intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi thử ĐH lần 1 năm 2013: Môn Toán - Trường THPT Ba Đình

Chia sẻ: CLB Kỹ Năng | Ngày: | Loại File: PDF | Số trang:7

684
lượt xem
361
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo đề thi - kiểm tra 'đề thi thử đh lần 1 năm 2013: môn toán - trường thpt ba đình', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Đề thi thử ĐH lần 1 năm 2013: Môn Toán - Trường THPT Ba Đình

  1. SỞ GD&ĐT THANH HÓA ĐỀ THI THỬ ĐẠI HỌC LẦN 1 NĂM 2013 TRƯỜNG THPT BA ĐÌNH Môn: TOÁN; Khối A, B Thời gian làm bài: 180 phút PhÇn chung cho tÊt c¶ thÝ sinh (7,0 điểm) 2x + 1 C©u I (2,0 điểm) Cho hàm số y = có đồ thị là (C) x −1 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Tìm các giá trị m để đường thẳng y = −3 x + m cắt (C) tại A và B sao cho trọng tâm của tam giác OAB thuộc đường thẳng x − 2 y − 2 = 0 (O là gốc tọa độ). Câu II (2,0 ®iÓm) 1. Giải bất phöông trình x3 + (3 x 2 − 4 x − 4) x + 1 ≤ 0  π 2. Giải phöông trình cos x + cos 3 x = 1 + 2 sin  2 x +   4 π 2 C©u III (1,0 ®iÓm) Tính tích phân ∫ 0 1 − 3 sin 2 x + 2 cos 2 xdx C©u IV (1,0 ®iÓm) Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = 2 2a . Hình chiếu vuông góc của điểm S trên mặt phẳng (ABCD) trùng với trọng tâm tam giác BCD. Đường thẳng SA tạo với mặt phẳng (ABCD) một góc 450. Tính thể tích của khối chóp S.ABCD và khoảng cách giữa hai đường thẳng AC và SD theo a. C©u V (1,0 ®iÓm) Cho x, y, z là các số thực dương. Chứng minh bất đẳng thức 2 x 2 + xy 2 y 2 + yz 2 z 2 + zx + + ≥1 ( y + zx + z ) 2 ( z + xy + x) 2 ( x + yz + y )2 PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B) A. Theo chương trình chuẩn C©u VI.a (2,0 ®iÓm) 1. Trong mặt phẳng Oxy, cho hai đường thẳng d1: 3x + y + 5 = 0 , d2: 3x + y + 1 = 0 và điểm I (1; −2) . Viết phương trình đường thẳng đi qua I và cắt d1, d2 lần lượt tại A và B sao cho AB = 2 2 . 2. Trong không gian Oxyz, cho hai điểm A(-1; -1 ;2), B(-2; -2; 1) và mặt phẳng (P) có phương trình x + 3 y − z + 2 = 0 . Viết phương trình mặt phẳng (Q) là mặt phẳng trung trực của đoạn AB. Gọi ∆ là giao tuyến của (P) và (Q). Tìm điểm M thuộc ∆ sao cho đoạn thẳng OM nhỏ nhất. Câu VII.a (1,0 điểm) Tìm số phức z thỏa mãn (1 − 3i ) z là số thực và z − 2 + 5i = 1 . B. Theo ch−¬ng tr×nh n©ng cao C©u VI.b (2,0 ®iÓm) 1. Trong mặt phẳng Oxy, cho hai đường thẳng d1: 3x + y + 5 = 0 , d2: x − 3 y + 5 = 0 và điểm I (1; −2) . Gọi A là giao điểm của d1 và d2 . Viết phương trình đường thẳng đi qua I và cắt d1, d2 lần lượt tại B 1 1 và C sao cho 2 + đạt giá trị nhỏ nhất. AB AC 2 2. Trong không gian Oxyz, cho A(1;1;0), B(0;1;1) vaø C(2;2;1) và mặt phẳng (P): x + 3y – z + 2 = 0. Tìm tọa độ điểm M thuộc mặt phẳng (P) sao cho MA2 + MB2 + MC2 đạt giá trị nhỏ nhất. 2 log1− x ( − xy + y − 2 x + 2 ) + log 2+ y ( x − 1)2 = 6 Câu VII.b (1,0 điểm) Giải hệ phương trình  log1− x ( y + 5 ) − log 2+ y ( x + 4 ) = 1 --------------------------------------------------HÕt----------------------------------------------------- C m ơn (trongxuanhp@gmail.com) đã g i t i www.laisac.page.tl
  2. ĐÁP ÁN VÀ BIỂU ĐIỂM CHẤM Câu Ý Nội dung Điểm 2x + 1 1,00 I Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số y = x −1 −3 TXĐ : ℝ \ {1} . y ' = < 0, ∀x ≠ 1 0,25 ( x − 1) 2 Hàm số nghịch biến trên các khoảng (−∞;1) và (1; +∞ ) 2x +1 2x +1 lim+ = +∞; lim− = −∞ ⇒ TCĐ : x = 1 x →1 x − 1 x →1 x − 1 0,25 2x + 1 lim = 2 ⇒ TCN : y = 2 x →±∞ x − 1 Lập BBT x −∞ 1 +∞ y’ - - 2 +∞ 0,25 y 1 −∞ 2 Đồ thị 6 5 4 3 2 0,25 1 -4 -2 1 2 4 6 -1 -2 2 trọng tâm của tam giác OAB thuộc đường thẳng x − 2 y − 2 = 0 (d) 1,00 2x +1 Pt hoành độ giao điểm: = −3 x + m . Với đk x ≠ 1 x −1 0,25 PT ⇔ 2 x + 1 = ( x − 1)(−3 x + m) ⇔ 3x 2 − (1 + m) x + m + 1 = 0 (1) D cắt (C) tại A và B ⇔ Pt (1) có 2 nghiệm khác 1 ∆ = (1 + m) 2 − 12(m + 1) > 0  m > 11 0,25 ⇔ ⇔ (m + 1)(m − 11) > 0 ⇔  3 − (1 + m) + m + 1 ≠ 0  m < −1 Gọi x1, x2 là 2 nghiệm của (1). Khi đó A( x1 ; −3 x1 + m), B ( x2 ; −3x2 + m) x1 + x2 1 + m m −1 Gọi I là trung điểm của AB ⇒ xI = = , yI = −3 xI + m = 0,25 2 6 2
  3.  2   1 + m m −1  Gọi G là trọng tâm tam giác OAB ⇒ OG = OI ⇒ G  ;  3  9 3  1+ m  m −1  11 11 G∈d ⇔ − 2.  −2 = 0 ⇔ m = − (TM). Vậy m = − 0,25 9  3  5 5 Giải bất phöông trình x3 + (3 x 2 − 4 x − 4) x + 1 ≤ 0 1,00 y ≥ 0 Điều kiện : x ≥ −1 . Đặt y = x + 1 ⇔  2  y = x +1 0,25 Bpt trở thành x + (3x − 4 y ) y ≤ 0 3 2 2 TH 1. y = 0 ⇔ x = −1 . Thỏa mãn BPT TH 2. y > 0 ⇔ x > −1 . Chia hai vế cho y 3 ta được 3 2 0,25  x x x   + 3   − 4 ≤ 0 . Đặt t = và giải BPT ta được t ≤ 1  y  y y 1  −1 ≤ x < 0 x  t ≤ 1 ⇒ ≤ 1 ⇔ x ≤ x + 1 ⇔  x ≥ 0 0,25   x 2 − x − 1 ≤ 0 y   −1 ≤ x < 0    x ≥ 0 ⇔ −1 ≤ x ≤ 1+ 5 . Kết hợp x > −1 ta được  1 − 5 1+ 5 2  ≤x≤ 0,25  2 2 II 1+ 5  1+ 5  −1 < x ≤ . Vậy tập nghiệm của BPT là S =  −1;  2  2   π Giải phöông trình cos x + cos 3 x = 1 + 2 sin  2 x +  1,00  4 ⇔ 2 cos 2x cos x = 1 + sin 2x + cos 2x 0,25 ⇔ cos 2x(2 cos x − 1) = 1 + 2 sin x cos x ⇔ (cos2 x − sin2 x)(2 cos x − 1) = (cos x + sin x)2 0,25  cos x + sin x = 0 (1) ⇔ (cos x − sin x)(2 cos x − 1) = cos x + sin x (2) 2  π π π (1) ⇔ 2 sin  x +  = 0 ⇔ x + = kπ ⇔ x = − + kπ 0,25  4 4 4  cos x = 0  π   x = 2 + kπ (2) ⇔ 2 cos x(cos x − sin x − 1) = 0 ⇔   π ⇔ 2 cos  x +  = 1  π π   4  x + = ± + k2π0,25 4 4 π π Vậy pt có nghiệm là x = − + kπ , x = + kπ , x = k2π 4 2 π 2 1,00 III ∫ 1 − 3 sin 2 x + 2 cos xdx 2 Tính tích phân I = 0
  4. π π π 2 2 2 I = ∫ 1 − 3 sin 2 x + 2 cos 2 xdx = ∫ (sin x − 3 cos x) 2 dx = ∫ sin x − 3 cos x dx 0,25 0 0 0 π sin x − 3 cos x = 0 ⇔ tan x = 3 ⇔ x = + kπ 3 0,25  π π Do x ∈  0;  nên x =  2 3 π π 3 2 I = ∫ sin x − 3 cos x dx + ∫ sin x − 3 cos x dx 0 π 3 π π 3 2 = ∫ (sin x − 3 cos x)dx + ∫ (sin x − 3 cos x)dx 0,25 0 π 3 π π ( = − cos x − 3 sin x ) 3 0 ( + − cos x − 3 sin x ) 2 π 3 1 3 1 3 = − − +1 + − 3 + + = 3 − 3 0,25 2 2 2 2 Tính thể tích của khối chóp S.ABCD và khoảng cách giữa hai đường thẳng 1,00 AC và SD theo a. Gọi H là trọng tâm tam giác BCD. Theo GT SH ⊥ ( ABCD) 2 1 Gọi O = AC ∩ BD ⇒ CH = CO = AC = a ⇒ AH = AC − HC = 2a 0,25 3 3 SA tạo với đáy góc 45 suy ra SAH = 450 ⇒ SH = AH = 2a 0 Gọi V là thể tích khối chóp S.ABCD thì 1 1 4 2 3 0,25 V = S ABCD .SH = a.2 2a.2a = a 3 3 3 Gọi M là trung điểm của SB. Mặt phẳng (ACM) chứa AC và // SD Do đó d ( SD; AC ) = d ( SD;( ACM )) = d ( D;( ACM )) Chọn hệ tọa độ Oxyz như hình vẽ. Khi đó 0,25  2a 4 2a  IV A(0; 0; 0), B(a;0; 0), D(0; 2 2a;0), S  ; ; 2a  , C (a; 2 2a; 0)  3 3   5a 2 2 a  S M  ; ; a  .  6 3   AC = (a; 2 2a;0)   5a 2 2a  AM =  ; ; a  ⇒ M  6 3  0,25   AC ∧ AM = (2 2a ; −a 2 ; − 2a 2 ) 2 D Mặt phẳng (ACM) đi qua điểm C A và có vtpt  H n = (2 2; −1; − 2) nên có O A B phương trình là
  5. −2 2a 2 2a 2 2 x − y − 2 z = 0 ⇒ d ( D;( ACM )) = = 8 +1+ 2 11 2 x 2 + xy 2 y 2 + yz 2 z 2 + zx 1,00 Chứng minh + + ≥ 1 (1) ( y + zx + z ) 2 ( z + xy + x) 2 ( x + yz + y )2 Ta có ( y + zx + z ) 2 = ( y . y + x . z + z . z )2 ≤ ( y + x + z )( y + z + z ) 1 1 2 x 2 + xy 2 x 2 + xy 0,25 ⇒ ≥ ⇔ ≥ ( y + zx + z ) 2 ( x + y + z )( y + 2 z ) ( y + zx + z ) 2 ( x + y + z )( y + 2 z ) 1  2 x 2 + xy  1  2 x 2 + 2 xy + 2 xz  =  + x − x =  − x ( x + y + z)  y + 2 z  (x + y + z)  y + 2z  V 2x x = − . Tương tự, cộng lại ta được 0,25 y + 2z x + y + z 2x 2y 2z VT (1) ≥ + + −1 y + 2z z + 2x x + 2 y  x2 y2 z2  2( x + y + z ) 2 = 2 + +  −1 ≥ −1 0,25  xy + 2 xz yz + 2 yx zx + 2 zy  3( xy + yz + zx) Chứng minh được ( x + y + z ) 2 ≥ 3( xy + yz + zx) . Suy ra VT (1) ≥ 2 − 1 = 1 0,25 Đẳng thức xảy ra x = y = z VI.a Viết ptđt đi qua I và cắt d1, d2 lần lượt tại A và B sao cho AB = 2 2 1,00 A ∈ d1 ⇒ A(a; −3a − 5); B ∈ d 2 ⇒ B(b; −3b − 1)    IA = (a − 1; −3a − 3) ≠ 0; IB = (b − 1; −3b + 1) 0,25   b − 1 = k (a − 1) I, A, B thẳng hàng ⇒ IB = k IA ⇔  −3b + 1 = k (−3a − 3) Nếu a = 1 ⇒ b = 1 ⇒ AB = 4 (không TM) b −1 0,25 Nếu ⇒ −3b + 1 = (−3a − 3) ⇔ a = 3b − 2 1 a −1 AB = (b − a ) 2 + [3(a − b) + 4] = 2 2 ⇔ t 2 + (3t + 4)2 = 8, t = b − a 2  t = −2 0,25 ⇔ 5t 2 + 12t + 4 = 0 ⇔  t = − 2  5 t = −2 ⇒ b − a = −2 ⇒ b = 2, a = 4 ⇒ ∆ : 5 x + y − 3 = 0 −2 −2 6 8 0,25 t= ⇒b−a = ⇒ b = , a = ⇒ ∆ :13 x + y − 11 = 0 5 5 5 5 2 Tìm điểm M thuộc ∆ sao cho đoạn thẳng OM nhỏ nhất 1,00  −3 −3 3   Gọi I là trung điểm của AB ⇒ I  ; ;  . AB = (−1; −1; −1)  2 2 2 0,25 3 Pt (Q) là x + y + z + = 0 2
  6.  7 1  Đường thẳng ∆ đi qua điểm I  − ; 0;  và có vtcp u = (2; −1; −1)  4 4  7  x = − 4 + 2t 0,25  Pt tham số của ∆ là  y = −t  1 z = − t  4  7 1  25 M ∈ ∆ ⇒ M  − + 2t ; −t ; − t  . OM = 12t 2 − 15t + 0,25  4 4  4 5  19 5 3  OM nhỏ nhất t = ⇒ M  ; − ; −  0,25 8  6 8 8 Tìm số phức z thỏa mãn (1 − 3i ) z là số thực và z − 2 + 5i = 1 . 1,00 Giả sử z = x + yi , khi đó (1 − 3i) z = (1 − 3i)(a + bi) = a + 3b + (b − 3a )i 0,25 (1 − 3i ) z là số thực ⇔ b − 3a = 0 ⇔ b = 3a 0,25 z − 2 + 5i = 1 ⇔ a − 2 + (5 − 3a )i = 1 ⇔ (a − 2)2 + (5 − 3a ) 2 = 1 0,25 VII.a a = 2 ⇒ b = 6 ⇔ 10a 2 − 34a + 29 = 1 ⇔ 5a 2 − 17 a + 14 = 0 ⇔   a = 7 ⇒ b = 21  5 5 0,25 7 21 Vậy z = 2 + 6i, z = + i 5 5 Viết phương trình đường thẳng đi qua I và cắt d1, d2 lần lượt tại B và C sao 1,00 VI.b 1 1 cho 2 + đạt giá trị nhỏ nhất AB AC 2 d1 ⊥ d 2 , d1 ∩ d 2 = A ⇒ A(−2;1) 0,25 Gọi H là hình chiếu của A trên BC. 1 ∆ABC vuông tại A nên 1 + 1 = 1 0,25 2 2 2 AB AC AH 1 1 1 + nhỏ nhất ⇔ nhỏ nhất ⇔ AH lớn nhất ⇔ H ≡ I 0,25 AB 2 AC 2 AH 2   Khi đó ∆ qua I và có vtpt n = AI = (−1; −1) . 0,25 Pt ∆ là x + y + 1 = 0 2 Tìm M thuộc (P) sao cho MA2 + MB2 + MC2 đạt giá trị nhỏ nhất 1,00 Gọi G là trọng tâm tam giác ABC. 0,25 Chứng minh được MA2 + MB2 + MC2 = 3MG2 + GA2 + GB2 + GC2 MA2 + MB2 + MC2 nhỏ nhất MG nhỏ nhất ⇔ M là hình chiếu của G trên 0,25 (P). Tìm được tọa độ  4 2 G 1; ;  0,25  3 3
  7.  22 61 17  Tìm được M  ; ; −  0,25  3 3 3 2 log1− x ( − xy + y − 2 x + 2 ) + log 2+ y ( x − 1)2 = 6 (1) 1,00 Giải hệ phương trình  log1− x ( y + 5 ) − log 2+ y ( x + 4 ) = 1 (2) 1 ≠ 1 − x > 0 0 ≠ x < 1 Đk Giải hệ phương trình  ⇔ 0,25 1 ≠ 2 + y > 0  −2 < y ≠ −1 (1) ⇔ 2 log1− x (1 − x) ( y + 2 ) + 2 log 2+ y (1 − x ) = 6 0,25 ⇔ 2 + 2 log1− x ( y + 2 ) + 2 log 2+ y (1 − x ) = 6 . VII.b 2 Đặt t = log1− x ( y + 2) ta được ⇔ 2 + 2t + = 6 ⇔ 2t 2 − 4t + 2 = 0 ⇔ t = 1 0,25 t y + 2 = x − 1 Thế vào (2) ta được x+2 x+2 log1− x ( x + 2 ) − log1− x ( x + 4 ) = 1 ⇔ log1− x =1⇔ = 1− x 4+ x 4+ x x = 2 − 6 (TM) 0,25 x2 − 4x − 2 = 0 ⇔   x = 2 + 6 (KTM) Vậy x = 2 − 6, y = −1 − 6 www.MATHVN.com
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2