Luận văn: NGHIÊN CỨU BÙ OFF-LINE SAI SỐ TỔNG HỢP TRÊN TRUNG TÂM GIA CÔNG 3 TRỤC VMC-85S
lượt xem 24
download
Ngày nay, với sự phát triển nhanh chóng của khoa học và công nghệ trên tất cả các lĩnh vực thì các sản phẩm cơ khí ngày càng phải có yêu cầu cao hơn về chất lượng sản phẩm, mức độ tự động hoá quy trình sản xuất và đặc biệt là độ chính xác kích thước, hình dáng hình học của sản phẩm. Để nâng cao được độ chính xác của các máy CNC nói chung, máy phay CNC nói riêng, dưới sự hướng dẫn của PGS.TS Nguyễn Đăng Hoè, tác giả đã thực hiện đề tài:“Nghiên cứu bù...
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Luận văn: NGHIÊN CỨU BÙ OFF-LINE SAI SỐ TỔNG HỢP TRÊN TRUNG TÂM GIA CÔNG 3 TRỤC VMC-85S
- ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KỸ THUẬT CÔNG NGHIỆP LUẬN VĂN THẠC SĨ KỸ THUẬT NGÀNH:CÔNG NGHỆ CHẾ TẠO MÁY NGHIÊN CỨU BÙ OFF-LINE SAI SỐ TỔNG HỢP TRÊN TRUNG TÂM GIA CÔNG 3 TRỤC VMC-85S Học viên: Lê Thị Thu Thủy Người HD khoa học: PGS.TS Nguyễn Đăng Hòe Thái Nguyên 2009
- ĐẠI HỌC THÁI NGUYÊN CỘNG HOÀ XÃ HỘI CHỦ NGHĨA VIỆT NAM TRƯỜNG ĐHKT CÔNG NGHIỆP Độc lập - Tự do - Hạnh phúc ∗∗∗ oOo LUẬN VĂN THẠC SĨ KỸ THUẬT NGHIÊN CỨU BÙ OFF-LINE SAI SỐ TỔNG HỢP TRÊN TRUNG TÂM GIA CÔNG 3 TRỤC VMC-85S Học viên: Lê Thị Thu Thủy Lớp: CH-K9 Chuyên ngành: Công nghệ chế tạo máy Người HD khoa học: PGS.TS Nguyễn Đăng Hòe KHOA ĐT SAU ĐẠI HỌC NGƯỜI HƯỚNG DẪN
- Luận văn thạc sĩ kỹ thuật Chuyên ngành công ngh ệ chế tạo máy 1 MỤC LỤC Trang PHẦN MỞ ĐẦU 10 Chương I SAI SỐ GIA CÔNG VÀ CÁC NGUYÊN LÝ BÙ SAI SỐ 12 GIA CÔNG TRÊN CÁC MÁY CNC Độ chính xác gia công 1.1 12 Các nguồn gây sai số 1.2 14 Sai số hình học 1.2.1 15 Sai số do vít me 1.2.2 17 Sai số do sống trượt 1.2.3 17 Sai số do ổ đỡ 1.2.4 18 Sai số do nhiệt 1.2.5 18 Sai số do rung động tự do 1.2.6 20 Sai số do tải tĩnh và động 1.2.7 20 Sai số do hệ thống điều khiển truyền động servo 1.2.8 20 Sai số do sự hình thành đường chạy dao trong CAM và máy 1.2.9 22 CNC Nguyên lý bù sai số trên các máy CNC 1.3 23 1.3.1 Mô hình bù 23 Thêm modul phần mềm 1.3.1.1 24 Biến đổi các thông số điều khiển 1.3.1.2 24 Biến đổi Post processor (PP) 1.3.1.3 25 Biến đổi chương trình NC 1.3.1.4 25 Bù sai số với các bộ điều khiển 1.3.2 26 Thêm modul phần mềm mới 1.3.2.1 26 Cài đặt bộ điều khiển phần cứng độc lập 1.3.2.2 27 Giới thiệu một vài nghiên cứu bù sai số ở trong nước và trên 1.4 27 thế giới Các công trình ở trong nước 1.4.1 27 Các công trình bù sai số tổng hợp của các tác giả nước ngoài 1.4.2 28 Kết luận chương I 1.5 29 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
- Luận văn thạc sĩ kỹ thuật Chuyên ngành công ngh ệ chế tạo máy 2 Chương II 30 QUY TRÌNH BÙ SAI SỐ CHO MÁY VMC - 85S Hệ thống thiết bị thí nghiệm 2.1 30 2.1.1 Trung tâm gia công VMC-85S 30 Máy đo tọa độ 3 chiều CMM – C544 2.1.2 32 Cấu hình cơ bản của máy 2.1.2.1 32 Tính năng kỹ thuật cơ bản 2.1.2.2 33 Phần mềm thiết kế CAD/CAM 2.1.3 46 Thiết kế với sự trợ giúp của máy tính CAD 2.1.3.1 46 Sản xuất với sự trợ giúp của máy tính CAM 2.1.3.2 46 Phần mềm Mastercam 2.2 47 Giao diện 2.2.1 48 Các dạng gia công cơ bản trên module phay 2.2.2 49 2.2.3 Quá trình phay 49 Kết luận chương II 2.3 51 Chương III XÁC ĐỊNH SAI SỐ VÀ BÙ SAI SỐ TỔNG HỢP 53 Xác định sai số tổng hợp 3.1 53 Thực nghiệm gia công trên máy VMC-85S 3.1.1 53 Biên dạng và kích thước gia công 3.1.1.1 53 Lập trình nguyên công 3.1.1.2 54 Chuyển chương trình sang máy CNC 3.1.1.3 60 Điều chỉnh máy 3.1.1.4 60 Gia công cắt gọt 3.1.1.5 60 Đo sai số gia công trên máy CMM C544 3.1.2 61 Gá đặt chi tiết 3.1.2.1 61 Khởi động và kiểm tra hệ thống 3.1.2.2 62 Chọn đầu đo 3.1.2.3 62 Hiệu chuẩn đầu đo 3.1.2.4 62 Xác lập hệ toạ độ của chương trình đo 3.1.2.5 63 Tiến hành đo và kết quả 3.1.2.6 63 Xác định kích thước thực của chi tiết và sai số tổng hợp 3.1.2.7 64 Bù sai số tổng hợp trên phần mềm CAD/CAM 3.2 69 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
- Luận văn thạc sĩ kỹ thuật Chuyên ngành công ngh ệ chế tạo máy 3 Cơ sở lý thuyết 3.2.1 69 Bù sai số 3.2.2 69 Kết luận chương III 3.3 74 Chương IV BÙ SAI SỐ KHI PHAY BIÊN DẠNG 75 Chi tiết gia công 4.1 75 Tạo mô hình CAD và thi t lập các thông số công nghệ trên ế 4.2 75 Mastercam Bù sai số 4.3 78 Gia công chi tiết theo biên dạng đã được bù 4.4 79 Kiểm tra sai số 4.5 80 Kết luận chương IV 4.6 81 Chương V KẾT LUẬN 82 TÀI LIỆU THAM KHẢO 84 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
- Luận văn thạc sĩ kỹ thuật Chuyên ngành công ngh ệ chế tạo máy 4 CÁC TỪ VIẾT TẮT Máy đo toạ độ 3 chiều CMM Coordinate Measuring Machine Hệ toạ độ Co-or. Sys Coordinate System Thiết kế với sự trợ giúp của máy tính CAD Computer Aided Design Sản xuất có sự trợ giúp của máy tính CAM Computer Aided Manufacturing Điều khiển số bằng máy tính CNC Computer Numerical Control Không gian 2 chiều 2D 2 Dimension Không gian 3 chiều 3D 3 Dimension Điểm chuẩn dụng cụ cắt CL Cutter Location Điểm tiếp xúc CC Cutter Contact Hậu xử lý PP Post Processor Phần mềm SW Software I/O Input/Output Vào/ Ra PC Personal Computer Máy tính cá nhân Bộ điều khiển PLC PLC Programmable Logic Controller Phương pháp phần tử hữu hạn FEM Finite Element Methods Điều khiển số NC Numerical Control Điều khiển số trực tiếp DNC Direct Numerical Control Quả cầu chuẩn MB Master Ball Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
- Luận văn thạc sĩ kỹ thuật Chuyên ngành công ngh ệ chế tạo máy 5 DANH MỤC CÁC HÌNH VẼ Trang Phân loại độ chính xác gia công Hình 1.1 12 Các sai số thành phần trên máy công cụ Hình 1.2 15 Sai số độ không vuông góc giữa từng đôi trục Hình 1.3 16 Hệ thống phản hồi của máy công cụ Hình 1.4 21 Phần lồi/lõm – Các điểm CC và CL Hình 1.5 22 Hệ thống bù sai số của máy công cụ Hình 1.6 24 Các thành phần của Post Processor Hình 1.7 25 Các thành phần của bộ biến đổi chương trình NC Hình 1.8 26 Sơ đồ quá trình bù sai số Hình 2.1 30 Trung tâm gia công 3 trục VMC -85S Hình 2.2 32 Hình 2.3 Máy CMM C544 33 Đường chạy dao gia công rãnh Hình 3.1 53 Biên dạng gia công rãnh Hình 3.2 54 Thiết kế biên dạng rãnh trên MasterCam Hình 3.3 54 Khai báo phôi, vật liệu phôi, hệ điều khiển Hình 3.4 55 Khai báo dao và chế độ cắt. Hình 3.5 56 Các thông số về biên dạng Hình 3.6 57 Cửa sổ hiển thị quá trình công nghệ Hình 3.7 57 Mô phỏng đường chạy dao. Hình 3.8 58 Mô phỏng quá trình gia công Hình 3.9 58 Hình 3.10 Post processing. 59 Chương trình NC. Hình 3.11 59 Giao diện DNC Hình 3.12 60 Sản phẩm gia công trước khi bù sai số Hình 3.13 61 Đo mẫu gia công. Hình 3.14 61 Phần mềm GEOPAK Hình 3.15 62 Đo điểm Hình 3.16 63 Kết quả đo Hình 3.17 64 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
- Luận văn thạc sĩ kỹ thuật Chuyên ngành công ngh ệ chế tạo máy 6 Mẫu sản phẩm gia công sau khi bù sai số Hình 3.18, 3.19 70 Đồ thị so sánh kết quả thí nghiệm trước và sau khi Hình 3.20 73 được bù sai số Bản vẽ chi tiết Hình 4.1 75 Tạo mô hình CAD của sản phẩm trên Mastercam Hình 4.2 75 Khai báo các thông số công nghệ Hình 4.3 76 Khai báo kiểu đường chạy dao Hình 4.4 76 Mô phỏng đường chạy dao khi phay hốc lõm Hình 4.5 77 Mô phỏng quá trình phay hốc lõm Hình 4.6 77 Mô phỏng chi tiết sau quá trình phay Hình 4.7 78 Sản phẩm ứng dụng phương pháp bù Hình 4.8 80 Kích thước thực tế của sản phẩm Hình 4.9 80 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
- Luận văn thạc sĩ kỹ thuật Chuyên ngành công ngh ệ chế tạo máy 7 DANH MỤC CÁC BẢNG Trang Bảng 3.1 Kết quả đo trước khi bù sai số theo phương X 66 Bảng 3.2 Kết quả đo trước khi bù sai số theo phương Y 68 Bảng 3.3 Kết quả đo sau khi bù sai số theo phương X 71 Bảng 3.4 Kết quả đo sau khi bù sai số theo phương Y 72 Bảng 4.1 Kết quả đo sai số gia công chi tiết ứng dụng 80 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
- Luận văn thạc sĩ kỹ thuật Chuyên ngành công ngh ệ chế tạo máy 8 LỜI CAM ĐOAN Tôi xin cam đoan những kết quả có được trong Luận văn là do bản thân tôi thực hiện dưới sự hướng dẫn của thầy giáo PGS.TS Nguyễn Đăng Hoè. Ngoài phần tài liệu tham khảo đã được liệt kê, các số liệu và kết quả thực nghiệm là trung thực và chưa được công bố trong bất cứ công trình nào khác. Thái Nguyên, ngày 2 tháng 5 năm 2009 Người thực hiện Lê Thị Thu Thủy Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
- Luận văn thạc sĩ kỹ thuật Chuyên ngành công ngh ệ chế tạo máy 9 LỜI NÓI ĐẦU Ngày nay, với sự phát triển nhanh chóng của khoa học và công nghệ trên tất cả các lĩnh vực thì các sản phẩm cơ khí ngày càng phải có yêu cầu cao hơn về chất lượng sản phẩm, mức độ tự động hoá quy trình sản xuất và đặc biệt là độ chính xác kích thước, hình dáng hình học của sản phẩm. Để nâng cao được độ chính xác của các máy CNC nói chung, máy phay CNC nói riêng, dưới sự hướng dẫn của PGS.TS Nguyễn Đăng H oè, tác giả đã thực hiện đề tài:“Nghiên c ứu bù off -line sai s ố tổng hợp trên trung tâm gia công 3 trục VMC– 85S” . Trong thời gian thực hiện đề tài, tác giả đã nhận được sự quan tâm rất lớn của nhà trường, các Khoa, các Phòng, Ban chức năng, các thầy cô giáo và các đồng nghiệp. Tác giả xin chân thành cảm ơn Ban Giám hiệu, khoa Sau đại học, các giảng viên đã tạo điều kiện cho người viết hoàn thành luận văn này. Tác giả xin bày tỏ lời cảm ơn chân thành nhất đến PGS.TS Nguyễn Đăng Hoè, Trường Đại học Kỹ thuật Công nghiệp đã tận tình hướng dẫn trong quá trình người viết thực hiện Luận văn này. Tác giả cũng xin chân thành cảm ơn Trung tâm thực nghiệm và các đồng nghiệp thuộc Trung tâm đã giúp đỡ và tạo điều kiện về máy móc, thiết bị để tác giả có thể hoàn thành các thí nghiệm thực nghiệm trong điều kiện tốt nhất. Mặc dù đã rất cố gắng, song do trình độ, kinh nghiệm còn hạn chế nên chắc chắn Luận văn này không tránh khỏi những thiếu sót. Tác giả rất mong sẽ nhận được những ý kiến đóng góp từ các thầy cô giáo và các bạn đồng nghiệp để Luận văn được hoàn thiện hơn và có ý nghĩa trong thực tiễn. Xin chân thành cảm ơn! Thái Nguyên, ngày 2 tháng 5 năm 2009. Người thực hiện Lê Thị Thu Thủy Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
- Luận văn thạc sĩ kỹ thuật Chuyên ngành công ngh ệ chế tạo máy 10 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
- Luận văn thạc sĩ kỹ thuật Chuyên ngành công ngh ệ chế tạo máy 11 PHẦN MỞ ĐẦU 1. Tính cấp thiết của đề tài Ngày nay, với sự phát triển nhanh chóng của khoa học và công nghệ trên tất cả các lĩnh vực thì các sản phẩm cơ khí ngày càng phải có yêu cầu cao hơn về chất lượng sản phẩm, mức độ tự động hoá sản xuất và đặc biệt là độ chính xác gia công về hình dáng hình học. Vì vậ y, công nghệ gia công trên các máy vạn năng khó đáp ứng được nhu cầu ngày càng cao này và do đó sự cạnh tranh các sản phẩm của chúng trên thị trường bị hạn chế. Thực tế đó đòi hỏi phải phát triển và nghiên cứu đưa công nghệ mới vào sản xuất nhằm nâng cao độ chính xác hình dáng hình học, nâng cao chất lượng sản phẩm. Xuất phát từ thực tế trường Đại học Kỹ thuật Công nghiệp đã có trung tâm gia công VMC - 85S, máy đo to độ 3 chiều CMM. Để nâng cao hơn nữa hiệu quả sử ạ dụng của các hệ thống thiết bị kỹ thuật này vào chương trình đào tạo đại học, sau đại học, nghiên cứu khoa học, chuyển giao công nghệ và khai thác ứng dụng vào quá trình sản xuất, gia công các sản phẩm có độ phức tạp và độ chính xác gia công cao, tác giả đề xuất hướng nghiên cứu sau đây: “Nghiên cứu bù off-line sai s ố tổng hợp trên trung tâm gia công 3 tr ục VMC– 85S” . 2. Ý nghĩa khoa học và thực tiễn của đề tài 2.1. Ý nghĩa khoa học Việc gia công các chi tiết hình dáng hình học phức tạp với độ chính xác cao thường được áp dụng nhiều trên các trung tâm gia công. Tuy nhiên quá trình gia công luôn tồn tại sai số chế tạo. Do đó, nâng cao độ chính xác gia công trên các trung tâm gia công là m trong những nhiệm vụ quan trọng của ngành cơ khí, nó luôn được ột quan tâm, lưu ý ở mọi lúc, mọi nơi. Mặt khác , trong thực tế sản xuất hiện nay thì vấn đề bù sai số trên các các trung tâm gia công vẫn là nội dung mới và khó khăn. Do đó, hướng nghiên cứu xây dựng chương trình bù sai số trên trung tâm gia công nhằm nâng cao độ chính xác gia công là một công việc cần thiết và mang ý nghĩa khoa học. 2.2. Ý nghĩa thực tiễn Đề tài mang tính ứng dụng cao, phục vụ trực tiếp cho chương trình đào tạo, chuyển giao công nghệ của nhà trường và đặc biệt là ứng dụng vào thực tế sản xuất, gia công các chi tiết với độ chính xác gia công cao. 3. Mục đích nghiên cứu Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
- Luận văn thạc sĩ kỹ thuật Chuyên ngành công ngh ệ chế tạo máy 12 - Nghiên cứu và khai thác tính năng công nghệ của trung tâm gia công VMC – 85S; -Ứng dụng công nghệ đo CMM – Scanning để kiểm tra độ chính xác gia công; - Nâng cao độ chính xác kích thước của sản phẩm gia công; - Phục vụ cho chương trình đào tạo, nghiên cứu khoa học và chuyển giao công nghệ của nhà trường; - Ứng dụng vào thực tế sản xuất công nghiệp. 4. Phương pháp nghiên cứu Nghiên cứu lý thuyết kết hợp với nghiên cứu thực nghiệm, nhưng chủ yếu là thực nghiệm . * Đối tượng nghiên cứu: Chọn một số mẫu sản phẩm nhất định để tiến hành gia công và đề ra phương pháp bù sai số. * Thiết bị thực nghiệm: + Máy đo toạ độ 3 chiều CMM - C544 - Tại trường ĐHKTCN; + Trung tâm gia công VMC - 85S - Tại trường ĐHKTCN; + Các phần mềm đo, xử lý dữ liệu, thiết kế CAD /CAM. 5. Nội dung nghiên cứu + Chương 1: Sai số gia công và các nguyên lý bù sai số gia công trên các máy CNC. + Chương 2: Quy trình bù sai số cho máy VMC-85S. + Chương 3: Xác định sai số và bù sai số tổng hợp. + Chương 4: Bù sai số khi phay biên dạng. + Chương 5: Kết luận. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
- Luận văn thạc sĩ kỹ thuật Chuyên ngành công ngh ệ chế tạo máy 13 Chương I: SAI SỐ GIA CÔNG VÀ CÁC NGUYÊN LÝ BÙ SAI SỐ GIA CÔNG TRÊN CÁC MÁY CNC Độ chính xác gia công 1.1. Kỹ thuật ngày nay đòi hỏi máy móc, thiết bị phải gọn, đẹp, làm việc chính xác, độ tin cậy cao. Muốn vậy từng chi tiết máy phải có kết cấu hợp lý, độ chính xác và độ bóng bề mặt phù hợp với yêu cầu làm việc, tính chất cơ lý của bề mặt. Độ chính xác của một chi tiết máy hay một cơ cấu máy là do người thiết kế quy định trên cơ sở yêu cầu làm việc của máy như độ chính xác, độ ổn định, độ bền lâu, năng su làm việc, mức độ điều khiển, độ phức tạp, an toàn tuyệt đối khi làm ất việc.v.v..Tuy nhiên, người trực tiếp chế tạo sẽ là người quyết định cuối cùng độ chính xác đạt được của chi tiết. Độ chính xác gia công của một chi tiết máy là mức độ giống nhau về hình học, tính chất cơ lý bề mặt của chi tiết gia công so với chi tiết lý tưởng trên bản vẽ thiết kế. Nói chung, đ chính xác của chi tiết gia công