intTypePromotion=3
Array
(
    [0] => Array
        (
            [banner_id] => 140
            [banner_name] => KM1 - nhân đôi thời gian
            [banner_picture] => 964_1568020473.jpg
            [banner_picture2] => 839_1568020473.jpg
            [banner_picture3] => 620_1568020473.jpg
            [banner_picture4] => 994_1568779877.jpg
            [banner_picture5] => 
            [banner_type] => 8
            [banner_link] => https://tailieu.vn/nang-cap-tai-khoan-vip.html
            [banner_status] => 1
            [banner_priority] => 0
            [banner_lastmodify] => 2019-09-18 11:11:47
            [banner_startdate] => 2019-09-11 00:00:00
            [banner_enddate] => 2019-09-11 23:59:59
            [banner_isauto_active] => 0
            [banner_timeautoactive] => 
            [user_username] => sonpham
        )

)

Luận án phó tiến sỹ " Chỉnh hóa một số bài toán ngược trong khoa học ứng dụng "

Chia sẻ: Nguyen Nhi | Ngày: | Loại File: PDF | Số trang:28

0
90
lượt xem
25
download

Luận án phó tiến sỹ " Chỉnh hóa một số bài toán ngược trong khoa học ứng dụng "

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo luận văn - đề án 'luận án phó tiến sỹ " chỉnh hóa một số bài toán ngược trong khoa học ứng dụng "', luận văn - báo cáo phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Luận án phó tiến sỹ " Chỉnh hóa một số bài toán ngược trong khoa học ứng dụng "

  1. BO GIAO ])t)C vA 1);\0 T~O [11)1 H()C Qu6c cIArl..jANH PH6 H6 CHI MINH TRUc)NCD~I HQC KHOAHQC H,! NHlt N a a ~~I:&'~~ " '~ . ,. N C TrY ( 'r' )l \T(i T AM N ",1\..1:', ,,'_.Tn.., D CHiNH. UO,\ l\iQT 86 BAI ToAN NGtf
  2. - ~} I.'; ) "J, ' ~ Lu~n ~n n1iydu'Qchean thanh t~i Khoa Toh - Tin h9c II Tru'CJngBl}i hQc &boa hQc TV lJl'Mn Thanh pho' hI6 Chi Minh IIiIo Irii 'II Netti1i hu'OIH~ d1in : II " iii GS TS J:)~NG DINH ANG rI/lI l1li .. 'II II II1II II Ng1f(Y]nhan xet 1 : II a III a III !I II .. ~i1j hh1tnxet 2 : CI II II' Cd Quan nJU)Hxet : Ie 'III III Ii! = II Lu~n ~n se du'
  3. nO GIAo D~JC vA. BAo L'}O D/\I HQC Quc5c CIA THANH PH6 HO CHi MINH TRU
  4. Lu4n an n~y du
  5. MO 8AU Trong Khoa hl)c ling d\Ing, nolI du khao sat hili loan nglic;1cdii xullt hi~n tit' lau, Coo de'n nhung nam 60, d6ng thdi VOlvi~c phat tri6n cac c6ng C\l loan hQC,cac hiii loan ngu'
  6. Phdn I chung t&i xet 3 ba.i toin Cauchy cho phtiong trmb Poisson trong . dl3 troll don vi Dc R2 trong nU'a m~t phAng tren p+ c R2. va. trong mta kh8ng ih glaD tIeD R\ ; v(Ji dfl ki~n Cauchy (u. c7v- d~o ham theo htidng phap tuye'n ngoai tren bien cua mien) du'
  7. nay la m5 hlnh R3cua bai toan da:du'qc khao s.h (xem D.D.Ang. D.N.Thanh & V.V.Thanh: Regularized Solutions of a Cauchy problem for the LAplaceequation H in an irregular strip ", :Tournal of integral equations and Applications, Vo1.5, N2.4, (1993), p,p. 429_441), B~ng phu'dng phap Green va ly thuye't the' vi, chung t51 da: du'a du'6ngg6p quan tn;mg khac trong Lu~n an Ia chUng t5i dii dauh gia du'
  8. Cl}the la ne'u sai s6 giiia dii ki~n do d."e F£ va dU'ki~n ehinh xac F la & , nghlala (4) ~F,-FII< Ii thl eh11ngt8i eh1fng t6 du'
  9. I"~ C[~;)r 1\ v.-vll < trong d6 h~ng s6 C chi ph'} thuQc vao Ilv~lh'11) Lie ke"lqua cbillh CIIa LlI~ll all (hi
  10. PJIANM6r cAc sAI loAN CAUCHY CHO PHUONG TRINH POISSON I. BM roAN CAUCHY CHO PHtJdNG TRINH POISSON TRONG HINH TRON BdN VI : 1.Bdi loan.. D =I(X,Y):X2+ l < I} G~i 15 = I(x,y): X2 + y2 ~ I} Tlm ham u = u(x,y) th
  11. B~ng phu'dng phap Green chung toi du'a bai toaD (9), (10) v~ phu'dngtrlnh tich phan Fredholm lo~i mQtd6i vdi /in ham v nhu'sau : 2r I- B ( 11) a v(/)ln2sinTdl::: J F(O) I I I lit (I) In21sin I ~ 0 Idl vdi F(O) ::: 1T[U(O) uo(O)] - - Iff(~, (12) - +~ ~)2 + (sinB - 1})2] -In(~ 2 + 1}2))d~d1} 1}){21n[(cosO D 3.Khiio sat phlidnf!. trinh tfch vhlin-,- Rtf di 1.1.. Ne'u lIo,U1E L2(0,a) va f E L2(D) tIll FE L2(0,a) vdi F xac dinh CI(12). 1- 0 Bil tfi 1.2: hamt~ln2sin2 ';jOE(O,a). thuQcL2(0,21T). I I 2r I-O . (13) v(/)ln2sinTdt £)~t (Av)(O)::: J a r j thl ta c6: Ml!nh tfi 1.1: Toan tU' A: L2(a ,21
  12. P>0 eho tru'de x~t bai loan : T1m Vdi va FE L2(O.a) vfl E [}(a,2TC) saoeho (15) P(\'p,ffJ)+ = ,Vf!JEI!(a,2f'l) trong do ( . , .) va Ih lu'~t la tieh vo hu'dng trong L2(a.2TC) va va 11.11HI . Ta co ke't L2(O.a). Chung ta ky hi~u cae ehuin tu'dng U'ngla 11.11 H qua: P >0 Dillh Iv 1.1: Vdi m6i va FE L2(O.a) phu'dng trlnh (15) co cluy nha't mQt nghi~m vp E L2(a.27r) , hdn m1a vp phV thuQc lien t1}c vao FE L2(O.a). Ghl sU' Vo13.ngill~m chinh xac ell a phu'dng trlnh = Fo (16) Avo v E L2 (O.a) thoa di~u ki~n : T6.ri t~i sao cho (17) (vo.ffJ)= , VffJEL2(a.27r) Kill d6 ta co Dinh GiasltF.FoEe(O,a) thoallF-Foll 0) : (20) £(v.,ffJ)+ = ,VffJEL2(a.27r) hay tu'dng du'dng -8-
  13. 1>1' +;\*;\1' B =;\*r (2\ ) F. ludo ( ) I'F. =\' F. -n. 1>1' +;\*;\1' F. -;\*r (22) f' F. v(fj fJ > 0 sc ch9n sau, = V~y vI> T vI>v8i T: L2 (a.,27t) ~ L2 (a.,27t) du'(jc xac djnh nhu' sau : (23) Tv= v-p(ABv-A *F) () day , * (24) AB =;E.ld+A A, vii ld - to0 cho tmac, phu'dngtrlnh (20) ho~c (21) co nghi~m duy nha'l VBE L2 (a.,27t) Ta linh VI>bAng phu'dng phap xa'p xi lien tie'p - - (m) T (m-I) m 1, 2 '0" - - VB VB y (25) v~O) E L2 (a..27t) tily Taco (26) ,,~m) = (/- PEl v~m-l) - pA *( A 'J~m-I) - F) v8i fJ nhu'trong Djnh Iy 1.3 Mellh d~ 1.2: Gia sar v~ thoa (16), (17). Khi do sai s6 giii'a v~m) va vo 13 r; +M < (' vlllll - v (27) kill Il II I> 0 /}ra..21t) I> v'
  14. IITv.(0)-". (0)11, ( 28 ) d da C= L (a,2") , Y . I-k ' k - h~ s8 co eua anh x~ co T ; (0 < k < I) va M de djnhb"l (19) Ml!nh dO 1.3: ~f) , (29) ChQns6 tVnhl~n m. > Ink .. Bat v = v (M,) khid6 . v, - < (1+ M)JE (30) VoI, ilL(a,l..) Il Cilu tb.ie!!.;. m.la s8 bd&: l~p t8i thi~u di ta e6 danh gia teen. MQt ph~n ket qua eua mvc nay dii ddcjcc6ng b6 trong [I] va[2]. II. BAI ToAN CAUCHY CHO PHVcJNGTRINH POISSON TRONG NUA MAT PHANGTRtN: 1. Biz; loan: GQi p+ = {(x,y): -oo
  15. ~ diiy Vu - gradient cua u. . Uo,u. f chotn10ctrong r tho tru'
  16. Ai! 1.3: e >0 Voi chotniOc ,-1 0 se ch
  17. =T V~y Vs VOlloan tifT du0, \::IF E L2(J) cho tru'oc phuong trlnh (41) co nghi~m duy nhKt 2 vsELp(J) Giii su rnng phuong trlnh Avo = Fo (45) vE co nghi~m chinh xac Va san cho t6n t':li L2 (I) thoa (46) (vO,q»L~(J)= (It; Aq»Ll(/) \::Iq>E L~(J) Ditlh IV 1.5: Giasu va thoa (45), (46) va !IF- Fo 1~1(/)< E khi do F lIvE- Vo II~(J) < M day Va - nghi~m ciia phuong mnh bie'n phan (41), cfing ill di~m b1lt i'1 1/2 2 . 1+ 111,111 L(l) ~? . dQngcua T, M = 2 [ ] 5. PIll/dill!vM,} sri: Ta tinh bang phuong phap xa'p xi lien tie'p jIB " ,(111-1) m-- I,-,... Is - 7' ,(111)- IE ,, 2 (0) E 1 (J) tHYY . Vs 'p - 13 -
  18. 6 thl Chon ::: jJ . (6+36)2 1 r- 62 (48) v;" ~36)T 1';",.1)- (c +C36)2 '(Av~"-.) - F) A i. (E L Khi d6 ta co hai mc:nh M (I ') v~ 1.6) IIMnp,ht vai hai mt$nh d~ 1.2 va 1.3 d Inl)CI. MQI phau k~'l qua Clla lIJlle !Jay se ch(yc caug b6 trou!?,131 . Ill. BA.ITOA.NCAUCHY CHO PHUONG TR1NH POISSON TRONG NUA KHONGGIAN TR.t:N: Llld{.O!I.T1':' f)~t R;::: {(x,y,z): -00< x,y< OO,Z > a} z a} J{3::: {(x,y,z): -00< x,y.u::: f trong vdi dil ki~n Cauchy duo (ii) T3n t~i hhg s6du'dng C sao cho l (52) +zz dtl Wn C v
  19. = uz(x,y,O); Ch
  20. (x,y) E 0 Ia tham s5 Xet ham 'l/x.y:Q -) R+ I J Ij/' r

CÓ THỂ BẠN MUỐN DOWNLOAD

AMBIENT
Đồng bộ tài khoản