YOMEDIA
ADSENSE
ĐỀ THI THỬ TỐT NGHIỆP_Đề 05
55
lượt xem 8
download
lượt xem 8
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
Tham khảo tài liệu 'đề thi thử tốt nghiệp_đề 05', tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
AMBIENT/
Chủ đề:
Bình luận(1) Đăng nhập để gửi bình luận!
Nội dung Text: ĐỀ THI THỬ TỐT NGHIỆP_Đề 05
- KỲ THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG ĐỀ THI THỬ TỐT NGHIỆP Môn thi: TOÁN − Giáo dục trung học phổ thông Thời gian làm bài: 150 phút, không kể thời gian giao đề Đề số 05 ------------------------------ --------------------------------------------------- I. PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I (3,0 điểm): Cho hàm số: y = x 2 (4 - x 2 ) 1) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số đã cho. 2) Tìm điều kiện của tham số b để phương trình sau đây có 4 nghiệm phân biệt: x 4 - 4x 2 + log b = 0 3) Tìm toạ độ của điểm A thuộc (C ) biết tiếp tuyến tại A song song vớ i d : y = 16x + 2011 Câu II (3,0 điểm): 1) Giải phương trình: log2 (x - 3) + log2 ( x - 1) = 3 p sin x 2 2) Tính tích phân: ò I= dx p 1 + 2 cos x 3 3) Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số: y = e x + 4e - x + 3x trên đoạn [1;2] Câu III (1,0 điểm): Cho tứ diện SABC có ba cạnh SA, SB, SC đôi một vuông góc với nhau, SB =SC = 2cm, SA = 4cm. Xác định tâm và tính bán kính của mặt cầu ngoại tiếp tứ diện, từ đó tính diện tích của mặt cầu đó. II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn một trong hai phần dưới đây 1. Theo chương trình chuẩn Câu IVa (2,0 điểm): Trong không gian Oxyz , cho điểm A (- 3;2; - 3) và hai đường thẳng x- 1 y+2 z- 3 x- 3 y- 1 z- 5 và d2 : d1 : = = = = 1 1 -1 1 2 3 1) Chứng minh rằng d1 và d2 cắt nhau. 2) Viết phương trình mặt phẳng (P) chứa d1 và d2 . Tính khoảng cách từ A đến mp(P). Câu Va (1,0 điểm): Tính diện tích hình phẳng giới hạn bởi các đường sau đây: y = x 2 + x - 1 và y = x 4 + x - 1 2. Theo chương trình nâng cao Câu IVb (2,0 điểm): Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng
- x- 1 y+2 z- 3 x y- 1 z- 6 và d2 : = d1 : = = = 1 1 -1 1 2 3 1) Chứng minh rằng d1 và d2 chéo nhau. 2) Viết phương trình mp(P) chứa d1 và song song với d2 . Tính khoảng cách giữa d1 và d2 Câu Vb (1,0 điểm): Tính diện tích hình phẳng giới hạn bởi các đường sau đây: 2x , x + y = 4 và trục hoành y= ......... Hết .......... Thí sinh không được sử dụng tài liệu. Giám thị coi thi không giải thích gì thêm. Họ và tên thí sinh: ........................................ Số báo danh: ............................................... Chữ ký của giám thị 1: .................................. Chữ ký của giám thị 2: .................................
- BÀI GIẢI CHI TIẾT. Câu I: y = x 2 (4 - x 2 ) = - x 4 + 4x 2 Tập xác định: D = ¡ Đạo hàm: y ¢ = - 4x 3 + 8x Cho é=0 éx = 0 é=0 x 4 x ê ¢ = 0 Û - 4x 3 + 8x = 0 Û 4x (- x 2 + 2) = 0 Û ê 2 ê y ê x + 2= 0Û ê2= 2Û ê - x ê=± 2 x ê ê ë ë ë Giới hạn: lim y = - ¥ ; lim y = - ¥ x®- ¥ x® +¥ Bảng biến thiên x – - 2 2 + 0 y¢ + 0 – 0 + 0 – 4 4 y – – 0 Hàm số ĐB trên các khoảng (- ¥ ; - 2),(0; 2) , NB trên các khoảng (- 2;0),( 2; + ¥ ) y Hàm số đạt cực đại yCĐ = 4 tại x CÑ = ± 2 , đạt cực tiểu yCT = 0 tại x CT = 0 . 4 Giao điểm với trục hoành: y = logm é2 = 0 é=0 x x cho y = 0 Û - x + 4x = 0 Û ê 2 Ûê 4 2 ê ê = ±2 x ê =4 x ê ë ë Giao điểm với trục tung: cho x = 0 Þ y = 0 Bảng giá trị: x 0 2 -2 - 2 2 2x -2 - 2 O 2 y 0 0 0 4 0 Đồ thị hàm số như hình vẽ bên đây: x 4 - 4x 2 + log b = 0 Û - x 4 + 4x 2 = log b (*) Số nghiệm của phương trình (*) bằng số giao điểm của (C) và d: y = logb Dựa vào đồ thị, (C) cắt d tại 4 điểm phân biệt khi và chỉ khi 0 < log b < 4 Û 1 < b < 104 Vậy, phương trình (*) có 4 nghiệm phân biệt khi và chỉ khi 1 < b < 104 Giả sử A (x 0 ; y 0 ) . Do tiếp tuyến tại A song song với d : y = 16x + 2011 nên nó có hệ số góc 3 3 f ¢ x 0 ) = 16 Û - 4x 0 + 8x 0 = 16 Û 4x 0 - 8x 0 + 16 = 0 Û x 0 = - 2 ( x0 = - 2 Þ y0 = 0 Vậy, A (- 2; 0)
- Câu II: log2 (x - 3) + log2 ( x - 1) = 3 ìx - 3 > 0 ìx > 3 ï ï Điều kiện: ï Ûï Û x > 3 . Khi đó, í í ïx - 1> 0 ïx > 1 ï ï î î log2 (x - 3) + log2 (x - 1) = 3 Û log2 é x - 3)(x - 1)ù= 3 Û (x - 3)(x - 1) = 8 ( ë û é = - 1 (loai ) x Û x 2 - x - 3x + 3 = 8 Û x 2 - 4x - 5 = 0 Û ê ê = 5 (nhan) x ê ë Vậy, phương trình đã cho có nghiệm duy nhất: x = 5 p sin x I = òp2 dx 1 + 2 cos x 3 - dt Đặt t = 1 + 2 cos x Þ dt = - 2 sin x .dx Þ sin x .dx = 2 p p Đổi cận: x 3 2 t 2 1 2 1 1 æ dx ö -÷ 2 dt 1 1 Thay vào: I = ò ×ç ÷ ò1 ç 2 ø= = ln t = ln 2 = ln 2 ç ÷ 2t è 2t 2 2 1 Vậy, I = ln 2 Hàm số y = e x + 4e - x + 3x liên tục trên đoạn [1;2] Đạo hàm: y ¢ = e x - 4e - x + 3 4 Cho y ¢ = 0 Û e x - 4e - x + 3 = 0 Û e x - + 3 = 0 Û e 2x + 3e x - 4 = 0 x e (1) Đặt t = e x (t > 0), phương trình (1) trở thành: é = 1 (nhan) t t 2 + 3t - 4 = 0 Û ê x ê = - 4 (loai) Û e = 1 Û x = 0 Ï [1;2] (loại) t ê ë 4 4 f (1) = e + + 3 và f (2) = e 2 + 2 + 6 e e 4 4 Trong 2 kết quả trên số nhỏ nhất là: e + + 3 , số lớn nhất là e 2 + 2 + 6 e e 4 4 Vậy, min y = e + + 3 khi x = 1 và max y = e 2 + 2 + 6 khi x = 2 e [1;2] [1;2] e A Câu III Gọi H,M lần lượt là trung điểm BC, SA và SMIH là hbh. Ta có, IH | | SA ^ (SBC ) Þ IH ^ SH Þ SMIH là hình chữ nhật M I Dễ thấy IH là trung trực của đoạn SA nên IS = IA S C H là tâm đường tròn ngoại tiếp D S BC và IH ^ (SBC ) nên H B
- IS = IB = IC (= IA ) Þ I là tâm mặt cầu ngoại tiếp hình chóp. 1 1 12 SB 2 + SC 2 = 2 + 22 = 2 (cm) Ta có, SH = BC = và 2 2 2 1 1 IH = SM = SA = (cm) 2 2 SH 2 + IH 2 = ( 2)2 + 22 = Bán kính mặt cầu là: R = IS = 6 Diện tích mặt cầu : S = 4p R 2 = 4p ( 6)2 = 24p (cm ) THEO CHƯƠNG TRÌNH CHUẨN Câu IVa: r d1 đi qua điểm M 1(1; - 2; 3) , có vtcp u 1 = (1;1; - 1) r d2 đi qua điểm M 2 (3;1; 5) , có vtcp u 2 = (1;2; 3) æ1 - 1 - 1 1 1 1 ö÷ rr ç ÷ ç Ta có [u 1, u 2 ] = ç 2 3 ; 3 1 ; 1 2 ÷ = (5; - 4;1) ÷ ç ÷ ç è ø uuuuuu r và M 1M 2 = (2; 3;2) r r uuuuuu r Suy ra, [u 1, u 2 ].M 1M 2 = 5.2 - 4.3 + 1.2 = 0 , do đó d1 và d2 cắt nhau. Mặt phẳng (P) chứa d1 và d2 . Điểm trên (P): M 1(1; - 2; 3) r rr vtpt của (P): n = [u 1, u 2 ] = (5; - 4;1) Vậy, PTTQ của mp(P) là: 5(x - 1) - 4(y + 2) + 1(z - 3) = 0 Û 5x - 4y + z - 16 = 0 Khoảng cách từ điểm A đến mp(P) là: 5.(- 3) - 4.2 + (- 3) - 16 42 d (A , (P )) = = = 42 2 2 2 42 5 + (- 4) + 1 Câu Va: y = x 2 + x - 1 và y = x 4 + x - 1 Cho x 2 + x - 1 = x 4 + x - 1 Û x 2 - x 4 = 0 Û x = 0, x = ± 1 1 2 - x 4 dx Vậy, diện tích cần tìm là : S = ò- 1 x 0 1 æ 3 x5ö æ3 5ö çx - ÷ + çx - x ÷ = 2 + 2 = 4 0 1 ÷ 2 4 2 4 ÷ ç ç ÛS= ò- 1 (x - x )dx + ò0 (x - x )dx = ç ÷ ÷ ç3 ÷ ÷ è3 5 ø- 1 è 5 ø0 15 15 15 THEO CHƯƠNG TRÌNH NÂNG CAO Câu IVb: r d1 đi qua điểm M 1(1; - 2; 3) , có vtcp u 1 = (1;1; - 1) r d2 đi qua điểm M 2 (- 3;2; - 3) , có vtcp u 2 = (1;2; 3)
- æ1 - 1 - 1 1 1 1 ö÷ rr ç ÷ ç Ta có [u 1, u 2 ] = ç 2 3 ; 3 1 ; 1 2 ÷ = (5; - 4;1) ÷ ç ÷ ç è ø uuuuuur và M 1M 2 = (- 4; 4; - 6) r r uuuuuu r Suy ra, [u 1, u 2 ].M 1M 2 = 5.(- 4) - 4.4 + 1.(- 6) = - 42 ¹ 0 , do đó d1 và d2 chéo nhau. Mặt phẳng (P) chứa d1 và song song với d2 . Điểm trên (P): M 1(1; - 2; 3) r rr vtpt của (P): n = [u 1, u 2 ] = (5; - 4;1) Vậy, PTTQ của mp(P) là: 5(x - 1) - 4(y + 2) + 1(z - 3) = 0 Û 5x - 4y + z - 16 = 0 Khoảng cách giữa hai đường thẳng d1 và d2 bằng khoảng cách từ M2 đến mp(P): 5.(- 3) - 4.2 + (- 3) - 16 42 d (d1, d2 ) = d (M 2 ,(P )) = = = 42 2 2 2 42 5 + (- 4) + 1 Câu Vb: y2 Ta có, y = 2x Û x = (y > 0) và x + y = 4 Û x = 4 - y 2 Trục hoành là đường thẳng có phương trình y = 0: é = - 4 (nhan) y2 y2 y + y- 4= 0Û ê Cho = 4- y Û ê = 2 (loai) y 2 2 ê ë 2 y2 Diện tích cần tìm là: S = ò + y - 4 dx 02 2 æ 3 y2 ö 2 y2 çy + 14 14 ÷ - 4y ÷ = - S = ò ( + y - 4)dx = ç (đvdt) = ÷ ç6 è ø0 2 2 3 3 0
ADSENSE
CÓ THỂ BẠN MUỐN DOWNLOAD
Thêm tài liệu vào bộ sưu tập có sẵn:
Báo xấu
LAVA
AANETWORK
TRỢ GIÚP
HỖ TRỢ KHÁCH HÀNG
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn