YOMEDIA
ADSENSE
ĐỊNH LÝ PITAGO - TRƯỜNG HỢP BẰNG NAHU CỦA HAI TAM GIÁC VUÔNG
279
lượt xem 24
download
lượt xem 24
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
Nắm được định lý Pitago về quan hệ giữa 3 cạnh của tam giác vuông, định lý Pitago đảo. - Biết vận dụng định lý Pitago để tính độ dài của một cạnh tam giác vuông khi biết độ dài của hai cạnh kia. - Biết vận dụng định lý đảo của định lý Pitago để nhận biết một tam giác vuông. - Nắm được các trường hợp bằng nhau của hai tam giác vuông, vận dụng định lý Pitago để chứng minh trường hợp cạnh huyền - cạnh góc vuông của hai tam giác vuông....
AMBIENT/
Chủ đề:
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: ĐỊNH LÝ PITAGO - TRƯỜNG HỢP BẰNG NAHU CỦA HAI TAM GIÁC VUÔNG
- ĐỊNH LÝ PITAGO - TRƯỜNG HỢP BẰNG NAHU CỦA HAI TAM GIÁC VUÔNG. A. Mục tiêu: - Nắm được định lý Pitago về quan hệ giữa 3 cạnh của tam giác vuông, định lý Pitago đảo. - Biết vận dụng định lý Pitago để tính độ dài của một cạnh tam giác vuông khi biết độ dài của hai cạnh kia. - Biết vận dụng định lý đảo của định lý Pitago để nhận biết một tam giác vuông. - Nắm được các trường hợp bằng nhau của hai tam giác vuông, vận dụng định lý Pitago để chứng minh trường hợp cạnh huyền - cạnh góc vuông của hai tam giác vuông. - Vận dụng để chứng minh các độan thẳng bằng nhau, các góc bằng nhau. - Rèn luyện khả năng phân tích, tìm cách giải và trình bày bài toán chứng minh hình học. B. Chuẩn bị: Bảng phụ ghi đề bài C. Bài tập Tiết 16: A D Bài 1: Trên hình vẽ bên cho biết A B AD DC; DC BC; AB = 13cm AC = 15cm; DC = 12cm 13 15 12 Tính độ dài đoạn thẳng BC. Giải: Vì AH BC (H BC) B H C AH BC; DC BC (gt) AH // DC
- mà HAC và DCA so le trong. Do đó: HAC = DCA Chứng minh tương tự cũng có: ACH = DAC Xét tam giác AHC và tam giác CDA có HAC = DCA; AC cạnh chung; ACH = DAC Do đó: AHC CDA (g.c.g) AH = DC Mà DC = 12cm (gt) Do đó: AH = 12cm (1) Tam giác vuông HAB vuông ở H theo định lý Pitago ta có: AH2 +BH2 = AB2 BH2 = AB2 - AH2 = 132 - 122 = 55 = 25 BH = 5 (cm) (2) Tam giác vuông HAC vuông ở H theo định lý Pitago ta có: AH2 + HC2 = AC2 HC2 = AC2 - AH2 = 152 - 122 = 91 = 92 HC = 9 (cm) Do đó: BC = BH + HC = 5 + 9 = 14 (cm) Bài 2: Cho tam giác vuông cân tại đỉnh A. MA = 2 cm; MB = 3 cm; góc AMC = 1350. Tính độ dài đoạn thẳng MC. A Giải: Trên nửa mặt phẳng bời Am không chứa điểm D. Dựng tam giác ADM vuông cân taih đỉnh A. M Ta có: AD = MA = 2 cm AMD = 450; DMC = AMC - AMD = 900 B C Xét tam giác ADC và AMB có: AD = AM D DAC = MAB (hai góc cùng phụ nhau với A góc CAM); AC = AB (gt) Do đó: ADC AMB (c.g.c) DC = MB Tam giác vuông AMD vuông ở A D nên MD2 = MA2 + MC2 (pitago) Do đó: MD2 = 22 + 22 = 8 B C Tam giác MDC vuông ở M nên
- DC2 = MD2 + MC2 (Pitago) Do đó: 32 = 8 + MC2 MC2 = 9 - 8 = 1 MC = 1 Bài 3: Tam giác ABC có phải là tam giác vuông hay không nếu các cạnh AB; AC; BC tỉ lệ với a. 9; 12 và 15 b. 3; 2,4 và 1,8 c. 4; 6 và 7 d. 4 ; 4 2 và 4 Giải: AB 9k AB 2 81k 2 AB AC BC k AC 12k AC 2 144k 2 a. 9 12 15 2 2 BC 15k BC 225k AB2 + AC2 = 81k2 + 144k2 = 225k2 = BC2 Vậy tam giác ABC vuông ở A. AB 4k AB 2 16k 2 AB AC BC k AC 6k AC 2 36k 2 b. 4 6 7 2 2 BC 7 k BC 49k 2 2 2 2 2 2 2 AB + AC = 16k + 36k = 52k 49k = BC Vậy tam giác ABC không là tam giác vuông. c. Tương tự tam giác ABC vuông ở C (C = 900) d. Làm tương tự tam giác ABC vuông cân (B = 900) Tiết 17: Bài 4: Cho tam giác vuông ABC (A = 900), kẻ AH BC Chứng minh: AB2 + CH2 = AC2 + BH2 Giải: A Áp dụng định lý Pitago vào các tam giác vuông Tam giác ABH có H = 900 2 2 2 2 2 2 AB = AH + HB AB - HB = AH 0 2 2 2 AHC có H = 90 AC = AH + HC 2 2 2 AC - HC = AH
- 2 2 2 2 AB - HB = AC - HC B H C 2 2 2 2 AB + CH = AC + BH Bài 5: Cho tam giác ABC có A là góc tù. Trong các cạnh của tam giác ABC thì cạnh nào là cạnh lớn nhất? A Giải: * Kẻ AD AB tia AD nằm giữa 2 tia AB và AC BD < BC (1) Xét tam giác ABD vuông ở A BD2 = AB2 + AD2 AB2 < BD2 AB < BD (2) B E D C Từ (1) và (2) suy ra: AB < BC * Kẻ AE AC tia AE nằm giữa hai tia AB và AC EC < BC (3) Xét tam giác AEC vuông ở A EC2 = AE2 + AC2 AC2 < EC2 hay AC < EC (4) Từ (3) và (4) suy ra: AC < BC Vậy cạnh lớn nhất là BC. Bài 6: Cho tam giác ABC, cạnh đáy BC. Từ B kẻ đường vuông góc với AB và từ C kẻ đường vuông góc với AC. Hai đường này cắt nhau tại M. Chứng minh rằng a. AMB AMC b. AM là đường trung trực của đoạn thẳng BC. Giải: A a. Hai tam giác vuông ABM và ACM bằng nhau vì cạnh huyền AM chung AB = AC (gt)
- b. Do AMB AMC A1 = A2 B C Gọi I là giao điểm của AM và BC Xét hai tam giác AIB và AIC M A1 = A2 (c/m trên); AB = AC (Vì tam giác ABc cân ở A); AI chung nên AIB AIC (c.c.c) Suy ra IB - IC; AIB = AIC mà AIB + AIC = 1800 (2 góc kề bù nhau) Suy ra AIB = AIC = 900 Vậy AM BC tại trung điểm I của đoạn thẳng BC nên AM là đường trung trực của đoạn thẳng BC. Bài 7: a. Cho tam giác ABC cân tại A, kẻ AD vuông góc với BC. Chứng minh rằng AD là tia phân giác của góc A. b. Cho tam giác ABC cân tại A, kẻ BD vuông góc với AC, kẻ CE vuông góc với AB. Gọi K là giao điểm của BD và CE. Chứng minh rằng AK là tia phân giác của góc A. Giải: A a. Xét hai tam giác vuông CDB và ADC có canh AD là cạnh chung; AB = AC ADB ADC (cạnh huyền - cạnh góc vuông) BAD = CAD (cặp góc tương ứng) Do đó: AD là tia phân giác của góc A B D C b. Hướng dẫn A Chứng minh ADB AEC (cạnh huyền - góc nhọn) AD = AE (cặp cạnh tương ứng) ADK AEK (cạnh huyền - cạnh góc vuông) E D A1 = A2
- Do đó Ak là tia phan giác của góc K. B C Tiết 18: Bài 8: Cho tam giác ABC có AB < AC. Tia phân giác c ủa góc A cắt đường trung trực của BC tại I. Kẻ IH vuông góc với đường thẳng AB, kẻ IK vuông góc với đường thẳng AC. Chứng minh rằng BH = CK A Giải: Gọi M là trung điểm của BC ta có: K AMI CMI (c.g.c) B M Vì BM = CM; IM chung; M1 = M2 C IB = IC (cặp góc tương ứng) H AHI AKI (cạnh huyền - góc nhọn) I IH - IK IHB IKC (cạnh huyền - cạnh góc vuông) BH = CK. AB 3 Bài 9: Cho tam giác vuông ABC vuông tại A có và BC = 15cm. AC 4 Tìm các độ dài AB; AC B Giải: Theo đề ra ta có: AB 2 AC 2 AB AC 3 4 9 16 Theo tính chất dãy tỉ số bằng nhau A C và định lý Pitago ta có: AB 2 AC 2 AB 2 AC 2 BC 2 15 2 9 9 16 9 16 25 25 Suy ra: AB2 = 9.9 = 92 AB = 9 cm AC2 = 16.9 = (4.3)2 = 122 AC = 12 cm Vậy hai cạnh cần tìm AB = 9cm; AC = 12cm
- Bài 10: Chứng minh rằng tam giác ABC vẽ trên giấy ô vuông ở hình bên là tam giác vuông cân. Giải: B Gọi độ dài cạnh của mỗi ô vuông là 1 Theo định lý Pitago ta có: AB2 = 12 + 22 = 1 + 4 = 5 C BC2 = 12 + 22 = 1 + 4 = 5 A AC2 = 12 + 32 = 1 + 9 = 10 Do AB2 = BC2 nên AC = AB Do AB2 + BC2 = AC2 nên ABC = 900 Vậy tam giác ABC vuông cân tại B. Bài 11: Cho tam giác vuông ABC (A = 900). Chứng minh rằng 1 BC thì C = 300 a. Nếu AB = C 2 1 b. Nếu C = 300 thì AB = BC 2 Giải: Trên tia đối của tia AB đặt AD = AB Nối CD thì ta có: BAC DAC (c.g.c) CB = CD (1) B A D 1 1 a. Nếu AB = BC và AB = AD = BD 2 2 Thì BC = BD (2) Từ (1) và (2) suy ra CB = BD 1 1 BCD = .60 0 30 0 Vậy tam giác BCD đều BCA = ACD = 2 2 b. CB = CD Tam giác CBD cân Nếu BCA = 300; BCD = 60=0 suy ra tam giác BCD đều BD = BC
- 1 2AB = BC AB = BC 2 Bài 12: Cho tam giác ABC, kẻ BE AC và CF AB. Biết BE = CF = 8cm. độ dài các đoạn thẳng BF và BC tỉ lệ với 3 và 5. a. Chứng minh tam giác ABC là tam giác cân b. Tính độ dài cạnh đáy BC c. BE và CF cắt nhao tại O. Nối OA và EF. Chứng minh đường thẳng AO là trung trực của đoạn thẳng EF. A Giải: a. BFC CEB vì E = F = 900 BE = CF, Bc cạnh chung E F FBC = ECB tam giác ABC cân O b. Theo đề bài các đoạn thẳng BF và BC B C tỉ lệ với 3 và 5 BF 2 BC 2 BC 2 BF 2 FC 2 8 2 BF BC Ta có: 4 25 9 3 5 9 25 16 16 BC 2 4 BC 2 25.4 100 BC 10 cm 25 c. Tam giác ABC cân AB = AC mà BF = EC ( BFC CEB ) AF = AE AFO AEO (cạnh huyền - cạnh góc vuông) FAO = EAO FAI EAI (Vì AF = AE ; FAI = EAI) IF = IE (1) và FIA = EIA mà FIA + EIA = 1800 nên FIA = EIA = 900 AI EF (2) Từ (1) và (2) suy ra AO là trung trực của đoạn thẳng EF.
Thêm tài liệu vào bộ sưu tập có sẵn:
Báo xấu
LAVA
AANETWORK
TRỢ GIÚP
HỖ TRỢ KHÁCH HÀNG
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn