![](images/graphics/blank.gif)
Đề tài " Almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents "
44
lượt xem 7
download
lượt xem 7
download
![](https://tailieu.vn/static/b2013az/templates/version1/default/images/down16x21.png)
We prove that for any s 0 the majority of C s linear cocycles over any hyperbolic (uniformly or not) ergodic transformation exhibit some nonzero Lyapunov exponent: this is true for an open dense subset of cocycles and, actually, vanishing Lyapunov exponents correspond to codimension-∞. This open dense subset is described in terms of a geometric condition involving the behavior of the cocycle over certain heteroclinic orbits of the transformation.
Chủ đề:
Bình luận(0) Đăng nhập để gửi bình luận!
![](images/graphics/blank.gif)
CÓ THỂ BẠN MUỐN DOWNLOAD