Đề thi thử tốt nghiệp THPT năm 2021 môn Toán lần 1 có đáp án - Trường THPT Thanh Chương 1
lượt xem 3
download
Đề thi thử tốt nghiệp THPT năm 2021 môn Toán lần 1 có đáp án - Trường THPT Thanh Chương 1 sẽ giúp các bạn biết được cách thức làm bài thi cũng như kiến thức của mình trong môn học, chuẩn bị tốt cho kì thi THPT Quốc gia 2021 sắp tới. Mời các bạn tham khảo.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi thử tốt nghiệp THPT năm 2021 môn Toán lần 1 có đáp án - Trường THPT Thanh Chương 1
- SỞ GD&ĐT NGHỆ AN ĐỀ THI THỬ TỐT NGHIỆP THPT LẦN 1 NĂM 2021 TRƯỜNG THPT THANH CHƯƠNG 1 Bài thi: TOÁN Thời gian làm bài: 90 phút (không kể thời gian giao đề) Đề thi gồm có 06 trang Họ và tên thí sinh: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Số báo danh: . . . . . . . . . . . . Câu 1. Cho cấp số cộng un với u1 2 và u3 4 . Số hạng u6 bằng A. u6 12. B. u6 10. C. u6 13. D. u6 7. Câu 2. Cho hình cầu có đường kính bằng 10 . Diện tích của hình cầu đã cho bằng 100 A. . B. 100 . C. 125 . D. 25 . 3 Câu 3. Hàm số y x3 3x 2 1 nghịch biến trên khoảng nào dưới đây? A. ;0 . B. 0;1 . C. 1;1 . D. 1; . 2 Tập xác định của hàm số y 2 x 4 Câu 4. 3 là A. . B. 2; . C. 2; . D. \ 2 . Câu 5. Với a là số thực dương tùy ý, khi đó log 4 2a 3 bằng 3 1 3 1 A. 1 log 2 a . log 2 a . B. C. 3log 2 a . D. 2 6log 2 a . 2 2 2 2 4 Câu 6. Họ nguyên hàm của hàm số f x là? 1 2x 1 A. 4 ln 1 2x C . B. 2ln 1 2x C . C. 2ln 1 2x C . D. ln 1 2 x C . 2 Câu 7. Cho khối lăng trụ ABC. A1 B1C1 có thể tích bằng 18, thể tích khối chóp A1. ABC bằng A. 6 . B. 9 . C. 12 . D. 3 . Câu 8. Có bao nhiêu số tự nhiên có 3 chữ số khác nhau được lập từ các chữ số 1, 2, 3, 4, 5, 6? A. 18 . B. 63 . C. C63 . D. A63 . Câu 9. Cắt hình nón bởi một mặt phẳng đi qua trục ta được thiết diện là một tam giác vuông cân có cạnh huyền bằng 6 . Thể tích V của khối nón đã cho bằng 6 6 6 6 A. V . B. V . C. V . D. V . 2 6 3 4 Câu 10. Cho hai số phức z1 1 i , z2 2 3i . Số phức liên hợp của z z1 z2 là A. z 3 2i . B. z 3 2i . C. z 3 2i . D. z 3 4i . Câu 11. Trên mặt phẳng tọa độ, điểm biểu diễn số phức z 2 i là điểm nào dưới đây? 2 A. P 3; 4 . B. Q 5; 4 . C. N 4; 3 . D. M 3; 4 . 1 Câu 12. Nghiệm của phương trình 32 x1 là 27 A. x 1 . B. x 1 . C. x 2 . D. x 3 . Câu 13. Cho hàm số f x có bảng biến thiên như sau
- Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là A. 3 . B. 4 . C. 1 . D. 2 . Câu 14. Cho khối chóp tứ giác đều có cạnh đáy bằng 2 và cạnh bên bằng 6 . Thể tích khối chóp bằng 4 8 A. 8 . B. . C. . D. 4 . 3 3 Câu 15. Cho hàm bậc ba y f x có đồ thị là đường cong hình bên. Số nghiệm thực của phương trình 4 f 2 x 9 0 là: A. 1 . B. 3 . C. 6 . D. 4 . Câu 16. Cho hàm số f x có bảng biến thiên như sau: Giá trị cực tiểu của hàm số đã cho bằng A. 1 . B. 2 . C. 3 . D. 3 . Câu 17. x 1 sin xdx bằng. A. x 1 cos x sin x C . B. cos x x 1 sin x C . C. sin x x 1 cos x C . D. x 1 cos x sin x C . 2 2 Câu 18. Cho 3 f x 2 x dx 12 . Khi đó 1 f x dx bằng 1 11 10 A. 3 . B. 2 . C. . D. . 3 3 Câu 19. Cho số phức thỏa mãn 1 2i z 1 i . Phần ảo của số phức z bằng 2 4 2 2 4 A. . B. . C. . D. . 5 5 5 5 1 Câu 20. Nghiệm của phương trình log 4 (8 3 x) là 2 A. x 3 . B. x 2 . C. x 1 . D. x 3 . Câu 21. Đường cong bên là đồ thị cùa hàm số nào dưới đây?
- A. y x3 12 x 2 . B. y x 4 2 x 2 1. C. y x 3 3x 2 . D. y x 3 12 x 2 . Câu 22. Trong không gian Oxyz , cho điểm M 2;3;1 . Biết I là hình chiếu vuông góc của M trên trục Oy . Độ dài đoạn thẳng IM bằng A. 14 . B. 5. C. 10 . D. 13 . Câu 23. Với a, b là các số thực dương tùy ý thỏa mãn log 2 a 3log8 b 3 , mệnh đề nào dưới đây đúng? A. a 6b . B. a 8b 2 . C. a 8b . D. b 8a . x x 1 2 Câu 24. Giá trị nhỏ nhất của hàm số f ( x) trên khoảng 0; bằng x A. 3 . B. 1 . C. 3 . D. 2 . Câu 25. Gọi z1 , z1 là hai nghiệm của phương trình 2 z z 1 0 . Giá trị biểu thức P z1 z2 bằng 2 2 A. P . B. P 1 . C. P 2 . D. P 2 . 2 Câu 26. Trong không gian tọa độ Oxyz , cho mặt cầu S : x 2 y 2 z 2 4 x 2 y 2 z 3 0 có bán kính bằng A. 3 . B. 3 3 . C. 1 . D. 3. Câu 27. Tập nghiệm của bất phương trình log 1 2 x 3 1 là 3 3 3 A. 3; . B. ;3 . C. ;3 . D. ;3 . 2 2 Câu 28. Cho hàm số f x liên tục trên và có bảng xét dấu của f x như sau: Số điểm cực trị của hàm số đã cho là A. 1 . B. 4 . C. 2 . D. 3 . Câu 29. Trong không gian Oxyz , cho ba điểm A 2;0; 0 , B 0; 2;0 , C 0;0; 1 . Véc-tơ nào sau đây là một véc-tơ pháp tuyến của mặt phẳng ABC ? A. n2 2; 2; 1 . B. n3 1; 1; 2 . C. n4 1;1; 2 . D. n1 1; 1; 2 . Câu 30. Trong không gian Oxyz , cho mặt phẳng P : x 2 y z 1 0 và mặt phẳng Q :3x y 2 z 2 0 . Gọi đường thẳng d là giao tuyến của hai mặt phẳng P và Q . Véc-tơ nào sau đây là một véc-tơ pháp chỉ phương của d ?
- A. b 5; 3;1 . B. u 3; 1; 5 . C. a 1; 3;5 . D. v 3;5;1 . Câu 31. Cho hình chóp tứ giác đều S . ABCD có cạnh đáy bằng 2a cạnh bên bằng 5a . Góc giữa mặt bên và mặt phẳng đáy bằng A. 60 . B. 30 . C. 70 . D. 45 . Câu 32. Trong không gian Oxyz , cho mặt phẳng P : x y z 4 0 và điểm M 1; 1;0 . Gọi H a; b; c là hình chiếu vuông góc của M trên mặt phẳng P . Giá trị biểu thức S a b c bằng A. 2 . B. 3 . C. 3 . D. 2 . Câu 33. Một người gửi 15 triệu đồng vào ngân hàng với lãi suất không đổi trong thời gian gửi là 0, 4% /tháng. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được lập vào vốn ban đầu để tính lãi cho tháng tiếp theo. Sau 5 năm người đó rút số tiền (cả vốn ban đầu và tiền lãi) để mua một chiếc xe máy giá 20 triệu đồng. Số tiền còn thừa hoặc thiếu khi người đó mua xe máy là A. thiếu 560.000 đồng. B. thừa 1.030.000 đồng. C. thừa 750.000 đồng. D. thiếu 940.000 đồng. Câu 34. Cho hình chóp S .ABC có đáy là tam giác đều, tam giác SAB vuông cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy, biết SA a 6. Khoảng cách từ điểm A đến mặt phẳng ( SBC ) bằng 3 7a 6 7a 7a A. . B. 7a . C. . . D. 7 7 2 x 1 y 1 z Câu 35. Trong không gian Oxyz , cho điểm M 1; 1; 2 và đường thẳng d : . Mặt 2 1 2 phẳng đi qua M và vuông góc với đường thẳng d có phương trình là A. 2 x y 2 z 1 0 . B. 2 x y 2 z 3 0 . C. 2 x y 2 z 3 0 . D. 2 x y 2 z 3 0 . Câu 36. Cắt hình trụ bởi mặt phẳng qua trục, thiết diện thu được là hình chữ nhật có chu vi bằng 18 cm. Giá trị lớn nhất của thể tích khối trụ bằng A. 27 cm3 . B. 64 cm3 . C. 32 cm3 . D. 16 cm3 . Câu 37. Trong không gian cho hình bình hành ABCD có AB 5; AD 2; ABC 600 . Thể tích khối tròn xoay tạo thành khi quay hình bình hành ABCD quanh cạnh AB bằng A. 13 . B. 15 . C. 12 . D. 18 . Câu 38. Số giá trị nguyên của tham số m 2020; 2021 để đường thẳng y 3mx 1 cắt đồ thị hàm số y x 3 3x 3 tại ba điểm phân biệt là A. 1 . B. 2021 . C. 670 . D. 2020 . Câu 39. Số giá trị nguyên của tham số m để hàm số y x m 5 x 2021 có ba điểm cực trị là. 4 2 2 A. 5 . B. 3 . C. 4 . D. 7 . x 1 Câu 40. Tập nghiệm của bất phương trình 4 5.2 1 0 là: x A. 2;0 . B. 0; . C. 2;0 . D. ; 2 . Câu 41. Cho số phức z thỏa mãn z 2 . Trên mặt phẳng tọa độ Oxy , tập hợp điểm biểu diễn các số 3i z phức w là một đường tròn có bán kính bằng z i
- A. 2 3 B. 2 6 C. 4 D. 2 x 1 y z 2 Câu 42. Trong không gian Oxyz , cho đường thẳng d: và mặt phẳng 2 1 1 P : x y z 3 0 . Đường thẳng d là hình chiếu vuông góc của đường thẳng d trên mặt phẳng P . Đường thẳng d đi qua điểm nào sau đây? A. K 3;1;7 . B. M 3;1;5 . C. N 3; 1;7 . D. I 2; 1; 2 . 1 dx Câu 43. Biết rằng x 0 3x 1 1 a ln 2 b ln 3 c , với a ; b ; c là các số hữu tỷ. Giá trị của a b c bằng: A. 4 . B. 0 . C. 16 . D. 2 . x2 2 y2 Câu 44. Cho x ; y là các số thực dương thỏa mãn log 2 x 2 4 xy 3 y 2 1 0 . Giá trị x 4 xy y 2 2 2 x 2 xy 2 y 2 nhỏ nhất của biểu thức P bằng: 2 xy y 2 3 5 17 A. . B. 3 . C. . D. . 2 2 5 Câu 45. Cho hình hộp ABCD. ABCD có thể tích bằng 1. Gọi M , N , P lần lượt là trung điểm các cạnh BB, CD, BC . Thể tích khối tứ diện AMNP bằng 5 5 7 1 A. . . B. C. . D. . 48 24 48 12 Câu 46. Cho hàm bậc ba y f x có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số y xf x 1 là 2 A. 9 . B. 7 . C. 6 . D. 5 . Câu 47. Cho hàm số y f ( x) liên tục trên R có bảng xét dấu đạo hàm như sau: Hàm số y 3 f 2 x 1 4 x 3 15 x 2 18 x 1 đồng biến trên khoảng nào dưới đây 3 5 5 A. 3; . B. 1; . C. ;3 . D. 2; . 2 2 2 Câu 48. Cho hàm số f ( x ) x 1 x 2 . Số giá trị nguyên của tham số m để phương trình 1 4x m 1 xf ( x ) 0 có hai nghiệm phân biệt là f 1 4 x m 1
- A. 2 . B. 3 . C. 6 . D. 4 . Câu 49. Hướng tới kỉ niệm 60 năm thành lập trường THPT Thanh Chương 1. Khối 12K57 thiết kế bồn hoa gồm hai Elip bằng nhau có độ dài trục lớn bằng 8m và độ dài trục nhỏ bằng 4m đặt chồng lên nhau sao cho trục lớn của Elip này trùng với trục nhỏ của Elip kia và ngược lại (như hình vẽ). Phần diện tích nằm trong đường tròn đi qua 4 giao điểm của hai Elip dùng để trồng cỏ, phần diện tích bốn cánh hoa nằm giữa hình tròn và Elip dùng để trồng hoa. Biết kinh phí để trồng hoa là 300.000 đồng /1m2 , kinh phí để trồng cỏ là 200.000 đồng /1m2 . Tổng số tiền dùng để trồng hoa và trồng cỏ cho bồn hoa gần với số nào nhất trong các số sau: A. 6.200.000 đồng. B. 8.200.000 đồng. C. 8.600.000 đồng. D. 9.100.000 đồng. Câu 50. Xếp 9 học sinh gồm 2 học sinh lớp 12A, 2 học sinh lớp 12B và 5 học sinh lớp 12C (trong 5 học sinh lớp 12C có hai bạn An và Bình) thành một hàng ngang. Xác suất để mỗi học sinh lớp 12B đều được đứng ở giữa hai học sinh lớp 12C, đồng thời hai bạn An và Bình luôn đứng cạnh nhau bằng: 1 1 1 1 A. . B. . C. . D. . 105 132 1260 210 _______________ HẾT _______________
- ĐÁP ÁN VÀ LỜI GIẢI CHI TIẾT BẢNG ĐÁP ÁN 1.C 2.B 3.B 4.C 5.B 6.B 7.A 8.D 9.D 10.B 11.A 12.C 13.A 14.C 15.D 16.D 17.C 18.A 19.C 20.B 21.D 22.B 23.C 24.C 25.C 26.A 27.A 28.C 29.B 30.B 31.A 32.A 33.D 34.C 35.D 36.A 37.B 38.B 39.A 40.A 41.D 42.C 43.A 44.C 45.A 46.B 47.B 48.D 49.C 50.D LỜI GIẢI CHI TIẾT Câu 1. Cho cấp số cộng un với u1 2 và u3 4 . Số hạng u6 bằng A. u6 12. B. u6 10. C. u6 13. D. u6 7. Lời giải Chọn C u2 u1 Ta có u3 u1 2d d 3 2 Vậy số hạng u6 u1 5d 2 5.3 13 . Câu 2. Cho hình cầu có đường kính bằng 10 . Diện tích của hình cầu đã cho bằng 100 A. . B. 100 . C. 125 . D. 25 . 3 Lời giải Chọn B 2 10 Diện tích của mặt cầu là S 4 R 2 4 100 . 2 Câu 3. Hàm số y x3 3x 2 1 nghịch biến trên khoảng nào dưới đây? A. ;0 . B. 0;1 . C. 1;1 . D. 1; . Lời giải Chọn B Xét hàm số y x3 3x 2 1 có y 3x 2 6 x YCBT y 0 3x 2 6 x 0 0 x 2 nên chọn B . 2 Tập xác định của hàm số y 2 x 4 Câu 4. 3 là A. . B. 2; . C. 2; . D. \ 2 . Lời giải Chọn C Điều kiện xác định: 2 x 4 0 x 2 . Vậy tập xác định của hàm số là D 2; Câu 5. Với a là số thực dương tùy ý, khi đó log 4 2a 3 bằng 3 1 3 1 A. 1 log 2 a . B. log 2 a . C. 3log 2 a . D. 2 6log 2 a . 2 2 2 2 Lời giải Chọn B 1 1 3 log 4 2a3 log 22 2a 3 log 2 2 log 2 a 3 log 2 a . 2 2 2
- 4 Câu 6. Họ nguyên hàm của hàm số f x là? 1 2x 1 A. 4 ln 1 2x C . B. 2ln 1 2x C . C. 2ln 1 2x C . D. ln 1 2 x C . 2 Lời giải Chọn B 4 Ta có: 1 2 x dx 2 ln 1 2 x C . Câu 7. Cho khối lăng trụ ABC. A1 B1C1 có thể tích bằng 18, thể tích khối chóp A1. ABC bằng A. 6 . B. 9 . C. 12 . D. 3 . Lời giải Chọn A 1 1 1 Ta có: VA1 . ABC .S ABC .d A1. ABC .VABC . A1B1C1 .18 6 . 3 3 3 Câu 8. Có bao nhiêu số tự nhiên có 3 chữ số khác nhau được lập từ các chữ số 1, 2, 3, 4, 5, 6? A. 18 . B. 63 . C. C63 . D. A63 . Lời giải Chọn D Số các số tự nhiên có 3 chữ số khác nhau được lập từ các chữ số 1, 2, 3, 4, 5, 6 bằng số chỉnh hợp chập 3 của tập hợp 6 chữ số đã cho: A63 . Câu 9. Cắt hình nón bởi một mặt phẳng đi qua trục ta được thiết diện là một tam giác vuông cân có cạnh huyền bằng 6 . Thể tích V của khối nón đã cho bằng 6 6 6 6 A. V . B. V . C. V . D. V . 2 6 3 4 Lời giải Chọn D Gọi S, O lần lượt là đỉnh và tâm đường tròn đáy của hình nón. Một mặt phẳng đi qua trục cắt hình nón theo thiết diện là tam giác vuông cân SAB (như hình vẽ).
- 1 6 Ta có: SO . AB . 2 2 2 1 1 6 6 6 Thể tích V của khối nón đã cho bằng: V .OA2 .SO . . . 3 3 2 2 4 Câu 10. Cho hai số phức z1 1 i , z2 2 3i . Số phức liên hợp của z z1 z2 là A. z 3 2i . B. z 3 2i . C. z 3 2i . D. z 3 4i . Lời giải Chọn B Ta có: z z1 z2 1 2 1 3 i 3 2i . Vậy số phức liên hợp của z z1 z2 là z 3 2i . Câu 11. Trên mặt phẳng tọa độ, điểm biểu diễn số phức z 2 i là điểm nào dưới đây? 2 A. P 3; 4 . B. Q 5; 4 . C. N 4; 3 . D. M 3; 4 . Lời giải Chọn A Ta có: z 2 i 4 4i i 2 3 4i 2 Vậy điểm biểu diễn số phức z 2 i là điểm P 3; 4 . 2 1 Câu 12. Nghiệm của phương trình 32 x1 là 27 A. x 1 . B. x 1 . C. x 2 . D. x 3 . Lời giải Chọn C 1 32 x 1 33 2 x 1 3 2 x 4 x 2 . 27 Vậy nghiệm của phương trình là x 2 . Câu 13. Cho hàm số f x có bảng biến thiên như sau Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là A. 3 . B. 4 . C. 1 . D. 2 . Lời giải Chọn A Ta có tiệm cận ngang: y 0 và y 10 Tiệm cận đứng: x 1 Tổng có 3 đường tiệm cận. Câu 14. Cho khối chóp tứ giác đều có cạnh đáy bằng 2 và cạnh bên bằng 6 . Thể tích khối chóp bằng 4 8 A. 8 . B. . C. . D. 4 . 3 3 Lời giải
- Chọn C 1 Áp dụng công thức: V Bh 3 2 2 2 6 2 Đáy là hình vuông nên: B 2 4 ; h SO SA AO 2 2 2 6 2 2 2 1 8 V .4.2 . 3 3 Câu 15. Cho hàm bậc ba y f x có đồ thị là đường cong hình bên. Số nghiệm thực của phương trình 4 f 2 x 9 0 là: A. 1 . B. 3 . C. 6 . D. 4 . Lời giải Chọn D 3 f x 9 2 Ta có: 4 f 2 x 9 0 f 2 x 4 f x 3 2 3 Dựa vào đồ thị ta thấy: đồ thị hàm số y f x cắt đường thẳng y tại 3 giao điểm và cắt 2 3 đường thẳng y tại 1 giao điểm 2 Vậy phương trình 4 f 2 x 9 0 có 4 nghiệm thực Câu 16. Cho hàm số f x có bảng biến thiên như sau: Giá trị cực tiểu của hàm số đã cho bằng A. 1 . B. 2 . C. 3 . D. 3 . Lời giải
- Chọn D Giá trị cực tiểu của hàm số đã cho là y 3 . Câu 17. x 1 sin xdx bằng. A. x 1 cos x sin x C . B. cos x x 1 sin x C . C. sin x x 1 cos x C . D. x 1 cos x sin x C . Lời giải Chọn C u x 1 du dx Đặt . dv sin xdx v cos x Khi đó x 1 sin xdx x 1 cos x cos xdx x 1 cos x sin x C . 2 2 Câu 18. Cho 3 f x 2 x dx 12 . Khi đó f x dx bằng 1 1 11 10 A. 3 . B. 2 . C. . D. . 3 3 Lời giải Chọn A Ta có 2 2 2 2 2 3 f x 2 x dx 12 3 f x dx 2 xdx 12 3 f x dx 3 12 f x dx 3 . 1 1 1 1 1 Câu 19. Cho số phức thỏa mãn 1 2i z 1 i . Phần ảo của số phức z bằng 2 4 2 2 4 A. . B. . C. . D. . 5 5 5 5 Lời giải Chọn C 2i 2i 1 2i 4 2i 4 2 1 2i z 1 i 2 z i 1 2i 5 5 5 5 2 Vậy phần ảo của số phức z bằng . 5 1 Câu 20. Nghiệm của phương trình log 4 (8 3 x) là 2 A. x 3 . B. x 2 . C. x 1 . D. x 3 . Lời giải Chọn B 1 1 log 4 (8 3 x) 8 3x 4 2 2 x 2. 2 Câu 21. Đường cong bên là đồ thị cùa hàm số nào dưới đây?
- A. y x3 12 x 2 . B. y x 4 2 x 2 1. C. y x 3 3x 2 . D. y x 3 12 x 2 . Lời giải Chọn D Đồ thị đã cho là đồ thị hàm bậc 3 có hệ số a 0 (do lim ax3 bx 2 cx d nếu a 0 ). Loại A, B. x Đồ thị cắt trục tung tại điểm có tung độ dương nên chọn D. Câu 22. Trong không gian Oxyz , cho điểm M 2;3;1 . Biết I là hình chiếu vuông góc của M trên trục Oy . Độ dài đoạn thẳng IM bằng A. 14 . B. 5. C. 10 . D. 13 . Lời giải Chọn B I là hình chiếu vuông góc của M trên trục Oy I 0;3; 0 . 2 2 IM 12 5. Câu 23. Với a, b là các số thực dương tùy ý thỏa mãn log 2 a 3log8 b 3 , mệnh đề nào dưới đây đúng? A. a 6b . B. a 8b2 . C. a 8b . D. b 8a . Lời giải Chọn C a a Ta có: log 2 a 3log8 b 3 log 2 a log 2 b 3 log 2 3 8 a 8b . b b x2 x 1 Câu 24. Giá trị nhỏ nhất của hàm số f ( x) trên khoảng 0; bằng x A. 3 . B. 1 . C. 3 . D. 2 . Lời giải Chọn C x2 1 Ta có: f '( x) . x2 x 1 0; f '( x) 0 . x 1 0; Bảng biến thiên:
- Suy ra Min f ( x) 3. 0; Câu 25. Gọi z1 , z1 là hai nghiệm của phương trình 2 z 2 z 1 0 . Giá trị biểu thức P z1 z2 bằng 2 A. P . B. P 1 . C. P 2 . D. P 2 . 2 Lời giải Chọn C 2 2 1 7 1 7i 2 1 7i Ta có: 2 z 2 z 1 0 z 0 z z 4 16 4 16 4 4 2 2 1 7 1 7 2 2 Vậy P z1 z2 2. 4 4 4 4 Câu 26. Trong không gian tọa độ Oxyz , cho mặt cầu S : x 2 y 2 z 2 4 x 2 y 2 z 3 0 có bán kính bằng A. 3 . B. 3 3 . C. 1 . D. 3. Lời giải Chọn A Ta có: x 2 y 2 z 2 4 x 2 y 2 z 3 0 x 2 y 1 z 1 9 . 2 2 2 Câu 27. Tập nghiệm của bất phương trình log 1 2 x 3 1 là 3 3 3 A. 3; . B. ;3 . C. ;3 . D. ;3 . 2 2 Lời giải Chọn A 2 x 3 0 3 2 x 3 0 x Ta có: log 1 2 x 3 1 1 2 x 3 3 1 2. 3 2 x 3 x 3 3 3 Vậy bất phương trình có tập nghiệm S ;3 . 2 Câu 28. Cho hàm số f x liên tục trên và có bảng xét dấu của f x như sau: Số điểm cực trị của hàm số đã cho là A. 1 . B. 4 . C. 2 . D. 3 .
- Lời giải Chọn C Để x0 là điểm cực trị của f x khi và chỉ khi x0 TXĐ; f x0 0 và f x đổi dấu qua x0 . Qua bảng xét dấu của f x ta thấy hàm số đã cho có 2 điểm cực trị. Câu 29. Trong không gian Oxyz , cho ba điểm A 2;0; 0 , B 0; 2;0 , C 0;0; 1 . Véc-tơ nào sau đây là một véc-tơ pháp tuyến của mặt phẳng ABC ? A. n2 2; 2; 1 . B. n3 1; 1; 2 . C. n4 1;1; 2 . D. n1 1; 1; 2 . Lời giải Chọn B Ta có AB 2; 2;0 ; AC 2; 0; 1 . Gọi n là một véc-tơ pháp tuyến của mặt phẳng ABC Khi đó, n AB; AC 2; 2; 4 2 1; 1; 2 . Vậy một véc-tơ pháp tuyến của ABC là n3 1; 1; 2 . Câu 30. Trong không gian Oxyz , cho mặt phẳng P : x 2 y z 1 0 và mặt phẳng Q :3x y 2 z 2 0 . Gọi đường thẳng d là giao tuyến của hai mặt phẳng P và Q . Véc-tơ nào sau đây là một véc-tơ pháp chỉ phương của d ? A. b 5; 3;1 . B. u 3; 1; 5 . C. a 1; 3;5 . D. v 3;5;1 . Lời giải Chọn B Ta có n P 1; 2;1 ; nQ 3; 1; 2 Gọi ud là một véc-tơ chỉ phương của d . Khi đó ud n P ; nQ 3;1;5 1 3; 1; 5 . Vậy một một véc-tơ chỉ phương của d là u 3; 1; 5 . Câu 31. Cho hình chóp tứ giác đều S . ABCD có cạnh đáy bằng 2a cạnh bên bằng 5a . Góc giữa mặt bên và mặt phẳng đáy bằng A. 60 . B. 30 . C. 70 . D. 45 . Lời giải Chọn A
- Gọi O là tâm hình vuông ABCD . Khi đó SO ABCD . CD Gọi H là trung điểm cạnh CD . Ta có: OH CD và HD OH a. 2 Do SCD cân tại S nên SH CD . . Vậy góc giữa mặt bên SCD và mặt phẳng ABCD là góc SHO Trong SHD vuông tại H ta có SH SD 2 HD 2 5a 2 a 2 2a . OH a 1 SHO Khi đó cos SHO 60 . SH 2a 2 Câu 32. Trong không gian Oxyz , cho mặt phẳng P : x y z 4 0 và điểm M 1; 1;0 . Gọi H a; b; c là hình chiếu vuông góc của M trên mặt phẳng P . Giá trị biểu thức S a b c bằng A. 2 . B. 3 . C. 3 . D. 2 . Lời giải Chọn A Gọi là đường thẳng qua M và vuông góc với mặt phẳng P . Khi đó ta có: VTCP u n P 1; 1;1 . x 1 t Suy ra phương trình tham số của đường thẳng là: y 1 t . z t Do H P nên giá trị tham số t ứng với tọa độ H là nghiệm phương trình 1 t 1 t t 4 0 t 2 . Vậy tọa độ H là H 1;1; 2 . Suy ra S 1 1 2 2 . Câu 33. Một người gửi 15 triệu đồng vào ngân hàng với lãi suất không đổi trong thời gian gửi là 0, 4% /tháng. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được lập vào vốn ban đầu để tính lãi cho tháng tiếp theo. Sau 5 năm người đó rút số tiền (cả vốn ban đầu và tiền lãi) để mua một chiếc xe máy giá 20 triệu đồng. Số tiền còn thừa hoặc thiếu khi người đó mua xe máy là A. thiếu 560.000 đồng. B. thừa 1.030.000 đồng. C. thừa 750.000 đồng. D. thiếu 940.000 đồng. Lời giải Chọn D Sau 5 năm người đó rút ra số tiền là A A0 1 r 15.000.000 1 0, 004 19.059.611 (đồng). n 60 Vậy khi mua xe máy người đó còn thiếu số tiền là 20.000.000 19.059.611 940.000 (đồng). Câu 34. Cho hình chóp S .ABC có đáy là tam giác đều, tam giác SAB vuông cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy, biết SA a 6. Khoảng cách từ điểm A đến mặt phẳng ( SBC ) bằng 3 7a 6 7a 7a A. . B. 7a . C. . D. . 7 7 2
- Lời giải Chọn C S K A C H M N B Kẻ SH AB ( H là trung điềm AB ). Suy ra SH ( ABC ) . Có AB 2 SA2 SB 2 2SA2 AB SA 2 a 12 2a 3. Và d ( A, ( SBC )) 2d ( H , ( SBC )) Từ H kẻ HN BC ( HN / / AM với M là trung điểm BC ) và kẻ HK SN . Ta có HN BC và SH BC nên BC SHN , suy ra HK BC . Mặt khác HK BC và HK SN nên HK SBC , suy ra d ( A, ( SBC )) 2d ( H , ( SBC )) 2 HK . 1 1 1 AB 3 3a Có SH AB a 3 ; HN AM . và 2 2 2 2 2 1 1 1 1 4 7 3a 6 a 6a 7 2 2 2 2 2 2 HK . Do đó d ( A, ( SBC )) . HK SH HN 3a 9a 9a 7 7 7 x 1 y 1 z M 1; 1; 2 d: . Câu 35. Trong không gian Oxyz , cho điểm và đường thẳng 2 1 2 Mặt phẳng đi qua M và vuông góc với đường thẳng d có phương trình là A. 2 x y 2 z 1 0 . B. 2 x y 2 z 3 0 . C. 2 x y 2 z 3 0 . D. 2 x y 2 z 3 0 . Lời giải Chọn D Có ( P ) đi qua M (1; 1;2) và có VTPT nP ud (2; 1; 2) (2;1; 2) . Suy ra ( P) : 2( x 1) 1( y 1) 2( z 2) 0 hay ( P) : 2 x y 2 z 3 0 Câu 36. Cắt hình trụ bởi mặt phẳng qua trục, thiết diện thu được là hình chữ nhật có chu vi bằng 18 cm. Giá trị lớn nhất của thể tích khối trụ bằng A. 27 cm3 . B. 64 cm3 . C. 32 cm3 . D. 16 cm3 . Lời giải Chọn A
- B' O' A' B O A Gọi R, h lần lượt là bán kính đáy và chiều cao của hình trụ. Theo đề có 2(2R h) 18 2 R h 9 Có V R 2 .h R 2 (9 2 R) R.R.(9 2 R ) ( R R 9 2 R)3 27 . 27 Câu 37. Trong không gian cho hình bình hành ABCD có AB 5; AD 2; ABC 600 . Thể tích khối tròn xoay tạo thành khi quay hình bình hành ABCD quanh cạnh AB bằng A. 13 . B. 15 . C. 12 . D. 18 . Lời giải Chọn B Kẻ CH , DK AB Khối tròn xoay được tạo ra khi hình bình hành ABCD quay quanh trục AB gồm khối tròn xoay do hình thang vuông AHCD quay quanh cạnh AH và khối nón tròn xoay do tam giác vuông BHC quay quanh cạnh BH Do BHC AKD nên khối tròn xoay do hình bình hành ABCD quay quanh trục AB có thể tích bằng thể tích khối trụ do hình chữ nhật KHCD quay quanh cạnh KH AB 5 Ta có CH BC.sin 600 3 Vậy thể tích khối tròn xoay cần tìm bằng: V CH 2 .HK .3.5 15 . Câu 38. Số giá trị nguyên của tham số m 2020; 2021 để đường thẳng y 3mx 1 cắt đồ thị hàm số y x 3 3x 3 tại ba điểm phân biệt là
- A. 1 . B. 2021 . C. 670 . D. 2020 . Lời giải Chọn B Phương trình hoành độ giao điểm của đồ thị y x 3 3x 3 và đường thẳng y 3mx 1 là x3 3x 3 3mx 1 x3 2 3x m 1 (1). Nếu x 0 thì (1) không thỏa mãn. x3 2 Nếu x 0 ta có (1) 3 m 1 . x x3 2 Xét hàm số g x với x \ 0 . x 2 x3 2 Ta có g x , x \ 0 x2 g x 0 x 1 . x3 2 Bảng biến thiên của hàm số g x với x \ 0 x x 0 1 g x 0 g x 3 Dựa vào bảng biến thiên ta thấy đồ thị hàm số đã cho cắt đường thẳng y 3mx 1 tại 3 điểm phân biệt 3 m 1 3 m 1 1 m 0; . Kết hợp với điều kiện m 2020; 2021 ta được m 0; 2021 . Do m m 1; 2;3;...; 2021 . Câu 39. Số giá trị nguyên của tham số m để hàm số y x 4 m 2 5 x 2 2021 có ba điểm cực trị là. A. 5 . B. 3 . C. 4 . D. 7 . Lời giải Chọn A Tập xác định D . Ta có y 4 x 3 2 m 2 5 x 2 x 2 x 2 m 2 5 . x 0 y 0 2 . x m 5 (1) 2 2 Hàm số có ba điểm cực trị Phương trình y 0 có ba nghiệm phân biệt (1) phải có hai nghiệm phân biệt khác 0 m2 5 2 0 m 2 5 0 m 5; 5 . Do m m 2; 1;0;1; 2 . Câu 40. Tập nghiệm của bất phương trình 4 x 1 5.2x 1 0 là: A. 2;0 . B. 0; . C. 2;0 . D. ; 2 . Lời giải Chọn A
- TXĐ: 1 4 x 1 5.2 x 1 0 ⇔ 4.22 x 5.2 x 1 0 ⇔ 2 x 1 ⇔ 2 x 0 . 4 Câu 41. Cho số phức z thỏa mãn z 2 . Trên mặt phẳng tọa độ Oxy , tập hợp điểm biểu diễn các số 3i z phức w là một đường tròn có bán kính bằng z i A. 2 3 B. 2 6 C. 4 D. 2 Lời giải Chọn D Theo bài ra 3 i z w wz wi 3 i z z (w 1) i (1 w) 3 z i z . w 1 i (1 w) 3 w 1 3i Đặt w a bi 2 a bi 1 (a bi) 3i 1 2 a bi 1 (b 3)i a 1 4 ( a 1) 2 b 2 ( a 1) 2 (b 3) 2 3( a 1) 2 3b 2 6b 9 0 (a 1) 2 b 2 2b 1 4 0 (a 1) 2 (b 1) 2 4 Tập hợp điểm biểu diễn w là đường tròn bán kính R 2 . x 1 y z 2 Câu 42. Trong không gian Oxyz , cho đường thẳng d: và mặt phẳng 2 1 1 P : x y z 3 0 . Đường thẳng d là hình chiếu vuông góc của đường thẳng d trên mặt phẳng P . Đường thẳng d đi qua điểm nào sau đây? A. K 3;1;7 . B. M 3;1;5 . C. N 3; 1;7 . D. I 2; 1; 2 . Lời giải Chọn C Ta có: ud 2; 1;1 ; n P 1; 1; 1 Gọi Q là mặt phẳng chứa đường thẳng d và vuông góc với mặt phẳng P : Mặt phẳng Q có một vtpt là: nQ ud ; n P 2;3; 1 Đường thẳng d là giao tuyến của mặt phẳng Q và mặt phẳng P : Đường thẳng d có một vtcp là: ud n P ; nQ 4; 1;5 Gọi E là giao điểm của đường thẳng d và mặt phẳng P . Tọa độ của E là nghiệm của hệ: x 1 y 2 1 x 2 y 1 x 1 y z2 ⇔ y z 2 ⇔ y 0 ⇒ E 1;0; 2 1 1 x y z 3 z 2 x y z 3 0 x 1 4t Phương trình tham số của đường thẳng d là: d : y t z 2 5t
- Với t 1 ⇒ N 3; 1; 7 d . 1 dx Câu 43. Biết rằng x 0 3x 1 1 a ln 2 b ln 3 c , với a ; b ; c là các số hữu tỷ. Giá trị của a b c bằng: A. 4 . B. 0 . C. 16 . D. 2 . Lời giải Chọn A 1 dx Xét I 0 x 3x 1 1 t 2 1 2 Đặt 3x 1 t x dx tdt 3 3 Với x 0 t 1 x 1 t 2 2 2 t dt 2 2 2 tdt 2 1 I 2 3 2 2 2 dt 2 2 ln t 2 ln t 1 t 1 t 3t 2 1 t 2 t 1 1 1 t 1 1 3 10ln 2 6ln 3 . Do đó a 10 ; b 6 ; c 0 . Khi đó a b c 4 . x2 2 y2 Câu 44. Cho x ; y là các số thực dương thỏa mãn log 2 2 x 2 4 xy 3 y 2 1 0 . Giá trị x 4 xy y 2 2 x 2 xy 2 y 2 nhỏ nhất của biểu thức P bằng: 2 xy y 2 3 5 17 A. . B. 3 . C. . D. . 2 2 5 Lời giải Chọn C x2 2 y2 Ta có: log 2 x 2 4 xy 3 y 2 1 0 x 4 xy y 2 2 log 2 2 x 2 4 y 2 2 x 2 4 y 2 log 2 x 2 4 xy y 2 x 2 4 xy y 2 1 Xét hàm số f t log 2 t t trên 0; 1 f t 1 0 t 0; Hàm số f t đồng biến trên 0; t ln 2 Do đó 1 f 2 x 2 4 y 2 f x 2 4 xy y 2 2 x 2 4 y 2 x 2 4 xy y 2 x x 2 4 xy 3 y 2 0 1 3 y 2 x x 2 2 2 x xy 2 y 2 2 y y Khi đó: P 2 xy y 2 x 2 1 y 2t 2 t 2 Xét hàm số g t trên 1;3 2t 1
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Địa lí có đáp án - Trường THPT chuyên Nguyễn Trãi (Lần 1)
5 p | 172 | 22
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Địa Lí có đáp án - Trường THPT Trần Phú (Lần 1)
5 p | 123 | 13
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Toán lần 2 có đáp án - Trường THPT Ngô Quyền, Quảng Ninh
6 p | 177 | 11
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Địa lí có đáp án - Trường THPT Hàn Thuyên (Lần 2)
8 p | 93 | 10
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Địa lí có đáp án - Trường THPT Lý Thái Tổ (Lần 1)
7 p | 85 | 7
-
Đề thi thử tốt nghiệp THPT năm 2021 môn GDCD có đáp án - Trường THPT Hàn Thuyên (Lần 2)
5 p | 83 | 7
-
Đề thi thử tốt nghiệp THPT năm 2021 môn GDCD có đáp án - Trường THPT Hồng Lĩnh (Lần 1)
5 p | 114 | 7
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Toán lần 2 - Trường THPT Thanh Chương 1
6 p | 116 | 7
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Toán lần 3 - Trường THPT Nguyễn Đăng Đạo
6 p | 88 | 6
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Toán có đáp án - Trường THPT Nguyễn Tất Thành, Gia Lai
204 p | 115 | 6
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Toán lần 1 có đáp án - Trường THPT Chuyên Nguyễn Trãi, Hải Dương
9 p | 104 | 5
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Toán lần 1 có đáp án - Trường THPT Hồng Lĩnh, Hà Tĩnh
7 p | 67 | 5
-
Bộ đề thi thử tốt nghiệp THPT Quốc gia 2020 môn Toán (Có đáp án)
654 p | 99 | 5
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Toán có đáp án - Trường THPT Phan Đình Phùng, Quảng Bình
5 p | 121 | 4
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Toán lần 1 có đáp án - Trường THPT Trần Phú, Hà Tĩnh
5 p | 85 | 4
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Toán có đáp án - Trường THPT Đồng Quan
6 p | 80 | 4
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Toán lần 2 - Trường THPT Tĩnh Gia 3
6 p | 86 | 4
-
Đề thi thử tốt nghiệp THPT năm 2021 môn Toán có đáp án - Trường THPT Cầm Bá Thước
15 p | 66 | 4
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn