intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Lecture Business statistics in practice (7/e): Chapter 5 - Bowerman, O'Connell, Murphree

Chia sẻ: Fff Fff | Ngày: | Loại File: PPT | Số trang:12

68
lượt xem
3
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Chapter 5 - Discrete random variables. After mastering the material in this chapter, you will be able to: Explain the difference between a discrete random variable and a continuous random variable, find a discrete probability distribution and compute its mean and standard deviation, use the binomial distribution to compute probabilities,...

Chủ đề:
Lưu

Nội dung Text: Lecture Business statistics in practice (7/e): Chapter 5 - Bowerman, O'Connell, Murphree

  1. Chapter 5 Discrete Random Variables McGraw­Hill/Irwin Copyright © 2014 by The McGraw­Hill Companies, Inc. All rights reserved.
  2. Discrete Random Variables 5.1   Two Types of Random Variables 5.2   Discrete Probability Distributions 5.3   The Binomial Distribution 5.4 The Poisson Distribution (Optional) 5.5 The Hypergeometric Distribution  (Optional) 5.6 Joint Distributions and the Covariance  (Optional) 5­2
  3. LO5-1: Explain the difference between a discrete random 5.1 Two Types of Random Variables variable and a continuous random variable.  Random variable: a variable that assumes  numerical values that are determined by the  outcome of an experiment ◦ Discrete ◦ Continuous  Discrete random variable: Possible values can be  counted or listed ◦ The number of defective units in a batch of 20 ◦ A listener rating (on a scale of 1 to 5) in an AccuRating  music survey  Continuous random variable: May assume any  numerical value in one or more intervals  ◦ The waiting time for a credit card authorization ◦ The interest rate charged on a business loan 5­3
  4. LO5-2: Find a discrete probability distribution and compute its mean 5.2 Discrete Probability Distributions and standard deviation. The probability distribution of a discrete  random variable is a table, graph or formula  that gives the probability associated with  each possible value that the variable can  assume Notation: Denote the values of the random  variable by x and the value’s associated  probability by p(x) 5­4
  5. LO5-2 Discrete Probability Distribution Properties 1. For any value x of the random variable,  p(x)   0  2. The probabilities of all the events in the  sample space must sum to 1, that is… px 1 all x 5­5
  6. LO5-3: Use the binomial distribution to compute probabilities. 5.3 The Binomial Distribution  The binomial experiment  characteristics… 1. Experiment consists of n identical trials 2. Each trial results in either “success” or “failure” 3. Probability of success, p, is constant from trial  to trial  The probability of failure, q, is 1 – p 1. Trials are independent  If x is the total number of successes in n  trials of a binomial experiment, then x is a  binomial random variable 5­6
  7. LO5-3 Binomial Distribution  Continued  For a binomial random variable x, the probability of  x successes in n trials is given by the binomial  distribution: n! x n­ x p x =  p q x! n ­ x !  n! is read as “n factorial” and n! = n × (n­1) × (n­2)  × ... × 1  0! =1  Not defined for negative numbers or fractions 5­7
  8. LO5-4: Use the Poisson distribution to compute probabilities (Optional). 5.4 The Poisson Distribution  Consider the number of times an event  occurs over an interval of time or space,  and assume that 1. The probability of occurrence is the same for  any intervals of equal length 2. The occurrence in any interval is independent of  an occurrence in any non­overlapping interval  If x = the number of occurrences in a  specified interval, then x is a Poisson  random variable 5­8
  9. LO5-5: Use the hypergeometric distribution to compute probabilities (Optional). 5.5 The Hypergometric Distribution  (Optional) Population consists of N items ◦r of these are successes ◦(N­r) are failures If we randomly select n items without  replacement, the probability that x of the n  items will be successes is given by the  hypergeometric probability formula r N r x n x P ( x) N n 5­9
  10. LO5-5 The Mean and Variance of a Hypergeometric  Random Variable Mean r x n N Variance 2 r r N n x n 1 N N N 1 5­10
  11. LO5-6: Compute and understand the covariance between two random variables (Optional). 5.6 Joint Distributions and the  Covariance (Optional) 5­11
  12. LO5-6 Four Properties of Expected Values and  Variances 1. If a is a constant and x is a random  variable, then μax=aμx 2. If x1,x2,…,xn are random variables, then μ(x1,x2,…,xn)= μx1 + μx2 + … + μxn 3. If a is a constant and x is a random variable, then σ2ax=a2σ2x 4. If x1,x2,…,xn are statistically independent random variables, then the covariance is zero ◦ Also, σ2(x1,x2,…,xn)= σ2x1+ σ2x2+…+ σ2xn 5­12
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2