intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

ĐỀ TRHI TUYỂN SINH ĐẠI HỌC MÔN TOÁN KHỐI A NĂM 2011 TRƯỜNG THPT LÝ TỰ TRỌNG

Chia sẻ: Le Van Hieu | Ngày: | Loại File: DOC | Số trang:7

115
lượt xem
34
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'đề trhi tuyển sinh đại học môn toán khối a năm 2011 trường thpt lý tự trọng', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: ĐỀ TRHI TUYỂN SINH ĐẠI HỌC MÔN TOÁN KHỐI A NĂM 2011 TRƯỜNG THPT LÝ TỰ TRỌNG

  1. TRUNG TÂM LUYỆN THI ĐẠI HỌC ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 2011 THPT CHUYÊN LÝ TỰ TRỌNG CẦN THƠ Môn thi: TOÁN; khối A Thời gian làm bài: 180 phút, không kể phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm) Câu I (2 điểm) Cho hàm số y = x 3 − 3 x + 1 (1) 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1). 2. Định m để phương trình sau có 4 nghiệm thực phân biệt: 3 x − 3 x = m 3 − 3m Câu II (2 điểm) (2 − sin 2 2 x)(2 cos 2 x − cos x) 1. Giải phương trình: cot 4 x + 1 = 2sin 4 x  x 2 y + xy 2 + x − 5 y = 0  ( x, y ∈ ¡ ) 2. Giải hệ phương trình:   2 xy + y − 5 y + 1 = 0 2  Câu III (1 điểm) π  cos 2  x + ÷  8 Tính ∫ sin 2 x + cos 2 x + 2 dx Câu IV (1 điểm) Cho hình chóp S.ABC có mặt phẳng (SAC) vuông góc với mặt phẳng (ABC), SA = AB = a, AC = 2a và · ASC = · ABC = 900. Tính thể tích khối chóp S.ABC và cosin của góc giữa hai mặt phẳng (SAB), (SBC). Câu V (1 điểm) Cho ba số thực dương a, b, c thỏa mãn: a.b.c = 1. Tìm giá trị lớn nhất của biểu thức: ab bc ca T= + + a + b + ab b + c + bc c + a + ca PHẦN TỰ CHỌN (3 điểm) - Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B) A. Theo chương trình Chuẩn Câu VI.a (2 điểm) 1. Trong mặt phẳng tọa độ Oxy , cho hai điểm A(4; −1), B (−3; −2) và đường thẳng ∆ : 3x + 4 y + 42 = 0 . Viết phương trình đường tròn (C ) đi qua hai điểm A, B và tiếp xúc với đường thẳng ∆ . 2. Trong không gian tọa độ Oxyz, cho bốn điểm A(6; −6; 6), B(4; 4; 4), C(− 2; 10; −2) và S(−2; 2; 6). Chứng minh O, A, B, C là bốn đỉnh của một hình thoi và hình chiếu vuông góc của S trên mặt phẳng (OABC) trùng với tâm I của OABC. Tính khoảng cách giữa hai đường thẳng SO và AC. Câu VII.a (1 điểm) Giải phương trình: (2 x + 1) log 3 x − (4 x + 9) log 3 x + 14 = 0 2 B. Theo chương trình Nâng cao Câu VI.b (2 điểm) 1. Trong mặt phẳng tọa độ Oxy , cho hình thoi ABCD có A(1; 0), B(3; 2) và · ABC = 1200. Xác định tọa độ hai đỉnh C và D. 2. Trong không gian tọa độ Oxyz, cho ba điểm A, B, C lần lượt di động trên các tia Ox, Oy và Oz sao cho mặt phẳng (ABC) không đi qua O và luôn đi qua điểm M(1; 2; 3). Xác định tọa độ các điểm A, B, C để thể tích khối tứ diện OABC đạt giá trị nhỏ nhất. Câu VII.b (1 điểm) 32 x + y + 2 + 3x + 2 y = 27 x + y + 9 ( x, y ∈ ¡ ) Giải hệ phương trình:  log 3 ( x + 1) + log 3 ( y + 1) = 1 ---------------Hết--------------- Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.
  2. Họ và tên thí sinh:……………………………………………..Số báo danh………………………………………
  3. ĐÁP ÁN – THANG ĐIỂM Môn thi: TOÁN; khối: A Điểm Câu Đáp án 1. (1,0 điểm) I (2,0 • Tập xác định: D = ¡ điểm) • Sự biến thiên: 0,25 - Chiều biến thiên: y ' = 3x 2 − 3, y ' = 0 ⇔ 3 x 2 − 3 = 0 ⇔ x = ±1, y ( −1) = 3, y (1) = −1 Hàm số đồng biến trên mỗi khoảng ( −∞; −1) và (1; +∞ ), nghịch biến trên khoảng (−1; 1) + Hàm số đạt cực tiểu tại x = 1 và yCT = y(1) = −1; - Cực trị: 0,25 + Hàm số đạt cực đại tại x = -1 và yCĐ = y(-1) = 3. - Giới hạn: xlim = +∞, xlim = −∞ →−∞ →+∞ Bảng biến thiên: −1 −∞ +∞ 1 +0−0 y’(x) + 3 0,25 +∞ y(x) −1 −∞ y '' = 6 x, y '' = 0 ⇔ 6 x = 0 ⇔ x = 0, y (0) = 1 y ⇒ điểm uốn I(0; 1) Đồ thị: đi qua các điểm (−2; −1), (2; 3) và nhận điểm uốn I(0; 1) là tâm đối xứng. • • 3 0,25 •1 x −2 1 −1 0 2 • • −1 2. (1,0 điểm) Phương trình đã cho là phương trình hoành độ giao điểm giữa đồ thị 3 (C’) của hàm số: y = x − 3 x + 1 và đường thẳng (d): y = m 3 − 3m + 1 ((d) cùng phương với trục hoành) 0,25 3 Xét hàm số: y = x − 3 x + 1 , ta có: + Hàm số là một hàm chẵn nên (C’) nhận trục Oy làm trục đối xứng, đồng thời ∀x > 0 thì y = x 3 − 3 x + 1 = x3 − 3 x + 1 Từ đó (C’) được suy từ (C) như ở hình bên: 0,25 y 3 • • (d) •1 x −1 1 0 −2 2 • • −1
  4. + Dựa vào đồ thị (C’) ta suy ra điều kiện của m để phương trình đã cho có 4 nghiệm phân biệt là:  −2 < m < − 3 m3 − 3m < 0 0,5   −1 < m3 − 3m + 1 < 1 ⇔  ⇔  0 < m < 3  m3 − 3m + 2 > 0    m ≠ 1  1. (1,0 điểm) II 1) ĐK: x ≠ kπ , k ∈ ¢ (2,0 điểm) Với ĐK trên phương trình đã cho tương đương với: 1 cos4 x + sin 4 x = (2 - sin 2 2x )(cos 2 x - cos x ) 0,25 2 12 1 2 2 Û 1 - sin 2x = (2 - sin 2x )(cos x - cos x ) 2 2 1 2 - sin 2 2x = 2(2 - sin 2 2x )(cos2 x - cos x ) Û 1 = 2 cos 2 x - cos x 0,25 2 2 Û 2 cos x - cos x - 1 = 0 é = l 2p x ê ê Û 0,25 ê = ± 2p + l 2p, (l Î Z ) x ê 3 ë 2p + l 2p, l Î ¢ So với điều kiện ta suy ra nghiệm của phương trình là x = ± 0,25 3 2. (1,0 điểm) Nhận xét: Hệ đã cho không có nghiệm (x; 0), nên tương đương với: 2 x  x + xy + y − 5 = 0  0,25  2 x + y + 1 − 5 = 0  y   1 ( x + y )( x + y ) = 6  ⇔ 0,25 x + y + x + 1 = 5  y   x + y = 2   x + 1 = 3 ( I )  y  ⇔ 0,25  x + y = 3  ( II )  1  x + = 2 y    5 − 5 ±1+ 5   5 + 5 ±1− 5  Giải các hệ (I), (II) ta được nghiệm của hệ là:   ;  ;  2 ; 0,25  2 2 2    π III 0,25  π cos 2  x + ÷ 1 + cos(2 x + ) (1,0 1  8 4 dx ∫ sin 2 x + cos 2 x + 2 dx = 2 2 ∫ điểm) π 1 + sin(2 x + ) 4
  5.    cos(2 x + π ) ÷ 1 dx ÷ 4 dx + ∫ ∫ = 0,25 2÷ π 2 2 1 + sin(2 x + ) π π÷   sin( x + 8 ) + cos( x + 8 )  ÷  4    π    cos(2 x + 4 ) ÷ 1 1 dx ∫ dx + ∫ = ÷ 0,25 2 2  1 + sin(2 x + π ) 2 sin 2 ( x + 3π ) ÷  8  4 1 3π  π =  ln 1 + sin(2 x + ) − cot( x + ) ÷ + C 0,25 4 2 4 8  + Kẻ SH vuông góc AC (H ∈ AC) ⇒ SH IV (1,0 ⊥ (ABC) S điểm) a3 ⇒ SC = BC = a 3, SH = , 2 0,25 a2 3 S ∆ABC = 2 a3 1 ⇒ VS . ABC = S ∆ABC .SH = M 3 4 + Gọi M là trung điểm SB và ϕ là góc A C giữa hai mặt phẳng (SAB) và (SBC). H Ta có: SA = AB = a, SC = BC = a 3 0,25 ⇒ AM ⊥ SB và CM ⊥ SB ⇒ cos ϕ = cos · B AMC a3 a6 + ∆ SAC = ∆ BAC ⇒ SH = BH = ⇒ SB = 0,25 2 2 2 AS + 2 AB 2 − SB 2 10a 2 2 a 10 AM là trung tuyến ∆ SAB nên: AM = = ⇒ AM = 2 4 16 4 AM + CM − AC 2 2 2 a 42 105 · Tương tự: CM = ⇒ cos AMC = =− 0,25 4 2.AM.CM 35 105 Vậy: cos ϕ = 35 V 1 1 1 Đặt a = , b = , c = . Khi đó theo giả thiết ta có x, y, z là 3 số thực dương thỏa (1,0 x y z điểm) mãn: xyz = 1 và biểu thức T đươc viết lại: 0,25 1 1 1 T= + + x + y +1 y + z +1 z + x +1 ) ( 2 Ta luôn có Bđt thức đúng: 3 x − 3 y ≥ 0 ⇔ 3 x 2 − 3 xy + 3 y 2 ≥ 3 xy ) ) ( ( 3  ⇒ x + y + 1 = 3 x + 3 y  x 2 − 3 xy + 3 y 2 ÷+ 1 ≥ 3 x + 3 y 3 xy + 1   (3 x +3 y +3 z) 0,25 ⇒ x + y + 1 ≥ 3 xy 3z 1 ⇒ ≤ (1) x + y +1 3 x + 3 y + 3 z
  6. 3x 3y 1 1 ≤ ≤ Tương tự: (2); (3) 0,25 z + x +1 3 x + 3 y + 3 z y + z +1 3 x + 3 y + 3 z Cộng vế theo vế các bđt (1), (2), (3) ta được: T ≤ 1 . Đẳng thức xảy ra khi và chỉ khi x = y = z = 1 hay a = b = c = 1 0,25 Vậy Tmax = 1 đạt được khi a = b = c = 1 1. (1,0 điểm) VI.a (2,0 Gọi I(a;b) là tâm và R là bán kính của (C) 0,25 điểm) AI2 = BI2 ⇔ 7a + b = 2 (1) (3a + 4b + 42) 2 BI2 = d2(I,∆ ) ⇔ (a + 3)2 + (b + 2)2 = 0,25 (2) 25 Giải hệ phương trình gồm (1) và (2) ta được I(1;-5) hoặc I(-3;23) 0,25 + I(1; -5) ⇒ R = 5 (C): (x – 1)2 + (y + 5)2 = 25 0,25 + I(-3; 23) ⇒ R = 25 (C): (x + 3)2 + (y – 23)2 = 625 2. (1,0 điểm) Ta có: + Các đoạn OB và AC đr u nhận I(2; 2;uuu làm trung điểm (1) ề 2) uuu uuur uuu rr 0,50 + AC = ( −8; 16; − 8 ) , OB = ( 4; 4; 4 ) ⇒ AC.OB = −32 + 64 − 32 = 0 ⇒ AC ⊥ OB (2) Từ (1) và (2) suy ra O, A, B, C là 4 đỉnh của hình thoi OABC uu uuu rr  SI . AC = −32 + 32 = 0 uur  + SI = (4; 0; − 4);  uu uuu ⇒ SI ⊥ (OABC ) rr  SI .OB = 16 − 16 = 0  0,25  AC ⊥ OB + Do OABC là hình thoi và SI ⊥ (OABC ) nên:  ⇒ AC ⊥ ( SOB)  AC ⊥ SI Từ đó trong mp(SOB) nếu kẻ IH ⊥ SO tại H thì IH ⊥ AC tại H. Vậy IH là đoạn vuông góc chung của SO và AC 0,25 SI .OI 4 2.2 3 4 66 ⇒ d ( SO, AC ) = IH = = = SO 11 2 11 uuu uuu uur rr | [ SO, AC ].OI | Ghi chú: Có thể dùng công thức: d ( SO, AC ) = uuu uuu rr 0,50 | [ SO, AC ] | VII.a ĐK: x > 0. Đặt: t = log3 x , phương trình trở thành: (2 x + 1)t 2 − (4 x + 9)t + 14 = 0 (1) 0,25 (1,0 Do 2 x + 1 ≠ 0, ∀x > 0 nên có thể xem pt (1) là pt bậc 2 ẩn t, ta có: điểm) ∆ ' = (4 x + 9)2 − 56(2 x + 1) = (4 x − 5) 2 ⇒ ∆ ' =| 4 x − 5 | 0,25 7 ⇒ pt (1) có các nghiệm : t = 2 ; t = 2x +1 log3 x = 2 ⇔ x = 9 + Với t = 2 ta được pt: 0,25 7 7 7 + Với t = ta được pt: log3 x = ⇔ log3 x − =0 2x +1 2x +1 2x +1 7 , TXĐ : D = (0; +∞) Xét hàm số: f ( x) = log3 x − 2x +1 1 14 f '( x ) = + > 0, ∀x > 0 0,25 x.ln 3 (2 x + 1)2 ⇒ Hàm số f là một hàm đồng biến trên D = (0; +∞) . Mặt khác f(3) = 0 ⇒ x = 3 là nghiệm duy nhất của pt trên D Vậy phương trình có đúng 2 nghiệm x = 9, x = 3
  7. 1.(1,0 điểm) VI.b (2,0 Từ giả thir t suy ra ∆ ABD đều. ế uuu điểm) Ta có : AB = (2; 2) , trung điểm của AB là M(2;1) 0,25 ⇒ pt trung trực của đoạn AB: x + y − 3 = 0 D thuộc trung trực của AB ⇒ D(t; 3 − t) 0,25 + ABCD là hình thoi nên: 0,25 AD = AB ⇔ (t − 1) 2 + (3 − t ) 2 = 8 ⇔ t 2 − 4t + 1 = 0 ⇔ t = 2 ± 3 + t = 2 + 3 ⇒ D(2 + 3;1 − 3), C ( 3; −1 − 3) 0,25 + t = 2 − 3 ⇒ D(2 − 3;1 + 3), C ( − 3; −1 + 3) 2.(1,0 điểm) Từ giả thiết ta suy ra tọa độ các điểm A, B, C định bởi: A(a;0;0), B(0; b;0), C (0;0; c) xyz 0,25 trong đó a, b, c là các số thực dương ⇒ phương trình mp(ABC): + + = 1 abc 123 + M(1, 2, 3) ∈ mp(ABC) nên: + + = 1 abc 0,25 1 1 + Thể tích của khối tứ diện OABC được tính bởi: V = OA.OB.OC = a.b.c 6 6 123 123 + Theo bđt CauChy: 1 = + + ≥ 33 . . ⇒ a.b.c ≥ 162 ⇒ V ≥ 27 0,25 abc abc 1231 Đẳng thức xảy ra khi = = = hay a = 3; = 6; c = 9 abc3 0,25 Vmax = 27 đạt được khi A(3;0;0), B(0;6;0), C (0;0;9) Vậy ĐK: x > −1, y > −1 . Khi đó hệ tương đương: VII.b (1,0 3.32 x + y +1 + 3.3x + 2 y −1 = 33( x + y ) + 9 (1)  0,25 điểm)  ( x + 1)( y + 1) = 3  Đặt: u = 32 x + y +1, v = 3 x + 2 y −1, ĐK: u > 0, v > 0 u = 3 0,25 Phương trình (1) trở thành: 3u + 3v = uv + 9 ⇔ (u − 3)(v − 3) = 0 ⇔  (thỏa ĐK) v = 3  y = −2 x 32 x + y +1 = 3   ⇔ ⇒ VN TH1: Với u = 3, ta có hệ:  0,25 2 ( x + 1)( y + 1) = 3 2 x + x + 2 = 0    x = 2   y = 0 x = 2 − 2 y 3x + 2 y −1 = 3   ⇔  x = 1 ⇔ TH2: Với v = 3, ta có hệ:  ( x + 1)( y + 1) = 3 2 y 2 − y = 0      y = 1  0,25  2  1 So với ĐK ta nhận cả 2 nghiệm: ( 2; 0 ) ,  1; ÷  2  1 Tóm lại hệ phương trình có 2 nghiệm: ( 2; 0 ) ,  1; ÷  2 ---------------Hết---------------
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2