Giải bài tập lượng giác (Bài tập và hướng dẫn giải)
lượt xem 98
download
Tham khảo tài liệu 'giải bài tập lượng giác (bài tập và hướng dẫn giải)', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Giải bài tập lượng giác (Bài tập và hướng dẫn giải)
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 10 tháng 05 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 BTVN NGÀY 10-05 Bài 1: Tìm các nghiệm thuộc khoảng (2π/5; 6π/7) của phương trình: 3 sin 7 x − cos 7 x = 2 Bài 2: Tìm các nghiệm thuộc khoảng (π/2; 3π) của phương trình: 5π 7π sin 2 x + − 3cos x − = 1 + 2sin x 2 2 Bài 3: Tìm m để phương trình sau có 4 nghiệm thuộc khoảng (-π;7π/3): s inx + m cos x = m ………………….Hết………………… BT Viên môn Toán hocmai.vn Trịnh Hào Quang Hocmai.vn – Ngôi trường chung của học trò Việt 1
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 HDG CÁC BTVN • BTVN NGÀY 05-05: 1/ 4sin 3 x − 1 = 3sin x − 3cos3x 1 3 1 ⇔ sin 3 x − 3cos3x = −1 ⇔ sin 3x − cos3x = − 2 2 2 π k 2π x= + π π 18 3 ⇔ sin 3x − = sin − ⇔ 3 6 x = π + k 2π 2 3 2 / sin 3 x + ( 3 − 2)cos3 x = 1 3x 2t ( 3 − 2)(1 − t 2 ) Coi : t = tan ⇒ + = 1 ⇔ ( 3 − 1)t 2 − 2t + (3 − 3) = 0 2 1+ t 2 1+ t 2 3x π k 2π tan =1 x= + t = 1 2 6 3 ⇔ ⇔ ⇔ t = 3 tan 3 x = 3 x = 2π + k 2π 2 9 3 3 / 4sin 3 x + 3cos3 x − 3sin x − sin 2 x cos x = 0(1) * Xét sinx = 0 ⇒ 3cos3 x = ±3 ≠ 0 (1) ⇔ 4 + 3cot 3 x − 3(cot 2 x + 1) − cot x = 0 cot x = 1 π x = + kπ 1 4 ⇔ cot x = − ⇔ 3 x = ± π + kπ 1 3 cot x = 3 Page 2 of 10
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 4 / 2sin 5 x + 3cos3 x + sin 3 x = 0 3 1 3cos3x + sin 3 x = −2sin 5 x ⇔ − cos3 x − sin 3 x = sin 5 x 2 2 5π π ⇔ cos + 3x = sin 5 x = cos( − 5 x) 6 2 5π π π kπ 6 + 3 x = − 5 x + k 2π x=− + 2 24 4 ⇔ ⇔ 5π + 3 x = 5 x − π + k 2π x = 2π − kπ 6 2 3 5 / 2sin 4 x + 3cos 2 x + 16sin 3 x cos x − 5 = 0 ⇔ 2sin 4 x + 3cos 2 x + 8sin 2 x.sin 2 x − 5 = 0 1 − cos2 x ⇔ 2sin 4 x + 3cos 2 x + 8sin 2 x. −5 = 0 2 ⇔ 2sin 4 x + 3cos 2 x + 4sin 2 x − 2sin 4 x − 5 = 0 3 4 ⇔ 3cos 2 x + 4sin 2 x = 5 ⇔ cos 2 x + sin 2 x = 1 5 5 3 cos α = α 5 ⇔ Cos(2 x − α ) = 1 ⇒ x = + kπ ;(k ∈ ¢ ); 2 sin α = 4 5 Page 3 of 10
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 • BTVN NGÀY 06-05 1/ Sinx − 4sin 3 x + cos x = 0(1) ⇔ Nê ' u : cos x = 0 ⇒ Sinx − 4sin 3 x = ±3 ≠ 0 (1) ⇔ t anx(1 + tan 2 x) − 4 tan 3 x + 1 + tan 2 x = 0 t = t anx t = t anx π ⇔ 3 2 ⇔ ⇔ t anx = 1 ⇔ x = + kπ ( t − 1) ( 3t + 2t + 1) = 0 2 −3t + t + t + 1 = 0 4 2 / tan x sin 2 x − 2sin 2 x = 3 ( cos2 x + sin x cos x ) Chia VT , VP cho cos 2 x ta có : tan 3 x − 2 tan 2 x=3 ( cos x − sin 2 2 x + sin x cos x ) cos 2 x t anx = t ⇔ tan 3 x − 2 tan 2 x = 3 ( 1 − tan 2 x + t anx ) ⇔ 3 2 t + t − 3t − 3 = 0 π t anx = t x = − + kπ t anx = −1 4 ⇔ ⇔ ⇔ ( t + 1) ( t − 3) = 0 x = ± π + kπ 2 t anx = ± 3 3 3 / Sin 2 x + 2 tan x = 3 Chia VT , VP cho cos 2 x ta có : t = tan x 2 tan x + 2 tan x(tan 2 x + 1) = 3(tan 2 x + 1) ⇔ 3 2t − 3t + 4t − 3 = 0 2 t = tan x π ⇔ ⇔ t anx = 1 ⇔ x = + kπ ( t − 1) ( 2t − t + 3) = 0 2 4 Page 4 of 10
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 4 / Cos 2 x − 3 sin 2 x = 1 + sin 2 x Chia VT , VP cho cos 2 x ta có : t = t anx 1 − 2 3 t anx = 2 tan x + 1 ⇔ 2 2 2t + 2 3t = 0 t anx = 0 kπ ⇔ ⇔x= π t anx = − 3 − + kπ 3 5 / 3cos 4 x − 4sin 2 x cos 2 x + sin 4 x = 0 Chia VT , VP cho cos 4 x ta có : t = t anx 3 − 4 tan x + tan x = 0 ⇔ 4 2 4 t − 4t + 3 = 0 2 π x = ± + kπ tan x = 1 2 4 ⇔ 2 ⇔ tan x = 3 x = ± π + kπ 3 • BTVN NGÀY 07-05 1/ Sinx − cos x + 7 sin 2 x = 1 Coi : t = s inx − cos x;( t ≤ 2) s inx − cos x = 1 ⇒ t + 7(1 − t ) = 1 ⇔ 7t − t − 6 = 0 ⇔ 2 2 s inx − cos x = 6 7 π x = + k 2π π 1 2 sin x − 4 = x = π + k 2π 2 3 2 ⇔ ⇔ π ;sin α = − π 3 2 x = α + + k 2π 7 sin x − = − 4 4 7 π x = − α + k 2π 4 Page 5 of 10
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 π 2 / Sin 2 x + 2 sin x − = 1 4 Coi : t = s inx − cos x;( t ≤ 2) π x = + k 2π 4 t = 0 π 0 π ⇒ 1− t + t = 1 ⇔ 2 ⇔ 2 sin x − = ⇔ x = + k 2π t = 1 4 1 2 x = π + k 2π 3 / Tìm m cho PT : Sin 2 x + 4(cos x − s inx) = m có ng 0 Coi : t = cos x − s inx;( t ≤ 2) ⇒ 1 − t 2 + 4t = m ⇔ m = f (t ) = −t 2 + 4t + 1 ⇒ f '(t ) = −2t + 4 > 0; ∀ t ≤ 2 ⇒ f (− 2) ≤ m ≤ f ( 2) ⇔ −4 2 − 1 ≤ m ≤ 4 2 − 1 4 / Cos2 x + 5 = 2(2 − cos x)(s inx − cos x) Cos2 x + 5 = 4(s inx − cos x) − sin 2 x + cos2 x + 1 ⇔ 4((s inx − cos x) − sin 2 x − 4 = 0 Coi : t = s inx − cos x;( t ≤ 2) ⇒ 4t − (t 2 − 1) − 4 = 0 ⇔ t 2 − 4t + 3 = 0 π π π 1 + k 2π ⇔ 2 sin x − = 1 ⇔ sin x − = ⇔ x=2 4 4 2 π + k 2π 5 / Sin3 x + cos3 x = 2(sin 5 x + cos5 x) ⇔ Sin3 x ( 1 − 2sin 2 x ) + cos3 x ( 2 cos 2 x − 1) = 0 ⇔ cos2 x ( s inx − cos x ) ( sin 2 x − sin x cos x + cos 2 x ) = 0 π kπ ⇔ cos2 x = 0 ⇔ x = + 4 2 Page 6 of 10
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 • BTVN NGÀY 08-05 1 1/ 2 cos 2 x − 8cos x + 7 = (1) cos x π DK : x ≠ + kπ 2 cos x = 1 ⇒ x = k 2π t = cos x(t ≠) (1) ⇔ 3 ⇔ ;k ∈¢ 4t − 8t + 5t − 1 = 0 2 cos x = 1 ⇒ x = ± π + k 2π 2 3 2 / 4 cos 2 x + 3 tan 2 x − 4 3 cos x + 2 3 t anx + 4 = 0(2) π DK : x ≠ + kπ 2 ( ) +( ) 2 2 (2) ⇔ 2 cos x − 3 3 t anx + 1 = 0 3 π cos x = ⇒ x = ± + k 2π 2 6 π ⇔ ⇔ x = − + k 2π ( k ∈ ¢ ) 1 π 6 t anx = − ⇒ x = − + kπ 3 6 3/ 3 − cos x − cos x + 1 = 2 ⇔ 3 − cos x = cos x + 1 + 2 ⇔ 4 cos x + 1 = −2(cos x + 1) −2(cos x + 1) ≤ 0; ∀x Do : ⇒ cos x + 1 = 0 ⇔ cos x = −1 ⇔ x = π + k 2π ( k ∈ ¢ ) 4 cos x + 1; ∀x Page 7 of 10
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 π π 4 / S in 3 x − cos3 x = cos2 x.tan x + .tan x − 4 4 ( s inx- cos x ) ( 1 + sin x cos x ) = −cos2 x ⇔ ( s inx- cos x ) ( 1 + sin x cos x + s inx + cos x ) = 0 π π s inx- cos x = 0 ⇒ sin x − = 0 ⇔ x = + kπ 4 4 ⇔ t = s inx + cos x( t ≤ 2) 1 + sin x cos x + s inx + cos x = 0 ⇔ t 2 − 1 t + + 1 = 0 ⇔ t 2 + 2t + 1 = 0 ⇔ t = −1 2 π x = + kπ π 4 x = + kπ 4 π ⇔ ⇔ x = − + k 2π ; ( k ∈ ¢ ) sin x + π = − 1 2 x = π + k 2π 4 2 π 2π 1 5 / Cos 2 x + + Cos 2 x + = (s inx + 1) 3 3 2 1 ( ) 1 ( 1 ) 2 2 ⇔ cos x − 3 s inx + cos x + 3 s inx = (s inx + 1) 4 4 2 x = k 2π s inx = 0 1 1 π ⇔ ( 1 + 2sin x ) = (s inx + 1) ⇔ 2sin x − sin x = 0 ⇔ 2 2 1 ⇔ x = + k 2π ; k ∈ ¢ 2 2 s inx = 6 2 5π x = + k 2π 6 • BTVN NGÀY 10-05 Page 8 of 10
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 Bài 1: Tìm các nghiệm thuộc khoảng (2π/5; 6π/7) của phương trình: 3 sin 7 x − cos 7 x = 2 Giải: 5π k 2π x= + 3 1 2 π π 84 7 PT ⇔ sin 7 x − cos7 x = ⇔ sin 7 x − = sin ⇔ ;(k ∈ ¢ ) 2 2 2 6 4 x = 11π k 2π + 84 7 5π k 2π 2π 5π k 2π 6π 2 5 2k 6 5 *Khi : x = + ⇒ < + < ⇔ − < < − 84 7 5 84 7 7 5 84 7 7 84 53π ⇔ k = 2 ⇔ x1 = 84 11π k 2π 2π 11π k 2π 6π 2 11 2k 6 11 *Khi : x = + ⇒ < + < ⇔ − < < − 84 7 5 84 7 7 5 84 7 7 84 35π 59π ⇔ k = 1, 2 ⇔ x2 = ; x3 = 84 84 Bài 2: Tìm các nghiệm thuộc khoảng (π/2; 3π) của phương trình: 5π 7π sin 2 x + − 3cos x − = 1 + 2sin x 2 2 Giải: π π PT ⇔ Sin 2 x + 2π + − 3cos x + − 4π = 1 + 2sin x 2 2 ⇔ cos2 x + 3sin x = 1 + 2sin x ⇔ 1 − 2sin 2 x = 1 − s inx Page 9 of 10
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 s inx = 0 ⇒ x = kπ π x = + k 2π ⇔ 2sin x − s inx = 0 ⇔ 2 1 6 s inx = 2 ⇒ x = 5π + k 2π 6 π 13π 5π 17π ⇔ Do x ∈ ( ;3π ) ⇒ x1 = π ; x2 = 2π ; x3 = ; x4 = ; x5 = 2 6 6 6 Bài 3: Tìm m để phương trình sau có 4 nghiệm thuộc khoảng (-π;7π/3): s inx + m cos x = m Giải: cos x = 1 x = 0 và x = 2π PT ⇔ s inx = m(1 − cos x) ⇔ s inx ⇔ m = m = s inx (*) 1 − cos x 1 − cos x Vậy để phương trình ban đầu có 4 nghiệm thì (*) phải có 2 nghiệm phân biệt thuộc khoảng (-π;7π/3). Nhưng số nghiệm của (*)thuộc khoảng (-π;7π/3) lại chính là số giao điểm của đường thẳng y=m với đồ thị (C) có phương trình: s inx 7π y= trên D = −π ; 1 − cos x 3 cos x − 1 Xét hàm : y ' = < 0 ∀x ∈ D ( 1 − cos x ) 2 Dựa vào bảng biến thiên ta có: m ≥ 3; m ≤ 0 PT có 4 ng0 ………………….Hết………………… BT Viên môn Toán hocmai.vn Trịnh Hào Quang Page 10 of 10
CÓ THỂ BẠN MUỐN DOWNLOAD
-
226 bài tập Lượng giác lớp 10 (Có đáp án)
169 p | 18032 | 2384
-
Bài tập lượng giác 11
1 p | 3426 | 566
-
Bài tập lượng giác 11 nâng cao
1 p | 524 | 121
-
KỸ THUẬT GIẢI BÀI TẬP LƯỢNG GIÁC
17 p | 336 | 94
-
Giải bài tập Đại số và Giải tích 11 cơ bản: Chương 1 - Hàm số lượng giác, Phương trình lượng giác
26 p | 399 | 78
-
Cẩm nang cho mùa thi: Các kỹ thuật phổ biến nhất giải phương trình lượng giác - Nguyễn Hữu Biển
75 p | 289 | 70
-
Tuyển tập 200 bài tập Lượng giác có lời giải chi tiết năm 2015
85 p | 280 | 60
-
GIÁO ÁN GIẢI TÍCH 11: BÀI TẬP LƯỢNG GIÁC 11
9 p | 152 | 18
-
Bài tập lượng giác Toán 11
85 p | 197 | 18
-
Bài tập lượng giác
17 p | 83 | 12
-
Giải bài tập Phương trình lượng giác cơ bản SGK Đại số và giải tích lớp 11
4 p | 231 | 12
-
Giải bài tập Hàm số lượng giác SGK Đại số và giải tích 11
5 p | 233 | 11
-
Giải bài tập Hàm số lượng giác tiếp SGK Đại số và giải tích lớp 11
2 p | 142 | 5
-
Giải bài tập Tỉ số lượng giác của góc nhọn SGK Hình học 9 tập 1
4 p | 176 | 5
-
Giải bài tập Phương trình lượng giác SGK Đại số và giải tích lớp 11
5 p | 128 | 4
-
Sáng kiến kinh nghiệm: Dạy học giải bài tập lượng giác theo định hướng phát huy tính sáng tạo
58 p | 53 | 2
-
Giải bài tập Bảng lượng giác SGK Toán 9 tập 1
3 p | 110 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn