intTypePromotion=1

ĐỀ TÀI: NGHIÊN CỨU CHIẾT - TRẮC QUANG PHỨC ĐALIGAN TRONG HỆ 1-(2-PYRIDILAZƠ)-2NAPHTOL (PAN)-Pb(II)-CCl3COOH VÀ ỨNG DỤNG PHÂN TÍCH

Chia sẻ: Qsczaxewd Qsczaxewd | Ngày: | Loại File: PDF | Số trang:0

0
66
lượt xem
5
download

ĐỀ TÀI: NGHIÊN CỨU CHIẾT - TRẮC QUANG PHỨC ĐALIGAN TRONG HỆ 1-(2-PYRIDILAZƠ)-2NAPHTOL (PAN)-Pb(II)-CCl3COOH VÀ ỨNG DỤNG PHÂN TÍCH

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Chì là một nguyên tố có nhiều ứng dụng quan trọng trong khoa học, kĩ thuật và đời sống: Dùng để làm ắc quy, đầu đạn, các ống dẫn trong công nghệ hoá học, đúc khuôn để in chữ, chế tạo thuỷ tinh pha lê, pha vào xăng để tăng thêm chỉ số octan. Do có tính ngăn cản mà người ta dùng chì làm áo giáp cho nhân viên: chụp X quang, lò phản ứng hạt nhân, đựng nguyên tố phóng xạ, cho vào màn hình vi tính, ti vi.…...

Chủ đề:
Lưu

Nội dung Text: ĐỀ TÀI: NGHIÊN CỨU CHIẾT - TRẮC QUANG PHỨC ĐALIGAN TRONG HỆ 1-(2-PYRIDILAZƠ)-2NAPHTOL (PAN)-Pb(II)-CCl3COOH VÀ ỨNG DỤNG PHÂN TÍCH

  1. ĐẠI HỌC THÁI NGUYÊN TRƢỜNG ĐẠI HỌC SƢ PHẠM LÊ XUÂN THỨ NGHIÊN CỨU CHIẾT - TRẮC QUANG PHỨC ĐALIGAN TRONG HỆ 1-(2-PYRIDILAZƠ)-2- NAPHTOL (PAN)-Pb(II)-CCl3COOH VÀ ỨNG DỤNG PHÂN TÍCH LUẬN VĂN THẠC SĨ KHOA HỌC HOÁ HỌC THÁI NGUYÊN-2009 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  2. ĐẠI HỌC THÁI NGUYÊN TRƢỜNG ĐẠI HỌC SƢ PHẠM LÊ XUÂN THỨ NGHIÊN CỨU CHIẾT - TRẮC QUANG PHỨC ĐALIGAN TRONG HỆ 1-(2-PYRIDILAZƠ)-2- NAPHTOL (PAN)-Pb(II)-CCl3COOH VÀ ỨNG DỤNG PHÂN TÍCH Chuyên ngành: HOÁ PHÂN TÍCH Mã số: 60.44.29 LUẬN VĂN THẠC SĨ KHOA HỌC HOÁ HỌC NGƢỜI HƢỚNG DẪN KHOA HỌC: GS.TS HỒ VIẾT QUÝ THÁI NGUYÊN-2009 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  3. LỜI CẢM ƠN Luận văn được hoàn thành tại phòng thí nghiệm Hoá phân tích và Hoá môi trường - khoa Hoá học - Trường Đại học Sư phạm - Đại học Thái Nguyên. Bằng tấm lòng trân trọng, em xin bày tỏ lòng biết ơn sâu sắc tới GS.TS Hồ Viết Quý - người đã hướng dẫn khoa học, tận tình chỉ bảo em trong suốt quá trình học tập và nghiên cứu. Em xin trân trọng cảm ơn Ban chủ nhiệm khoa Hoá học và các Thầy Cô giáo trong tổ bộ môn Hoá phân tích và Hoá môi t rường Trường Đại học sư phạm - Đại học Thái Nguyên đã giúp đỡ và tạo mọi điều kiện thuận lợi cho em hoàn thành luận văn. Tôi xin chân thành cảm ơn BGH Trường THPT Na Rỳ - Bắc Kạn, các đồng nghiệp, bạn bè, người thân đã ủng hộ và động viên tôi trong suốt qu á trình học tập và nghiên cứu. Thái Nguyên, ngày 15 tháng 9 năm 2009 Lê Xuân Thứ Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  4. MỤC LỤC MỞ ĐẦU ..................................................................................................... 1 Chƣơng I: TỔNG QUAN TÀI LIỆU ........................................................... 3 1.1. Giới thiệu về nguyên tố chì. ...................................................................... 3 1.2. Tính chất và khả năng tạo phức của PAN. .............................................. 11 1.3. Axit tricloaxetic CCl3COOH. ................................................................. 15 1.4. Phức đaligan và ứng dụng của nó trong hóa học phân tích. ..................... 15 1.5. Phương pháp nghiên cứu chiết phức đa ligan. ......................................... 18 1.6. Các bước nghiên cứu phức màu dùng trong phân tích trắc quang [31]........ 21 1.7. Các phương pháp xác định thành phần phức trong dung dịch {[20], [21], [23]}. ............................................................................................ 26 1.8. Cơ chế tạo thành phức đa ligan. .............................................................. 33 1.9. Các phương pháp xác định hệ số hấp thụ phân tử của phức. ................... 39 1.10. Phương pháp thống kê xử lý số liệu thực nghiệm. ................................ 41 1.11. Ô nhiễm nước [15]. .............................................................................. 44 Chƣơng II: KỸ THUẬT THỰC NGHIỆM ............................................... 46 2.1. Dụng cụ và thiết bị nghiên cứu. .............................................................. 46 2.2. Pha chế hoá chất. .................................................................................... 46 2.3. Cách tiến hành thí nghiệm. ..................................................................... 48 2.4. Xử lý các kết quả thực nghiệm. .............................................................. 49 Chƣơng III: KẾT QUẢ THỰC NGHIỆM VÀ THẢO LUẬN .................. 50 3.1. Nghiên cứu hiệu ứng tạo phức đaligan trong hệ PAN-Pb2+- CCl3COO- ...... 50 3.1.1. Phổ hấp thụ phân tử của PAN. ............................................................. 50 3.1.2. Nghiên cứu hiệu ứng tạo phức và chiết phức đaligan của Pb 2+ với PAN và CCl3COO-. ............................................................................... 51 3.2. Nghiên cứu các điều kiện tối ưu cho sự tạo phức và chiết phức đaligan PAN-Pb2+-CCl3COO-. ............................................................... 54 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  5. 3.2.1. Sự phụ thuộc mật độ quang của phức đaligan vào thời gian. ................ 54 3.2.1.1. Thời gian tạo phức tối ưu. ................................................................. 54 3.2.1.2. Khảo sát thời gian lắc chiết tối ưu. .................................................... 55 3.2.1.3. Sự phụ thuộc mật độ quang của phức đaligan trong pha hữu cơ vào thời gian. ......................................................................................... 56 3.2.2. Xác định pH tối ưu. ............................................................................. 57 3.2.3. Chọn dung môi chiết phức tối ưu. ........................................................ 59 3.2.3.1. Chọn dung môi chiết. ........................................................................ 59 3.2.3.2. Khảo sát thể tích dung môi chiết phức tối ưu. ................................... 62 3.2.4. Sự phụ thuộc phần trăm chiết vào số lần chiết và hệ số phân bố. ......... 63 3.2.5. Xử lý thống kê xác định phần trăm chiết. ........................................... 65 3.3. Xác định thành phần phức đaligan PAN-Pb2+-CCl3COO- ....................... 66 3.3.1. Phương pháp tỷ số mol xác định thành phần phức PAN-Pb2+- CCl3COO- .............................................................................................. 66 3.3.2. Phương pháp biến đổi liên tục (phương pháp hệ đồng phân tử, phương pháp Otromuslenco-Job). .......................................................... 69 3.3.3. Phương pháp Staric- Bacbanel. ............................................................ 71 3.3.4. Xác định hệ số tỷ lượng của CCl3COO- trong phức đaligan bằng phương pháp chuyển dịch cân bằng. ...................................................... 74 3.4. Nghiên cứu cơ chế tạo phức đaligan. ...................................................... 77 3.4.1. Giản đồ phân bố các dạng tồn tại của Pb2+ theo pH. ............................. 77 3.4.2. Giản đồ phân bố các dạng tồn tại của PAN theo pH. ........................... 80 3.4.3. Giản đồ phân bố các dạng tồn tại của CCl3COOH theo pH .................. 82 3.4.4. Cơ chế tạo phức đaligan PAN-Pb(II)-CCl3COO- ................................. 84 3.5. Xác định các tham số định lượng của phức đaligan PAN-Pb(II)- CCl3COO-............................................................................................... 87 3.5.1. Xác định hệ số hấp thụ phân tử của phức đaligan. ............................... 87 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  6. 3.5.1.1. Xác định hệ số hấp thụ phân tử của phức đaligan theo phương pháp Komar. .......................................................................................... 87 3.5.1.2. Xác định hệ số hấp thụ phân tử của phức đaligan theo phương pháp đường chuẩn. ................................................................................ 89 3.5.1.3. So sánh hai giá trị εphức tính từ hai phương pháp. .............................. 90 3.5.2. Xác định hằng số cân bằng của phức: Kp. ........................................... 91 3.5.3. Xác định hằng số bền điều kiện phức đaligan: β. ................................. 92 3.6. Chế hóa và định lượng chì trong mẫu nhân tạo bằng phương pháp chiết - trắc quang dựa trên sự tạo phức đaligan. ..................................... 93 3.7. Xác định hàm lượng Pb2+ trong mẫu nước hồ nuôi cá ở quận Hoàng Mai - Hà Nội. ........................................................................................ 95 3.7.1. Quy trình xử lý mẫu. ............................................................................ 95 3.7.2. Xác định hàm lượng Pb2+ bằng phương pháp thêm nhiều mẫu chuẩn trong phân tích trắc quang. .......................................................... 95 3.8. Xác định hàm lượng Pb2+ trong mẫu nước hồ nuôi cá ở huyện Chợ Mới - tỉnh Bắc Kạn. ............................................................................. 100 3.8.1. Quy trình xử lý mẫu. .......................................................................... 100 3.8.2. Xác định hàm lượng Pb2+ bằng phương pháp thêm nhiều mẫu chuẩn trong phân tích trắc quang. ........................................................ 101 KẾT LUẬN ................................................................................................ 104 TÀI LIỆU THAM KHẢO......................................................................... 106 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
  7. MỞ ĐẦU Chì là một nguyên tố có nhiều ứng dụng quan trọng trong khoa học, k ĩ thuật và đời sống: Dùng để làm ắc quy, đầu đạn, các ống dẫn trong công nghệ hoá học, đúc khuôn để in chữ, chế tạo thuỷ tinh pha lê, pha vào xăng để tăng thê m chỉ số octan. Do có tính ngăn cản mà người ta dùng chì làm áo giáp cho nhân viên: chụp X quang, lò phản ứng hạt nhân, đựng nguyên tố phóng xạ, cho vào màn hình vi tính, ti vi.… Tuy nhiên, bên cạnh đó chì cũng là nguyên tố gây nhiễm độc cho mô i trường, đặc biệt trước lúc xăng 95 chưa ra đời thì hàm lượng chì trong xăng do các động cơ đốt trong thải ra cho môi trường là rất lớn, ảnh hưởng trực tiếp đến môi trường nhất là những tuyến đường quốc lộ. Nhiễm độc chì rất khó cứu chữa, chì có thể tích luỹ trong cơ thể người mà không bị đào thải. Việc ô nhiễm các nguồn nước, thực phẩm, sữa, rau quả bởi chì đã gây ra những bệnh hiểm nghèo như ung thư, ảo giác, quái thai,... ảnh hưởng nghiêm trọng đến sức khoẻ cộng đồng. Chì là nguyên tố có khả năng tạo phức với nhiều phối tử, đặc biệt là phối tử hữu cơ. Cho nên nghiên cứu sự tạo phức của chì và tìm ra một phương pháp phân tích nhanh, chính xác hàm lượng chì trong các đối trượng phân tích khác nhau là vô cùng quan trọng, có tính thời sự, có ý nghĩa khoa học và thực tiễn. Trong thời gian qua, việc phân tích chì trong các mẫu vật đã được nghiên cứu bằng nhiều phương pháp khác nhau, tuy nhiên vẫn chưa có một tài liệu nào công bố hoàn chỉnh về việc nghiên cứu sự tạo phức và chiết phức đaligan của chì với thuốc thử 1-(2-pyridilazơ)-2-naphtol (PAN) hoặc công bố ở những điều kiện thí nghiệm khác nhau. Sau khi xem xét, chúng tôi nhận thấy nghiên cứu phức màu của chì bằng phương pháp chiết - trắc quang là một trong những phương pháp có nhiều triển vọng, mang lại hiệu quả và phù hợp với điều kiện phòng thí nghiệm ở nước ta. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 1
  8. Xuất phát từ tình hình thực tế này, chúng tôi đã chọn đề tài: “Nghiên cứu chiết - trắc quang phức đaligan trong hệ 1-(2-pyridilazơ)-2-naphtol (PAN) - Pb(II) - CCl3COOH và ứng dụng phân tích''. Để thực hiện đề tài này chúng tôi tập trung giải quyết các nhiệm vụ sau: 1. Khảo sát hiệu ứng tạo phức của Pb(II) với PAN và CCl3COO-. 2. Khảo sát các điều kiện tối ưu của sự tạo phức và chiết phức. 3. Xác định thành phần của phức. 4. Nghiên cứu cơ chế tạo phức PAN -Pb(II)-CCl3COO-. 5. Xác định hệ số hấp thụ phân tử, hằng số cân bằng và hằng số bền điều kiện của phức. 6. Ứng dụng kết quả nghiên cứu để định lượng Pb(II) trong mẫu nhân tạo và trong mẫu nước tự nhiên, nước thải. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 2
  9. Chương I TỔNG QUAN TÀI LIỆU 1.1. Giới thiệu về nguyên tố chì. 1.1.1. Vị trí, cấu tạo và tính chất của chì [1], [16]. Chì là nguyên tố ở ô thứ 82 trong hệ thống tuần hoàn. Sau đây là một số thông số về chì. Ký hiệu: Pb Số thứ tự: 82 Khối lượng nguyên tử: 207,2 dvc Cấu hình electron: [Xe] 4f145d106s26p2 Bán kính ion: 1,26A0 Độ âm điện (theo paoling): 2,33 Thế điện cực tiêu chuẩn E 0 pb 2 = -0,126V. pb Năng lượng ion hoá: Mức năng lượng ion hoá I1 I2 I3 I4 I5 I6 Năng lượng ion hoá 7.42 15.03 31.93 39 69.7 84 Từ giá trị I3 đến giá trị I4 có giá trị tương đối lớn, từ giá trị I5 đến I6 có giá trị rất lớn do đó chì tồn tại ở số ôxi hóa : +2 và +4. 1.1.2. Tính chất vật lý [1],[16]. Chì là kim loại màu xám thẫm , khá mềm dễ bị dát mỏng. Nhiệt dộ nóng chảy: 327,460C. Nhiệt độ sôi: 1740C. Khối lượng riêng: 11,34 g/cm3 Chì và các hợp kim của nó đều độc và nguy hiểm do tính tích luỹ của nó, nên khó giải độc khi bị nhiễm độc lâu dài. Chì hấp thụ tốt các tia phóng xạ. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 3
  10. 1.1.3. Tính chất hoá học [1], [16]. Tác dụng với các nguyên tố không kim loại: 2Pb+ O2 = 2PbO Pb + X2 = PbX2 Tác dụng với nước khi có mặt oxy: 2Pb + 2H2O + O2 = 2Pb(OH)2 Tác dụng yếu với các axit HCl và axit H2SO4 nồng độ dưới 80% vì tạo lớp muối PbCl2 và PbSO4 khó tan. Khi các axit trên ở nồng độ đặc hơn thì có phản ứng do lớp muối đã bị hoà tan: PbCl2 + 2HCl = H2 PbCl4 PbSO4 + H2SO4 = Pb(HSO4)2 Với axit HNO3 tương tác tương tự như những kim loại khác. Khi có mặt oxy có thể tương tác với nước hoặc axit hữu cơ: 2Pb + 2H2O + O2 = 2 Pb(OH)2 2Pb + 6 CH3COOH + 3 O2 = 2 (CH3COO)2Pb + 10 H2O Tác dụng với dung dịch kiềm nóng: Pb + 2 KOH + 2H2O = K2 [Pb(OH)4 ] + H2 1.1.4. Các khoáng vật trong tự nhiên của chì. Chì là nguyên tố phổ biến trong vỏ trái đất. Chì tồn tại ở các trạng thái oxy hoá 0, +2 và +4, trong đó muối chì có hoá trị 2 là hay gặp nhất và có độ bền cao nhất. Trong tự nhiên, tồn tại các loại quặng galenit (PbS), Cesurit (PbCO3) và anglesit (PbSO4). Trong môi trường nước, tính năng của hợp chất chì được xác định chủ yếu thông qua độ tan của nó. Độ tan của chì phụ thuộc vào pH, pH tăng thì độ tan giảm, ngoài ra còn phụ thuộc vào yếu tố khác như : độ muối (hàm lượng iôn khác nhau) của nước, điều kiện oxy hoá- khử v.v…Chì trong nước Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 4
  11. chiếm tỷ lệ khiêm tốn, chủ yếu là từ đường ống dẫn, các thiết bị tiếp xúc có chứa chì. Trong khí quyển chì tương đối giàu hơn so với các kim loại nặng khác. Nguồn chính của chì phân tán trong không khí là do sự đốt cháy các nhiên liệu phù hợp chất của chì làm tăng chỉ số octan thêm vào dưới dạng Pb(CH3)4 và Pb(C2H5)4. Cùng với các chất gây ô nhiễm khác, chì được loại khỏi khí quyển do quá trình sa lắng khô và ướt. Kết quả là bụi thành phố và đất bên đường ngày càng giàu chì với nồng độ điển hìmh cỡ vào khoảng 1000 - 4000 mg/kg ở những thành phố náo nhiệt. [7]. 1.1.5. Tác dụng sinh hóa của chì. Phần lớn người dân trong thành phố hấp thụ chì từ ăn uống 200 - 3000μg Pb/ ngày, nước và không khí cung cấp thêm 10 - 15μg Pb/ ngày [7]. Tổng số chì hấp thụ này, có khoảng 200μg chì được thải ra, còn khoảng 25μ g chì được giữ lại trong xương mỗi ngày. Bảng 1.1. Lượng chì bị hấp thụ vào cơ thể mỗi ngày: Lƣợng chì Vào ngƣời Bài tiết Nguồn hấp thụ (μgPb/ngày) (μgPb/ngày) (μgPb/ngày) Không khí 10 25 (tích tụ Nước (dạng hoà tan hoặc phức) 15 200 trong xương) Thực phẩm (dạng phức) 200 Tác dụng sinh hoá chủ yếu của chì là tác động của nó tới sự tổng hợp máu dẫn đến phá vỡ hồng cầu. Chì ức chế một số enzim quan trọng của quá trình tổng hợp máu do sự tích luỹ của các hợp chất trung gian của quá trình trao đổi chất.[26]. Hợp chất trung gian kiểu này là delta- amino levunilic axit (ALA- đehyase). Một pha quan trọng của tổng hợp máu là sự chuyển hoá delta- amino levunilic axit thành porphobiliogen. Chì ức chế ALA-dehdrase enzym, Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 5
  12. do đó giai đoạn tiếp theo tạo thành porphobiliogen không thể xảy ra. Kết quả là phá huỷ quá trình tổng hợp hemoglobin cũng như các sắc tố hô hấp khác cần thiết trong máu như Cytochromes. Chì cũng cản trở việc sử dụng oxy và glucoza để sản sinh năng lượng cho quá trình sống. Sự cản trở này có thể nhìn thấy khi nồng độ chì trong máu nằm khoảng 0,3ppm. Ở các nồng độ cao hơn (> 0,3ppm) có thể gây hiện tượng thiếu máu (thiếu hemoglobin). Nếu hàm lượng chì trong máu nằm trong khoảng 0,5 - 0,8 ppm gây ra sự rối loạn chức năng của thận và phá huỷ não. Dạng tồn tại của chì trong nước là dạng có hoá trị 2. Với nồng độ các vi sinh vật bậc thấp trong nước và nếu nồng độ đạt tới 0,5mg/lít thì kìm hãm quá trình oxy hoá amoniac thành nitrat (nitrifi cation). Cũng như phần lớn các kim loại nặng, chì được tích tụ lại trong cơ thể thực vật sống trong nước. Với các loại thực vật bậc cao, hệ số làm giàu có thể lên tới 100 lần, ở bèo có thể đạt tới trên 46000 lần. Các vi sinh vật bậc thấp bị ảnh hưởng xấu ngay cả ở nồng độ 1 - 30 μg/l. Xương là nơi tàng trữ tích tụ chì của cơ thể. Sau đó phần chì này có thể tương tác cùng với phốt phát trong xương và thể hiện tính độc hại khi truyền vào các mô mềm của cơ thể. Chì nhiễm vào cơ thể qua da, đường tiêu hoá, hô hấp. Người bị nhiễm độc chì sẽ mắc một số bệnh như thiếu máu, đau đầu sưng khớp chóng mặt. Chính vì tác hại nguy hiểm của chì đối với con người như vậy nên các nước trên thế giới đều có quy định chặt chẽ về hàm lượng chì tối đa cho phép có trong nước mặt không vượt quá 1mg/l (TCVN: 3942 - 1995) [15], [27]. 1.1.6. Ứng dụng của chì. Chì được sử dụng để chế tạo pin, ăcquy chì - axit và hợp kim. Hợp chất hữu cơ Pb(CH3)4; Pb(C2H5)4 được sử dụng rất nhiều làm chất phụ gia cho xăng và dầu bôi trơn, tuy nhiên xu hướng hiện nay là hạn chế và loại bỏ. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 6
  13. Trong kỹ thuật hiện đại chì được ứng dụng làm vỏ bọc dây cáp, que hàn. Trước đây cùng với stibi và thiếc, chì được chế tạo làm hợp kim chữ in để tạo nên những con chữ, nên đã gây nên hiện tượng nhiễm độc chì đối với các công nhân trong ngành máy in. Tuy nhiên, hiện nay bằng công nghệ in mới đã hoàn toàn loại bỏ được hiện tượng này. Một lượng nhỏ của chì khi cho vào trong quá trình nấu thuỷ tinh sẽ thu được loại vật liệu có thẩm mỹ cao, đó là pha lê. Trong y học, chì được sử dụng làm thuốc giảm đau, làm ăn da và chống viê m nhiễm. 1.1.7. Khả năng tạo phức của Pb2+ . 1.1.7.1. Sự tạo phức của Chì với thuốc thử Đithizon. Thuốc thử: Điphenylthiocacbazon (Đithizon), là thuốc thử truyền thống được sử dụng rất rộng rãi để xác định lượng vết chì một cách chắc chắn dựa vào phản ứng với đithizon [33]. Mặc dù phức chì - đithizon cho ta một phương pháp khá nhạy (ở λ = 520 nm, hệ số hấp thụ mol phân tử ε = 65 000), nhưng điều kiện không thuận lợi là sự quang hoá dung dịch đithizon và phức không tan được trong nước. Để định lượng chì trong nước [28] đã chiết phức chì đithizonat bằng CCl4 ở pH = 8 - 9 với một lượng dư xianua để che nhiều kim loại khác cùng bị chiết xuất với chì. Nồng độ cực tiểu có thể bị phát hiện là 1,0μg/10ml dung dịch chì – đithizon [6]. 1.1.7.2. Sự tạo phức của chì với thuốc thử 1-(2-pyridilazo)- 2- naphtol (PAN). Các tác giả [17] cho rằng có thể định lượng chì bằng 1-(2-pyridilazo)- 2- naphtol với sự có mặt của chất hoạt động bề mặt không điện li bằng phương pháp trắc quang. Điều kiện tối ưu để xác định chì dựa vào phản ứng của phức Pb(II)- PAN với sự hiện diện của chất hoạt động bề mặt không điện li (polioxietyleneoylphenol) là pH = 9 (Na2B4O7 - HClO4) với 5% chất hoạt động bề mặt và được đo ở bước sóng 555nm. Tại bước sóng này khoảng nồng Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 7
  14. độ tuân theo định luật bia được xác định từ 1,3 - 4,5 ppm và hệ số hấp thụ mol phân tử là 20200 L/mol.cm. Kết quả định lượng thu được có độ lệch chuẩn tương đối là 0,9% và giới hạn phát hiện là 0,12ppm. 1.1.7.3. Sự tạo phức của chì với thuốc thử 1-(2- thiazolylazo)- 2- naphtol [35] Phản ứng với Pb2+ trong môi trường axit yếu (pH = 6,1 - 6,7) tạo thành một hợp phức càng cua màu nâu đỏ đậm trong hỗn hợp metylic - nước. Chính trên cơ sở màu này mà tác giả cho rằng có thể dùng 1-(2-thiazolylazo) - 2 naphtol để định lượng chì bằng phương pháp trắc quang. Phức chất giữa chúng được hình thành theo tỷ lệ 1:1, và có cực đại hấp thụ tại 578nm- 580nm trong dung dịch có chứa 40% CH3OH và bền trong 36 giờ. Tại cực đại hấp thụ khoảng nồng độ tuân theo định luật Beer là 0,2 - 0,6 μg/ml, hằng số bền của phức lgK = 5,30 và hệ số hấp thụ mol phân tử là 17000 l/mol.cm. Độ nhạy Xenđen là 0,012 μg/cm2 với nồng độ hấp thụ nhỏ nhất là 0,0001. Kết quả thu được có độ lệch chuẩn tương đối là 60,65% và sai số tương đối là 61,08%. Phương pháp này được dùng để xác định chì trong hợp kim. 1.1.7.4. Sự tạo phức của chì với thuốc thử 6,6 “dimetyl-2,2’:6’,2” - terirpiriddin [36]. Khi cho chì phản ứng với thuốc thử sẽ tạo phức theo tỷ lệ 3: 4 trong môi trường đệm axetat ở pH = 5,0 - 6,0, phức hấp thụ cực đại ở bước sóng 375nm, hệ số hấp thụ mol phân tử là 57100 L/mol.cm và khoảng nồng độ tuân theo định luật Beer là từ 0 - 25mg/25ml. Có thể che Fe3+ bằng NaF và tách Cr(IV) trao đổi ion. Phương pháp này được dùng để xác định lượng rất nhỏ Pb trong Cu tinh khiết với độ lệch chuẩn tương đối là 3,83%. 1.1.7.5. Sự tạo phức của chì với Xilen da cam. Tác giả [34] đã dùng xilen da cam xác định chì trong lá cây bằng phương pháp trắc quang, phức có tỷ lệ 1:1 ở pH = 4,5 - 5,4, phức hấp thụ cực đại ở bước sóng 580nm, hệ số hấp thụ mol phân tử là 15500 l/mol.cm và Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 8
  15. khoảng nồng độ tuân theo định luật Beer là từ 0 - 30μg/50ml. Kết quả thu được có độ lệch chuẩn tương đối là 2,0 - 2,5%. 1.1.7.6. Sự tạo phức của chì với thuốc thử PAR. Đang còn có ý kiến khác nhau về thành phần phức Pb2+ : PAR chẳng hạn trong [28] ở pH = 10 tỷ lệ tạo phức Pb2+ : PAR là 1:1, λ = 520nm, hệ số hấp thụ mol phân tử ε = 38000 và lgβ = 6,48. Kết quả nghiên cứu phù hợp với Pollar F.H. Hanson P, Geary W.J. trong [32] cho thấy ở pH = 4,6 phức có tỷ lệ 1:1 dạng PbRH và bước sóng hấp thụ cực đại là 530nm, còn ở pH = 7,75 phức có tỷ lệ 1:2 dạng PbR2 và bước sóng hấp thụ cực đại là 530nm. Trong [31] tác giả đã nghiên cứu một cách tỷ mỉ và đã tính giản đồ phân bố hệ Pb 2+ - PAR, phân tích đường cong hấp thụ và rút ra kết luận là chỉ có sự tạo phức PbRH+ ở pH =5 và phức PbR ở pH = 10. 1.1.8. Một số phương pháp xác định chì. 1.1.8.1. Phương pháp chuẩn độ. Phản ứng chuẩn độ: Pb2+ + H2Y2- = PbY2- + 2H+ β = 1018,91 Cách tính: Xác định được thể tích EDTA ở nồng độ xác định (Cm) cần để chuẩn độ Vo ml dung dịch ion chì (dựa vào sự đổi màu của chỉ thị từ đỏ sang xanh) là Vml. Từ đó suy ra nồng độ C0 M dung dịch chì theo phươ ng C0V0 = CV → C0 = CV / V0 trình. Hàm lượng chì trong dung dịch = (CV/V0) x 0,207 (g) • Nhận xét: Phương pháp chuẩn độ không đòi hỏi nhiều thiết bị chuyên dụng và đắt tiền, kỹ thuật tiến hành đơn giản có thể thực hiện trong phòng thí nghiệm chưa được trang bị tốt. Tuy nhiên phương pháp chuẩn độ dễ mắc phải sai số, và thường mắc những sai số lớn do nguyên nhân chủ quan và khách quan. Xác định không Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 9
  16. thật sự chính xác, điểm tương đương do phải dựa vào mắt thường quan sát sự đổi màu, thể tích dung dịch chuẩn có thể không được đo chính xác… 1.1.8.2. Xác định bằng phương pháp cực phổ. Thường áp dụng khi nồng độ chì nhỏ hơn 0,1 mg/l (4,826 x 10-7 M) Tuy nhiên phương pháp này đòi hỏi những thiết bị tiên tiến chưa thực sự phù hợp trong điều kiện các phòng thí nghiệm của Việt nam hiện nay. Ngày nay một số phòng thí nghiệm đã được trang bị loại máy này. 1.1.8.3. Phương pháp đo phổ hấp thụ nguyên tử và phát xạ nguyên tử. Phương pháp này cho độ chính xác và độ nhạy rất cao có giá trị lớn trong phân tích. Phương pháp này có thể xác định đồng thời nhiều nguyên tố khác nhau trong mẫu. Tuy nhiên, thiết bị đòi hỏi phải hiện đại và đắt tiền nên thực tế chưa được ứng dụng nhiều ở Việt Nam . 1.1.8.4. Xác định chì bằng phương pháp trắc quang. Theo các tác giả [17] nồng độ tối thiểu chì xác định được bằng phương pháp trắc quang theo đường chuẩn là 0,1mg/l (4,826 x 10-7 M). Gần đây mới xuất hiện công trình [18] xác định chì trong nước thải của nhà máy, Xí nghiệp ở các khu công nghiệp Hà Nội bằng phương pháp trắc quang với thuốc thử PAR. Đường chuẩn có dạng: Ax = (25483,5164  0,0106). CPb + (0,00256  0,0018). Khoảng nồng độ chì tuân theo định luật Beer từ (0,2 - 2,5).10-5 ion g/l, ở pH = 7,3 và λmax = 520nm. Các tác giả trong [18] xác định được hàm lượng chì trong nước thải của xí nghiệp mạ Cầu Biêu thải ra nguồn nước của nhà máy từ (64,1 - 70,9 μg/l) tương ứng với (3,09.10-7 ÷ 3,42.10-7) ion g/l, phù hợp với kết quả phân tích bằng phương pháp Von - Ampe hoà tan với điện cực thuỷ ngân treo Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 10
  17. (62,4 - 79) μg/l tương ứng với (3,01.10-7 ÷ 3,81.10-7) ion g/l. Sai số giữa hai phương pháp là nhỏ hơn 3%, sai số này hoàn toàn có thể chấp nhận được. Như vậy có thể dùng thuốc thử PAR xác định hàm lượng chì trong các nguồn nước bị ô nhiễm (có nghĩa hàm lượng chì lớn hơn 71μg/l (3,42.10-7 ion g/l) bằng phương pháp trắc quang. Ngoài các thuốc thử trên người ta còn sử dụng các thuốc thử β - tiosemicabrazon N - Iratin và N.metyl iratin để xác định hàm lượng đồng, chì trong đất, nước và thực phẩm, rau quả bằng phương pháp trắc quang [8]. Độ nhạy độ chọn lọc không thua kém gì thuốc thử PAR. Với hàm lượng chì lớn hơn 0,06 mg/l (3.10-7 ion g/l) xác định bằng phương pháp trắc quang với thuốc thử đithizon trong CCl4. 1.2. Tính chất và khả năng tạo phức của PAN. 1.2.1. Cấu tạo, tính chất vật lý của PAN. Thuốc thử 1- (2-pyridilazo)- 2- naphtol (PAN) có Công thức: N N N HO - Khối lượng phân tử: M = 249,27. - Công thức phân tử của PAN: C15H11ON3 - Cấu tạo PAN có dạng: Gồm hai vòng được liên kết với nhau qua cầu -N = N-, một vòng là pyridyl, vòng bên kia là vòng naphtol ngưng tụ. PAN là thuốc thử hữu cơ có dạng bột màu đỏ, không tan trong nước, tan tốt trong rượu và axeton. Vì đặc điểm này mà người ta thường chọn axeton làm dung môi để pha PAN. Khi tan trong axeton có dung dịch màu vàng hấp thụ ở bước sóng cực đại λmax = 470nm, không hấp thụ ở bước sóng cao hơn 560nm. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 11
  18. Tuỳ thuộc vào pH của môi trường mà thuốc thử PAN có thể tồn tại ở các dạng khác nhau, nó có ba dạng tồn tại H2R+, HR và R- và có các hằng số phân ly tương ứng: pK1 = 2,9 và pK2 = 12,1. Chúng ta có thể mô tả các dạng tồn tại của PAN qua các cân bằng sau: PK1 = 2,9 N N N N NH+ N HO HO PK2 = 12,1 N N N - O 1.2.2. Khả năng tạo phức của PAN. PAN là một thuốc thử đơn bazơ tam phối vị, các phức tạo được với nó có khả năng chiết và làm giàu trong dung môi hữu cơ như CCl4, CHCl3, rượu isoamylic, rượu isobutylic, rượu n-amylic, rượu n-butylic,….PAN có thể tạo phức bền với rất nhiều kim loại cho phức màu mạnh như: coban, sắt, mangan, niken, kẽm tạo hợp chất nội phức có màu vàng đậm trong CCl4, CHCl3, ben zen, đietylete. PAN tan trong clorofom hoặc benzen tạo phức với Fe 3+ trong môi trường pH từ 4  7. Phức che lát có λmax = 775nm, ε = 16.10-3 l/mol.cm được dùng xác định sắt trong các khoáng nguyên liệu. Có thể mô tả dạng phức của nó với kim loại như sau: Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 12
  19. N N N N N N O HO Me Tác giả Ninh, Miugyuan đã dùng phương pháp đo màu xác định Cu và Ni trong hợp kim nhôm bằng PAN khi có mặt triton X-100. Dung dịch đệm của phức này ở pH = 3 khi có mặt của Al(NO3)3 và NaF những ảnh hưởng của nhô m bị loại bỏ, trong s ự có mặt của triton X-100, phức Cu-PAN hấp thụ cực đại ở bước sóng λmax = 550nm, ε = 1,8.10-4 L/mol.cm. Còn Ni-PAN hấp thụ cực đại ở bước sóng λmax = 565nm, ε = 3,5.10-4 L/mol.cm. Khoảng tuân theo định luật Beer là 0  100μg Cu/50ml và 0  55μg Ni/50ml. Phức Cu-PAN bị phân hủy khi thê m Na2S2O3. Một số tác giả đã công bố quá trình chiết phức PAN với một số ion kim loại trong pha rắn và quá trình chiết lỏng một số nguyên tố đất hiếm hoá trị 3. Quá trình chiết lỏng rắn đối với RE (RE: La, Ce, Pr, Nd, Sn, Yb, Gd) bằng cách sử dụng PAN, HL.PAN là chất chiết trong parafin được nghiên cứu ở nhiệt độ 80  0,070C. N hững ảnh hưởng phụ t huộc t hời gian, pH của chất chiết conen trong parafin cũng như chất rắn pha loãng đóng vai trò như dung dịch đệm được sử dụng. Phản ứng chiết: RE3+ + 2 HL(o) + Cl- → REL2Cl(o) + 2 H+ Phản ứng màu của sắt (naphthenate sắt trong xăng) với thuốc thử PAN trong vi nhũ tương đang được nghiên cứu. Tại bước sóng λ = 730nm, định luật Beer đúng trong khoảng nồng độ Fe2+ là 0  50μgFe/50ml. Trong những năm gần đây PAN cũng được sử dụng để xác định cá c nguyên tố Cd, Mn, Cu Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 13
  20. trong xăng, chiết đo màu xác định Pd(II), Co trong nước để tách riêng Zn, Cd. Tác giả xác định các ion trong vỏ màu của thuốc viên, phương pháp đo màu trong quang phổ kế phù hợp với việc xác định ion kẽm thông qua việc tạo phức với PAN ở pH = 2,5; dung dịch phức có màu đỏ, khoảng tuân theo định luật Beer từ 2,0  40μg/50ml ở λmax = 730nm. Các nhà phân tích Trung Quốc nghiên cứu so sánh phức Mo(IV) -PAN và Mo(VI)-PAN bằng phương pháp cực phổ. Các điều kiện tối ưu cho hệ Mo-PAN để xác định Mo đã được khảo sát khoảng tuyến tính đối với nồng độ Mo là từ 0  10-6, giới hạn phát hiện là 1,0.10-9M. Du, Hongnian, Shen, You dùng phương pháp trắc quang để xác định hàm lượng vết chì bằng glixerin và PAN, Glixerin và PAN phản ứng với Pb2+ trong dung môi tạo ra phức màu tím ở pH = 8. Phương pháp này được dùng để xác định hàm lượng vết chì trong nước, khoảng tuân theo định luật Beer là 0,09  0,4 μg/l. Một số tác giả khác xác định Co bằng phương pháp von ampe sử dụng điện cực các bon bị biến đổi bề mặt bằng PAN . Giới hạn phát hiện 1,3.10-7 M những ảnh hưởng của các ion cùng tồn tại và khả năng ứng dụng vào thực tế phân tích cũng được kiểm tra… Thêm vào đó tác giả còn xác định Co bằng phương pháp trắc quang với PAN trong nước và nước thải tạo phức ở pH = 3  8 với λ = 620nm. Với Ni tạo phức ở pH = 8 với λ = 560nm. Ngoài ra, ngày nay các nhà khoa học trên thế giới đã sử dụng PAN cho các mục đích phân tích khác. Qua các tài liệu tra cứu, cho tới nay chúng tôi chưa thấy tác giả nào nghiên cứu sự tạo phức đa ligan của PAN -Pb2+- CC3COO- bằng phương pháp chiết trắc quang. Vì vậy chúng tôi quyết định nghiên cứu sự tạo phức đa ligan giữa Pb(II) với thuốc thử PAN và ion CCl3COO- bằng phương pháp chiết - trắc quang. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 14
ADSENSE
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2