 Tæng tÊt c¶ c¸c hÖ sè cña khai triÓn: T = n k =0 T = 1024 ⇔ n = 10. 0,25 HÖ sè cña x5 trong khai triÓn: C10 = 252. 5 0,25 … …...HÕt... 4
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
3=>0