intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi thử tốt nghiệp THPT môn toán mã đề 197

Chia sẻ: Aae Aey | Ngày: | Loại File: PDF | Số trang:2

29
lượt xem
2
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Các bạn học sinh và quý thầy cô tham khảo miễn phí Đề thi thử tốt nghiệp THPT môn toán mã đề 197 để hệ thống kiến thức học tập cũng như trau dồi kinh nghiệm ra đề thi

Chủ đề:
Lưu

Nội dung Text: Đề thi thử tốt nghiệp THPT môn toán mã đề 197

  1. BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI THỬ TỐT NGHIỆP THPT Môn thi: Toán – THPT phân ban ĐỀ THI THỬ SỐ 197 Thời gian: 150 phút, không kể thời gian giao đề A. Phần chung cho tất cả thí sinh: 3x  2 Câu 1 : (3,0 điểm) Cho hàm số y  , có đồ thị (C) x 1 a. Khảo sát sự biến thiên và vẽ đồ thị hàm số. b. Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có tung độ bằng -2. Câu 2 : (3,0 điểm) 1. Giải phương trình: log 3 ( x 2  6)  log 3 x  log 1 5 . 3  2 2. Tính tích phân: I   cos3 x sin 2 xdx . 0 3. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số f ( x)  x.e 2 x trên đoạn [-1;0]. Câu 3 : (1,0 điểm) Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a, góc giữa cạnh bên và mặt đáy bằng 600 . Tính thể tích của khối chóp S.ABC theo a. B. Phần riêng: Thí sinh chỉ được chọn một trong hai phần sau( phấn 1 hoặc phần 2) 1. Theo chương trình chuẩn: Câu 4a: (2,0 điểm) Trong không gian với hệ trục toạ độ Oxyz cho điểm A( 2; 4; 3 ) và mặt phẳng (P) có phương trình: 2x – y + 2z - 9 = 0. 1. Viết phương trình tham số của đường thẳng (d) đi qua A và vuông góc với mặt phẳng (P). Tìm toạ độ giao điểm của đường thẳng d với mặt phẳng (P). 2. Viết phương trình mặt cầu tâm A và tiếp xúc với mặt phẳng (P) x1 Câu 5a: (2,0 điểm) Giải phương trình: x2 – 3x + 4 = 0 trên tập số phức. Tính x2 2. Theo chương trình nâng cao: Câu 4b: (2,0 điểm) Trong không gian Oxyz cho điểm M(1;-1;1) hai đường thẳng:  x  2t  1 x 1 y z  (1 ) :   ; (  2 ) :  y  4  2t và mặt phẳng (P): y + 2z = 0. 1 1 4 z  1  1. Tìm điểm N là hình chiếu vuông góc của điểm M lên đường thẳng (2). 2. Viết phương trình đường thẳng d cắt cả hai đường thẳng 1, 2 và nằm trong (P).
  2. Câu 5b: (1,0 điểm) Tìm số thực m để số phức z = m2 – m + mi - i là số thuần ảo. Thí sinh không được sử dụng tài liệu. Giám thị không giải thích gì thêm.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2