là chỉ tiêu khó đạt nhất và tốn ộ kém nhất trong quá trình thiết kế cũng như trong quá trình chế tạo. Trong thực tế không thể chế tạo được chi tiết tuyệt đối chính xác, nghĩa là hoàn toàn phù hợp về hình học, kích thước cũng như tính chất cơ lý với các giá trị lý tưởng. Vì vậy dùng giá trị sai lệch của nó để đánh giá độ chính xác gia công của chi tiết máy, giá trị sai lệch đó càng lớn thì độ chính xác gia công càng thấp. Độ chính xác gia công bao gồm các khái niệm sau: - Độ chính xác của một chi tiết; - Độ chính xác của cụm chi tiết. - Độ chính xác kích thước là độ chính xác về kích thước thẳng hoặc kích thước góc. Độ chính xác kích thước được đánh giá bằng sai số kích thước thật so với kích thước lý tưởng cần có và được thể hiện bằng dung sai của kích thước đó. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
- Luận văn thạc sĩ kỹ thuật Chuyên ngành công ngh ệ chế tạo máy 14 Độ chính xác gia công Độ chính xác của chi Độ chính xác của cụm chi tiết tiết Sai số tổng Sai lệch kích Sai lệch vị trí thước tương quan Sai số Sai số hình Độ Độ Sai Tính Sai Sai số vị trí dạng hình chất cơ số hệ số sóng nhám tương học bề lý lớp thống ngẫu kích thước mặt bề mặt quan nhiên Hình 1.1: Phân loại độ chính xác gia công - Độ chính xác về vị trí tương quan giữa hai bề mặt thực chất là sự xoay đi một góc nào đó c bề mặt này so với bề mặt kia. Vì chi tiết là một vật rắn nên độ chính ủa xác xoay của bề mặt này so với bề mặt kia được quan sát theo hai mặt phẳng toạ độ vuông góc nhau. Như vậy, độ chính xác vị trí tương quan được đánh giá theo sai số về góc yêu cầu giữa vị trí bề mặt này với bề mặt kia trong hai mặt phẳng toạ độ vuông góc với nhau. Độ chính xác vị trí tương quan thường được ghi thành một điề u kiện kỹ thuật riêng trên bản vẽ thiết kế. - Độ chính xác hình dạng hình học của chi tiết máy là mức độ phù hợp của chúng với hình dáng hình học lý tưởng. Ví dụ như chi tiết hình trụ thì độ chính xác hình dạng hình học là độ côn, độ ôvan, độ đa cạnh .v.v.. - Độ sóng: Là chu kỳ không phẳng của bề mặt chi tiết được quan sát trong phạm vi nhất định (1 đến 100mm). - Sai lệch hình học tế vi: Còn được gọi là độ nhám bề mặt được biểu thị bằng một trong hai chỉ tiêu Ra và Rz. Đây là sai số của bề mặt thực quan sá t trong một miền xác định. - Tính chất lớp cơ lý lớp bề mặt của chi tiết gia công: Là một trong những chỉ tiêu quan trọng của độ chính xác gia công, nó ảnh hưởng lớn đến điều kiện làm việc của chi tiết máy nhất là các chi tiết chính xác và các chi tiết làm việc trong những điều kiện đặc biệt. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
- Luận văn thạc sĩ kỹ thuật Chuyên ngành công ngh ệ chế tạo máy 15 Khi xem xét đ chính xác gia công của một cụm chi tiết, ngoài những yếu tố ộ cần xem xét cho một chi tiết cần phải kể đền những yếu tố khác nhằm đảm bảo sai số tổng hợp xuất hiện trên một chi tiết bất kì trong nhóm đều nhỏ hơn sai số cho phép. Khi gia công một loạt chi tiết trong cùng một điều kiện xác định mặc dù những nguyên nhân sinh ra từng sai số nói trên của mỗi chi tiết là giống nhau nhưng xuất hiện giá trị sai số tổng ở từng chi tiết lại khác nhau. Sở dĩ có hiện tượng như vậy là do tính chất khác nhau của các sai số thành phần. Các nguồn gây sai số 1.2. Có rất nhiều nguồn sai số tác động đến vị trí thực của dụng cụ cắt. Trong các nhân tố chính tác động đến độ chính xác vị trí là các sai số hình học của máy công cụ và nhiệt tác động lên các trục máy công cụ. Các nguồn sai số khác là độ phân giải và độ chính xác của hệ thống đường dịch chuyển, biến dạng đàn hồi của các chi tiết dẫn động, lực quán tính khi hãm, khi tăng tốc, ma sát, hệ thống điều khiển servo, lực cắt và rung động. Với máy nhiều trục, kết quả nhận được là tồn tại cả các sai số dọc trục và sai số độ nghiêng, độ lắc, sai số hướng tâm và sai số vị trí trong không gian làm việc của máy. Tải trọng làm việc tĩnh và khối lượng của chi tiết gia công sẽ gây biến dạng chi tiết gia công, kết quả là cũng tạo ra sai số vị trí trên máy công cụ. Nói chung, máy CNC có các nguồn gây ra sai số sau đây: Sai số hình học của các chi tiết và kết cấu máy; - Sai số do giãn nở nhiệt; - Ma sát trong hệ thống dẫn động; - Sai số do lực cắt; - Hệ thống điều khiển servo; - Dao động ngẫu nhiên; - Sai số do sự hình thành đường chạy dao trong CAM và máy CNC; - Ngoài ra còn có các nguồn sai số như: Sai số do biến dạng đàn hồi; - Sai số chạy không; - Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
- Luận văn thạc sĩ kỹ thuật Chuyên ngành công ngh ệ chế tạo máy 16 Sai số vị trí đồ gá; - Sai số do mòn dao… - 1.2.1. Sai số hình học Sai số hình học được coi là sai số của máy tồn tại trong điều kiện nguội và sai số này không thay đổi theo thời gian (chúng có tính lặp lại ổn định). 75% sai số ban đầu của một máy công cụ mới xuất hiện do quá trình sản xuất và lắp ráp . Sai số hình học là sai số trục và sai số độ nghiêng, độ lắc và sai số hướng tâm. Đối với máy phay 3 trục, có 21 thành phần sai số. Mô hình sai số hình học được xác định bằng việc sử dụng mô hình vật cứng, lấy gần đúng góc nhỏ của sai số và phép biến đổi thuần nhất. Mô hình sai số hình học của K.G Ahn, Cho [9] được ứng dụng như sau: Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
- Luận văn thạc sĩ kỹ thuật Chuyên ngành công ngh ệ chế tạo máy 17 Hình 1.2: Các sai số thành phần trên máy công cụ. Hình 1.3: Sai số độ không vuông góc giữa từng đôi trục. Trong đó: + x, y, z là toạ độ của điểm khảo sát trong hệ Oxyz; + δxx, δyy, δzz là các sai số vị trí dọc trục theo phương chuyển động; + δyx, δzx, δxy, δzy, δxz, δyz là các sai ố dọc trục theo phương vuông góc với s phương chuyển động X, Y và Z; + εxx, εyx, εzx, εxy, εyy, εzy, εxz, εyz, εzz là các sai số góc quay quanh các trục vuông góc với phương chuyển động X, Y và Z; + Sxy, Sxz, Syz là các sai số độ không vuông góc giữa từng đôi trục. Các loại sai số này xuất phát từ sai số chế tạo và lắp ráp các chi tiết của máy. Các sai số này bao gồm sai số chiều dài, sai số góc, sai số độ thẳng, sai số vuông góc, song song và sai s vị trí điểm không. Thỉnh thoảng sự va chạm cũng làm hỏng phôi ố và thay đổi các thành phần hình học và chi tiết dẫn động của máy. Các loại sai số này thay đổi chậm theo thời gian, tức là máy lặp lại sai số trong một khoảng thời gian nào đó. Trong đó sai s do lắp ráp tác động nhiều đến độ chính ố xác của máy. Tất cả các bộ phận trượt của máy có liên quan đến sai số quay quanh trục x, y và z. M dù các sai số góc rất nhỏ, sự khuyếch đại sai số này tại đầu dụng cụ là ặc đáng kể. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
- Luận văn thạc sĩ kỹ thuật Chuyên ngành công ngh ệ chế tạo máy 18 Sai số này không thể được đo một cách trực tiếp nhưng bằng tín hiệu liên hệ ngược chúng ta có thể tính được sai số này. Sự cố định các sai số này rất khó. Nhưng với phép tính toán học và sự đo lường của máy, chúng ta có th điều khiển máy để ể hiệu chỉnh định vị đầu dụng cụ. 1.2.2. Sai số do vít me Cơ cấu chuyển động quay của động cơ servo được chuyển thành chuyển động tịnh tiến bằng vít me bi. Thông thường vít me đai ốc có ma sát lớn hơn so với vít me bi. Vít me bi có đường xoắn vít, đai ốc và một số viên bi lăn giữa vít và đai ốc. Khi vít me quay, các viên bi truy chuyển động dọc trục tới gối đỡ. Nếu cần hệ thống độ ền cứng vững cao hay không có độ rơ, cần phải đặt lực trước vào hệ thống vít me theo phương pháp dự ứng lực. Sai số động học trong cơ cấu đo đường dịch chuyển xuất phát chủ yếu từ sai số bước vít me. Sai số này ảnh hưởng trực tiếp đến kết quả đo vì bước của vít me bi liên quan trực tiếp tới chuyển động tuyến tính. Ngoài ra, sai s vị trí còn bị tác động bởi góc nghiêng của nắp ổ, sự lệch tâm ố của trục động cơ servo với các phần ghép nối. 1.2.3. Sai số do sống trượt Trong máy CNC, có hai loại sống dẫn hướng được sử dụng, sống dẫn hướng lăn và sống dẫn hướng trượt. Với sống dẫn hướng trượt, lực chuyển động ban đầu cao hơn để làm bàn máy chuyển động. Nếu sống dẫn hướng và các chi tiết dẫn động vít me bi không được đặt đối xứng. Với sống dẫn hướng trượt, ma sát trượt lớn và luôn luôn xuất hiện sai số do dính trượt. Sai số còn xuất hiện trong quá trình chế tạo sống dẫn hướng và sai số trong quá trình lắp ráp. Sống dẫn hướng lăn có ma sát nhỏ hơn loại trượt. Tuy nhiên sống dẫn hướng lăn có khả năng dập rung động kém hơn loại sống trượt. Sống dẫn hướng thủy tĩnh có khả năng giảm áp lực. Việc điều khiển nhiệt độ của chất lỏng có tính quan trọng; nếu không, tác đ ộng củ a nhiệt là đáng kể. Các nguồn sai số chính gây ra bởi sống dẫn hướng là: - Chế tạo không chính xác; Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
CÓ THỂ BẠN MUỐN DOWNLOAD
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn