intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Luận văn Thạc sĩ Hóa học: Nghiên cứu tổng hợp và nang hóa nano sắt từ lên liposome định hướng ứng dụng làm vật liệu mang thuốc

Chia sẻ: _ _ | Ngày: | Loại File: PDF | Số trang:106

28
lượt xem
4
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Việc nang hóa ION vào liposome có thể cùng lúc thực hiện nhiều mục đích, vừa có thể bảo vệ ION không bị kết tụ, vừa giúp liposome có được khả năng đáp ứng với từ trường ngoài, từ đó tạo thành hệ chất mang đa chức năng, có tiềm năng lớn trong ứng dụng mang thuốc hướng đích. Mời các bạn cùng tham khảo nội dung luận văn.

Chủ đề:
Lưu

Nội dung Text: Luận văn Thạc sĩ Hóa học: Nghiên cứu tổng hợp và nang hóa nano sắt từ lên liposome định hướng ứng dụng làm vật liệu mang thuốc

  1. BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ Nguyễn Đình Tiến Dũng NGHIÊN CỨU TỔNG HỢP VÀ NANG HÓA NANO SẮT TỪ LÊN LIPOSOME ĐỊNH HƯỚNG ỨNG DỤNG LÀM VẬT LIỆU MANG THUỐC LUẬN VĂN THẠC SĨ: HÓA HỌC Thành phố Hồ Chí Minh – 04/2020
  2. BỘ GIÁO DỤC VIỆN HÀN LÂM KHOA HỌC VÀ ĐÀO TẠO VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ Nguyễn Đình Tiến Dũng NGHIÊN CỨU TỔNG HỢP VÀ NANG HÓA NANO SẮT TỪ LÊN LIPOSOME ĐỊNH HƯỚNG ỨNG DỤNG LÀM VẬT LIỆU MANG THUỐC Chuyên ngành: Hóa vô cơ Mã số: 8440113 LUẬN VĂN THẠC SĨ: HÓA HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC Hướng dẫn 1: PGS. TS. Vũ Minh Thành Hướng dẫn 2: PGS. TS. Nguyễn Đại Hải Thành phố Hồ Chí Minh – 04/2020
  3. i LỜI CAM ĐOAN Tôi xin cam đoan đây là công trình nghiên cứu của riêng tôi. Các số liệu, kết quả nêu trong luận văn là trung thực và chưa từng được ai công bố trong bất kỳ công trình nghiên cứu nào khác. Nếu có bất kỳ sự gian dối nào, tôi xin chịu hoàn toàn trách nhiệm. Tp. Hồ Chí Minh, ngày tháng năm Học viên cao học Nguyễn Đình Tiến Dũng
  4. ii LỜI CẢM ƠN Tôi xin chân thành cảm ơn Học viện Khoa học và Công nghệ, Viện Hàn lâm Khoa học và Công nghệ Việt Nam đã tạo điều kiện cho tôi được học tập và rèn luyện trong suốt thời gian vừa qua, từ năm 2017-2020. Tôi xin cảm ơn PGS. TS. Vũ Minh Thành và PGS. TS. Nguyễn Đại Hải đã hướng dẫn tôi thực hiện đề tài này. Thầy đã truyền đạt những kiến thức chuyên ngành sâu rộng, những kinh nghiệm nghiên cứu quý báu, và nguồn động lực để tôi có thể vượt qua những khó khăn trong quá trình thực hiện đề tài. Tôi xin cảm ơn Phòng Vật liệu Y sinh, Viện Khoa học Vật liệu Ứng dụng, Viện Hàn lâm Khoa học và Công nghệ Việt Nam tại thành phố Hồ Chí Minh đã tạo điều kiện thuận lợi bao gồm hóa chất, dụng cụ và thiết bị để tôi có thể hoàn thành đề tài. Tôi xin cảm ơn các anh chị và các bạn, đặt biệt là chị Lê Ngọc Thùy Trang và anh Nguyễn Vũ Duy Khang đã hỗ trợ tôi trong suốt quá trình thực nghiệm. Cuối cùng, tôi xin cảm ơn gia đình, bạn bè đã động viên tinh thần và hỗ trợ tôi trong thời gian tôi học tập và thực hiện đề tài. Tp. Hồ Chí Minh, ngày tháng năm Học viên cao học Nguyễn Đình Tiến Dũng
  5. iii DANH MỤC CÁC KÍ HIỆU VÀ CHỮ VIẾT TẮT Từ viết tắt Từ đầy đủ Nghĩa tiếng Việt Chol Cholesterol Cetyltrimethylammonium CTAB bromide LC Loading capacity Hàm lượng nang hóa EE Entrapment efficiency Hiệu suất nang hóa DLS Dynamic light scattering Tán xạ ánh sáng động Fourier transform infrared FTIR Phổ hồng ngoại biến đổi Fourier spectroscopy Inductive coupled plasma - Quang phổ nguồn plasma cảm ICP-MS mass spectroscopy ứng cao tần kết hợp khối phổ ION Iron oxide nanoparticles Nano oxide sắt từ LP Liposome OA Oleic acid Oleic acid-coated iron oxide OCION Nano oxide sắt từ phủ oleic acid nanoparticles QCT Quercetin SEM Scan electron microscopy Kính hiển vi điện tử quét Ultraviolet-visible UV-Vis Phổ tử ngoại-khả kiến spectroscopy Vibrating-sample VSM Từ kế mẫu rung magnetometer XRD X-ray diffracion Nhiễu xạ tia X
  6. iv DANH MỤC CÁC BẢNG Bảng 1.1. Phân loại liposome theo kích thước và số lớp màng phospholipid kép ......................................................................................................................... 27 Bảng 2.1. Nguyên liệu và hóa chất ................................................................. 40 Bảng 2.2. Danh mục các trang thiết bị và dụng cụ ......................................... 41 Bảng 2.3. Quy trình tổng hợp OCION ............................................................ 46 Bảng 2.4. Quy trình tổng hợp liposome .......................................................... 47 Bảng 2.5. Quy trình tổng hợp OCION@LP ................................................... 49 Bảng 2.6. Quy trình tổng hợp OCION-QCT@LP .......................................... 51 Bảng 3.1. Giá trị tính toán hằng số mạng tinh thể và kích thước hạt của ION và OCION từ giản đồ XRD ................................................................................. 56 Bảng 3.2. Kết quả kích thước hạt và thế zeta của liposome tổng hợp 3 lần lặp lại ..................................................................................................................... 64 Bảng 3.3. Bảng so sánh kết quả DLS của các mẫu OCION@LP tổng hợp bằng các phương pháp hydrate hóa khác nhau ........................................................ 65 Bảng 3.4. Bảng kết quả kích thước hạt và thế zeta của LP nang hóa OCION các tỉ lệ đo ngay sau tổng hợp và sau 1 tuần ......................................................... 66 Bảng 3.5. Kết quả nang hóa OCION với các tỉ lệ khác nhau trên liposome .. 67 Bảng 3.6. Bảng kết quả kích thước hạt và thế zeta của OCION-QCT@LP đo ngay sau tổng hợp và sau 1 tuần ..................................................................... 70
  7. v DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ Hình 1.1. Ô mạng tinh thể của oxide sắt từ....................................................... 8 Hình 1.2. Cấu trúc spin của oxide sắt từ ........................................................... 8 Hình 1.3. Sự tạo thành domain nhằm giảm năng lượng tĩnh từ ........................ 9 Hình 1.4. Đường cong từ hóa của vật liệu siêu thuận từ ................................ 11 Hình 1.5. Sự phụ thuộc của lực kháng từ vào kích thước hạt ......................... 12 Hình 1.6. Mô hình cấu trúc lõi – vỏ của hạt nano từ [6] ................................. 13 Hình 1.7. Mô hình chất lỏng từ ....................................................................... 15 Hình 1.8. Nguyên tắc tách tế bào bằng từ trường ........................................... 22 Hình 1.9. Nguyên lý dẫn truyền thuốc bằng vật liệu nano từ tính .................. 24 Hình 1.10. Ảnh MRI của chuột trước và sau khi tiêm ION [34]. ................... 24 Hình 1.11. Công thức phân tử của: A) Cholesterol và B) Phospholipid ........ 25 Hình 1.12. A) Cấu tạo và B) Nguyên lý mang thuốc của liposome ............... 25 Hình 1.13. Phân loại liposome theo cấu trúc màng lipid kép ......................... 27 Hình 1.14. Sơ đồ phương pháp hydrate hóa màng mỏng lipid ....................... 32 Hình 1.15. Công thức phân tử của quercetin .................................................. 37 Hình 2.1. Sơ đồ tổng hợp OCION .................................................................. 45 Hình 2.2. Sơ đồ quy trình tổng hợp liposome ................................................. 47 Hình 2.3. Sơ đồ quy trình tổng hợp OCION@LP .......................................... 49 Hình 2.4. Sơ đồ quy trình tổng hợp OCION-QCT@LP ................................. 51 Hình 3.1. OCION phân tán trong CHCl3 không áp từ trường (trái) và có áp từ trường (phải).................................................................................................... 54 Hình 3.2. Phổ XRD của ION và OCION ........................................................ 54 Hình 3.3. Phổ FT-IR của: a) oxide sắt từ (ION), b) oleic acid (OA) và c) oxide sắt từ phủ oleic acid (OCION) ........................................................................ 57
  8. vi Hình 3.4. Các dạng tương tác của OA và ION ............................................... 58 Hình 3.5. Ảnh SEM của ION và OCION và biểu đồ thống kê kích thước hạt tương ứng ........................................................................................................ 59 Hình 3.6. Ảnh TEM và thống kê kích thước hạt của OCION ........................ 60 Hình 3.7. Phổ DLS (kích thước hạt) của OCION trong CHCl3 ...................... 60 Hình 3.8. Phổ VSM của ION và OCION........................................................ 62 Hình 3.9. Mẫu Liposome sau tổng hợp ........................................................... 63 Hình 3.10. Ảnh TEM của liposome ................................................................ 63 Hình 3.11. Phổ DLS phân tích kích thước hạt (trái) và thế zeta (phải) của liposome .......................................................................................................... 63 Hình 3.12. OCION@LP với các tỉ lệ OCION 1% (A), 5% (B) và 10% (C), và các mẫu tương ứng khi áp từ trường ngoài (D, E, F) ...................................... 64 Hình 3.13. Phổ DLS phân tích kích thước hạt (trái) và thế zeta (phải) của OCION@LP tỉ lệ 5% ...................................................................................... 66 Hình 3.14. Phổ XRD của OCION@LP .......................................................... 68 Hình 3.15. Phổ VSM của OCION@LP .......................................................... 69 Hình 3.16. OCION-QCT@LP trước (trái) và sau khi loại OCION dư (phải) 69 Hình 3.17. Phổ DLS phân tích kích thước hạt (trái) và thế zeta (phải) của OCION-QCT@LP .......................................................................................... 70 Hình 3.18. Phổ FT-IR của: a) OCION, b) QCT, c) LP và d) OCION-QCT@LP ......................................................................................................................... 71 Hình 3.19. Đường chuẩn đo nồng độ QCT bằng phương pháp UV-Vis ........ 72 Hình 3.20. Phổ VSM của OCION-QCT@LP ................................................. 73
  9. vii DANH MỤC CÁC PHỤ LỤC Phụ lục 1. Phổ DLS kích thước hạt của OCION............................................. 81 Phụ lục 2. Phổ DLS kích thước hạt của liposome .......................................... 82 Phụ lục 3. Phổ DLS kích thước hạt của liposome mang OCION tỉ lệ 1% ..... 83 Phụ lục 4. Phổ DLS kích thước hạt của liposome mang OCION tỉ lệ 5% ..... 84 Phụ lục 5. Phổ DLS kích thước hạt của liposome mang OCION tỉ lệ 10% ... 85 Phụ lục 6. Phổ DLS kích thước hạt của liposome mang OCION và QCT ..... 86 Phụ lục 7. Phổ DLS thế zeta của liposome ..................................................... 87 Phụ lục 8. Phổ DLS thế zeta của liposome mang OCION tỉ lệ 1% ................ 88 Phụ lục 9. Phổ DLS thế zeta của liposome mang OCION tỉ lệ 5% ................ 89 Phụ lục 10. Phổ DLS thế zeta của liposome mang OCION tỉ lệ 10% ............ 90 Phụ lục 11. Phổ DLS thế zeta của liposome mang OCION và QCT.............. 91 Phụ lục 12. Phổ FT-IR của ION ...................................................................... 92 Phụ lục 13. Phổ FT-IR của oleic acid (OA) .................................................... 93 Phụ lục 14. Phổ FT-IR của OCION ................................................................ 94 Phụ lục 15. Phổ FT-IR của liposome .............................................................. 95 Phụ lục 16. Phổ FT-IR của quercetin (QCT) .................................................. 96 Phụ lục 17. Phổ FT-IR của liposome mang OCION và QCT......................... 97
  10. 1 MỤC LỤC LỜI CAM ĐOAN .............................................................................................. i LỜI CẢM ƠN ................................................................................................... ii DANH MỤC CÁC KÍ HIỆU VÀ CHỮ VIẾT TẮT........................................ iii DANH MỤC CÁC BẢNG............................................................................... iv DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ ........................................................... v DANH MỤC CÁC PHỤ LỤC ........................................................................ vii MỤC LỤC ......................................................................................................... 1 MỞ ĐẦU ........................................................................................................... 5 CHƯƠNG 1. TỔNG QUAN .......................................................................... 7 1.1. VẬT LIỆU SẮT TỪ ............................................................................... 7 1.1.1. Vật liệu sắt từ dạng khối ....................................................................... 7 1.1.1.1. Sơ lược về lịch sử phát hiện ................................................................ 7 1.1.1.2. Cấu trúc tinh thể .................................................................................. 7 1.1.1.3. Tính chất từ ......................................................................................... 8 1.1.2. Vật liệu nano oxide sắt từ (ION)......................................................... 10 1.1.2.1. Cấu trúc tinh thể ................................................................................ 10 1.1.2.2. Tính chất từ ....................................................................................... 10 1.1.2.3. Tương tác giữa các hạt ION .............................................................. 13 1.1.2.4. Sự biến đổi và ổn định của magnetite ............................................... 13 1.1.3. Chất lỏng từ ......................................................................................... 14 1.1.4. Một số phương pháp tổng hợp ION .................................................... 15 1.1.4.1. Phương pháp vật lý ........................................................................... 15
  11. 2 1.1.4.2. Phương pháp hóa học ........................................................................ 16 1.1.5. Ứng dụng của ION .............................................................................. 21 1.1.5.1. Phân tách và chọn lọc tế bào, ADN .................................................. 21 1.1.5.1. Tăng thân nhiệt cục bộ ...................................................................... 22 1.1.5.2. Dẫn truyền thuốc ............................................................................... 23 1.1.5.3. Tăng độ tương phản cho ảnh cộng hưởng từ .................................... 24 1.2. LIPOSOME ........................................................................................... 25 1.2.1. Khái niệm ............................................................................................ 25 1.2.2. Ưu điểm và nhược điểm...................................................................... 26 1.2.2.1. Ưu điểm............................................................................................. 26 1.2.2.2. Nhược điểm ....................................................................................... 26 1.2.3. Phân loại .............................................................................................. 26 1.2.3.1. Phân loại theo cấu trúc ...................................................................... 27 1.2.3.2. Phân loại theo phương pháp điều chế ............................................... 28 1.2.3.3. Phân loại theo thế hệ ......................................................................... 28 1.2.4. Phương pháp tổng hợp ........................................................................ 31 1.2.4.1. Phương pháp hydrate hóa màng mỏng lipid ..................................... 31 1.2.4.2. Phương pháp tiêm ether .................................................................... 32 1.2.4.3. Phương pháp tiêm ethanol ................................................................ 33 1.2.4.4. Phương pháp bay hơi pha đảo........................................................... 34 1.2.4.5. Phương pháp thẩm tách bằng CHĐBM ............................................ 34 1.3. LIPOSOME NANG HÓA NANO OXIDE SẮT TỪ ........................... 35 1.4. QUERCETIN ........................................................................................ 37 1.4.1. Tính chất hóa lý................................................................................... 37 1.4.2. Dược tính ............................................................................................ 38
  12. 3 1.5. MỤC TIÊU NGHIÊN CỨU ................................................................. 39 CHƯƠNG 2. PHƯƠNG PHÁP NGHIÊN CỨU ......................................... 40 2.1. NGUYÊN LIỆU - HÓA CHẤT VÀ TRANG THIẾT BỊ .................... 40 2.1.1. Nguyên liệu – hóa chất ....................................................................... 40 2.1.2. Dụng cụ và trang thiết bị..................................................................... 41 2.1.3. Các phương pháp phân tích ................................................................ 43 2.1.3.1. Nhiễu xạ tia X ................................................................................... 43 2.1.3.2. Phổ hồng ngoại (FT-IR) .................................................................... 43 2.1.3.3. Phổ tử ngoại – khả kiến (UV-Vis) .................................................... 43 2.1.3.4. Tán xạ ánh sáng động (DLS) ............................................................ 44 2.1.3.5. Kính hiển vi điện tử quét (SEM)....................................................... 44 2.1.3.6. Quang phổ nguồn plasma cảm ứng cao tần kết hợp khối phổ .......... 44 2.1.3.7. Từ kế mẫu rung (VSM)..................................................................... 44 2.2. TỔNG HỢP NANO OXIDE SẮT TỪ PHỦ OLEIC ACID (OCION) 45 2.3. TỔNG HỢP LIPOSOME NANG HÓA ION VÀ QUERCETIN ........ 47 2.3.1. Tổng hợp liposome ............................................................................. 47 2.3.2. Tổng hợp liposome nang hóa OCION (OCION@LP) ....................... 49 2.3.3. Tổng hợp liposome nang hóa OCION và quercetin (OCION-QCT@LP) 51 CHƯƠNG 3. KẾT QUẢ VÀ THẢO LUẬN ............................................... 54 3.1. TỔNG HỢP NANO OXIDE SẮT TỪ ................................................. 54 3.1.1. Cảm quan ............................................................................................ 54 3.1.2. Phân tích cấu trúc (XRD, FT-IR)........................................................ 54 3.1.3. Phân tích kích thước hạt...................................................................... 59 3.1.4. Phân tích hàm lượng sắt (ICP) ............................................................ 61
  13. 4 3.1.5. Phân tích từ tính (VSM) ...................................................................... 62 3.2. TỔNG HỢP LIPOSOME NANG HÓA OCION VÀ QUERCETIN ... 62 3.2.1. Liposome ............................................................................................. 62 3.2.1.1. Cảm quan .......................................................................................... 62 3.2.1.2. TEM .................................................................................................. 63 3.2.1.3. DLS ................................................................................................... 63 3.2.2. Liposome nang hóa OCION (OCION@LP) ...................................... 64 3.2.2.1. Cảm quan .......................................................................................... 64 3.2.2.2. DLS ................................................................................................... 65 3.2.2.3. Hàm lượng OCION nang hóa ........................................................... 67 3.2.2.4. XRD .................................................................................................. 68 3.2.2.5. VSM .................................................................................................. 69 3.2.3. Liposome nang hóa QCT và OCION (OCION-QCT@LP) ............... 69 3.2.3.1. Cảm quan .......................................................................................... 69 3.2.3.2. Kích thước hạt ................................................................................... 70 3.2.3.3. Phân tích thành phần ......................................................................... 71 3.2.3.4. Hàm lượng QCT và OCION nang hóa ............................................. 71 3.2.3.5. VSM .................................................................................................. 73 CHƯƠNG 4. KẾT LUẬN VÀ KIẾN NGHỊ ............................................... 74 4.1. KẾT LUẬN ........................................................................................... 74 4.2. KIẾN NGHỊ .......................................................................................... 74 TÀI LIỆU THAM KHẢO ............................................................................... 75 PHỤ LỤC ........................................................................................................ 81
  14. 5 MỞ ĐẦU Theo sự phát triển nhanh chóng của công nghệ nano, ngày càng nhiều loại vật liệu nano với tính chất đặc biệt được khám phá, từ đó thúc đẩy những bước tiến mới ở nhiều lĩnh vực, trong đó có vật liệu y sinh. Các loại vật liệu mới này đa dạng cả về bản chất (vô cơ, hữu cơ, composite...), lẫn về cấu trúc (phân tử, gel, micelle...), và trở thành một làn sóng, một xu hướng nghiên cứu mới thu hút sự quan tâm của nhiều nhà khoa học nhằm hướng đến mục tiêu cải thiện chất lượng sống của con người. Một trong số những loại vật liệu phải kể đến là vật liệu nano từ tính, mà điển hình là nano oxide sắt từ (iron oxide nanoparticles – ION). Khác với dạng phân tử hoặc dạng vật liệu khối thông thường, vật liệu nano từ tính nói chung và ION nói riêng khi đạt kích thước hạt từ khoảng vài nanomet đến vài trăm nanomet, tức kích thước của một domain, sẽ xuất hiện một số tính chất đặc biệt như siêu thuận từ, dị hướng từ bề mặt, bề mặt riêng lớn... Những đặc tính này giúp ION có khả năng đáp ứng có kiểm soát với từ trường ngoài, một yêu cầu quan trọng để ION được ứng dụng trên cơ thể người. Bên cạnh đó, kích thước nano còn giúp ION có thể dễ dàng được đưa vào cơ thể, xuyên qua hầu hết các hàng rào bảo vệ và xâm nhập đến cơ quan mục tiêu. Mặc dù vậy, với kích thước nano, ION có năng lượng bề mặt rất lớn và dễ dàng bị kết tụ, nhất là trong môi trường sinh lý. Điều này không những làm suy giảm tính chất của vật liệu mà còn có thể gây nguy hiểm khi hình thành các khối lớn trong cơ thể gây tắt nghẽn mạch máu hoặc các biến chứng khác. Để khắc phục, ION được bảo vệ bằng một lớp phủ bên ngoài nhằm hạn chế sự kết tụ. Tùy vào mục đích sử dụng mà lớp phủ này có thể là polymer, hợp chất vô cơ như silica, hoặc hợp chất hữu cơ như acid citric. Một phương pháp khác mang lại hiệu quả cao đó chính là nang hóa ION vào một hệ chất mang có sẵn, cụ thể là liposome. Việc nang hóa ION vào liposome có thể cùng lúc thực hiện nhiều mục đích, vừa có thể bảo vệ ION không bị kết tụ, vừa giúp liposome có được khả năng đáp ứng với từ trường ngoài, từ đó tạo thành hệ chất mang đa chức năng,
  15. 6 có tiềm năng lớn trong ứng dụng mang thuốc hướng đích. Với ý nghĩa khoa học và thực tiễn nêu trên, đề tài “Nghiên cứu tổng hợp và nang hóa nano sắt từ lên liposome định hướng ứng dụng làm vật liệu mang thuốc” được chọn làm đề tài luận văn tốt nghiệp cao học.
  16. 7 CHƯƠNG 1. TỔNG QUAN 1.1. VẬT LIỆU SẮT TỪ 1.1.1. Vật liệu sắt từ dạng khối 1.1.1.1. Sơ lược về lịch sử phát hiện Từ hơn 2500 năm trước, con người đã phát hiện vật liệu từ đầu tiên là một loại khoáng vật mang tên magnetite với khả năng hấp dẫn các vật dụng bằng sắt. Các mảnh nhỏ magnetite được từ hóa tự nhiên còn được gọi là đá nam châm (lodestone). Sau đó, người Hy Lạp đã nghĩ ra việc biến các mảnh sắt trở thành nam châm bằng cách chạm hoặc cọ xát mảnh sắt với magnetite, tạo tiền đề cho sự xuất hiện của la bàn sau này. Thực tế là trong suốt nhiều năm sau đó, đây là cách duy nhất được dùng để chế tạo nam châm cho đến khi nam châm điện được phát minh vào năm 1825 [1]. 1.1.1.2. Cấu trúc tinh thể Magnetite, hay còn gọi là oxide sắt từ, có công thức hóa học là Fe3O4 hoặc FeO.Fe2O3, là một trong những khoáng vật chứa sắt phổ biến thuộc nhóm ferrite. Các ferrite, tùy vào thành phần hóa học mà có thể có cấu trúc lập phương tâm diện hoặc lục giác, những ferrite có cấu trúc lập phương tâm diện lại phân thành hai dạng là spinel hoặc spinel đảo. Đối với ferrite có cấu trúc spinel, công thức hóa học có thể được viết thành AB2X4 với X là anion (thường là oxigen, lưu huỳnh và selen) có điện tích -2, A là cation hóa trị II chiếm vị trí lỗ trống tứ diện, B là cation hóa trị III chiếm vị trí lỗ trống bát diện trong ô mạng tinh thể. Trong khi đó, oxide sắt từ lại nằm trong nhóm ferrite có cấu trúc spinel đảo. Các hợp chất dạng này có công thức hóa học được viết thành B(AB)X4 với A, B và X tương tự như spinel thường, tuy nhiên ở cấu trúc spinel đảo, cation A hóa trị II lại chiếm vị trí lỗ trống bát diện, một nửa số cation B hóa trị III chiếm vị trí lỗ trống bát diện, nửa còn lại chiếm vị trí lỗ trống tứ diện. Cụ thể hơn, đối với oxide sắt từ, công thức hóa học được viết lại thành
  17. 8 Fe3+(Fe2+Fe3+)O42- , trong đó ion Fe2+ và một nửa số ion Fe3+ chiếm vị trí lỗ trống bát diện, một nửa số ion Fe3+ còn lại chiếm vị trí lỗ trống tứ diện. Hình 1.1. Ô mạng tinh thể của oxide sắt từ 1.1.1.3. Tính chất từ Tinh thể oxide sắt từ có cấu trúc lập phương tâm diện, độ từ hóa bão hòa Ms xấp xỉ 92 emu/g và nhiệt độ Curie khoảng 580°C [1]. Trong ô mạng tinh thể, 8 ion Fe3+ trong lỗ trống tứ diện có spin ngược chiều với spin của 8 ion Fe3+ trong lỗ trống bát diện nên triệt tiêu lẫn nhau, như vậy moment từ tổng cộng là tổng các moment từ do các ion Fe2+ trong lỗ trống bát diện gây ra. Hình 1.2. Cấu trúc spin của oxide sắt từ Tuy nhiên, đối với oxide sắt từ dạng khối, moment từ trong toàn khối vật liệu không thể theo cùng một hướng vì khi đó sẽ tạo ra một từ trường lớn bao quanh vùng không gian xung quanh vật liệu, yêu cầu trường này phải lưu trữ
  18. 9 lượng lớn năng lượng tĩnh từ (magnetostatic energy) dẫn đến sự tăng nội năng. Để tối thiểu hóa những năng lượng này, khối vật liệu tự chia thành nhiều vùng, mỗi vùng có chiều moment song song nhau và khác so với các vùng khác, những vùng này được gọi là domain. Khi domain đạt đến một kích thước nhất định (10-5 – 10-6 m) thì năng lượng cần thiết để tạo nên vách domain (khi phân chia thành các domain nhỏ hơn) lớn hơn năng lượng cần để duy trì domain, do đó domain ngừng phân chia và duy trì khoảng kích thước cố định [2]. Hình 1.3. Sự tạo thành domain nhằm giảm năng lượng tĩnh từ Một đặc tính khác của vật liệu từ là dị hướng từ, có liên quan đến các tương tác từ trong tinh thể có trật tự từ. Tính dị hướng thể hiện khi tính chất từ của vật liệu khác nhau theo các phương khác nhau. Nguồn gốc của dị hướng từ liên quan đến các dạng năng lượng tương tác cơ bản xác định trạng thái của vật liệu, trong đó phải kể đến dị hướng từ tinh thể, dị hướng từ đàn hồi và các ứng suất. Dị hướng từ tinh thể là dạng năng lượng trong các vật có từ tính liên quan đến tính đối xứng tinh thể và sự định hướng của moment từ. Trong tinh thể, moment từ luôn có xu hướng định hướng theo một phương ưu tiên nào đó của tinh thể, gọi là trục dễ từ hóa. Khi từ hóa theo hướng khác (lệch 90o so với trục dễ từ hóa) thì quá trình từ hóa sẽ khó hơn và rất khó đạt trạng thái bão hòa từ, trục đó gọi là trục khó từ hóa. Năng lượng dị hướng từ tinh thể được định nghĩa là năng lượng cần thiết để quay moment từ từ trục khó từ hóa sang hướng của trục dễ từ hóa. Bên cạnh
  19. 10 nguồn gốc do tính đối xứng tinh thể, dị hướng từ tinh thể còn có thể được tạo ra do ứng suất, do hình dạng của vật từ hay trật tự của các cặp spin với định hướng khác nhau. 1.1.2. Vật liệu nano oxide sắt từ (ION) 1.1.2.1. Cấu trúc tinh thể Phổ nhiễu xạ tia X đã chứng minh rằng khi giảm đến kích thước nano, hạt nano oxide sắt từ vẫn có cấu trúc tinh thể spinel đảo và không thay đổi so với vật liệu khối. Tuy nhiên giá trị hằng số mạng a của ION thường nhỏ hơn so với vật liệu khối. Điều này được giải thích là do tỉ lệ của các nguyên tử và ion trên bề mặt là tương đối lớn so với toàn bộ thể tích hạt, đồng thời sự oxi hóa các ion Fe2+ trên bề mặt thành Fe3+ dẫn đến sự thay đổi tỉ lệ sắp xếp các ion trong các lỗ trống tứ diện và bát diện [3]. 1.1.2.2. Tính chất từ Cũng giống như các loại vật liệu nano khác, oxide sắt từ khi đạt đến kích thước nano xuất hiện một số sự thay đổi tính chất, đặc biệt là tính chất từ. Trong đó hai yếu tố chính ảnh hưởng đến tính chất từ là hiệu ứng kích thước và hiệu ứng bề mặt. a) Ảnh hưởng của hiệu ứng kích thước Các hiệu ứng kích thước được nghiên cứu nhiều nhất trong các hạt nano từ là giới hạn đơn domain và giới hạn siêu thuận từ. Như đã nói ở trên, khi kích thước hạt giảm đến một mức tới hạn, sự hình thành vách domain (khi domain phân chia thành các domain nhỏ hơn) sẽ trở nên không thuận lợi về mặt năng lượng, do đó hạt sẽ có cấu trúc đơn domain và có cùng một hướng moment từ. Hiệu ứng thứ 2 là hiện tượng siêu thuận từ và giới hạn kích thước siêu thuận từ. Ở vật liệu sắt từ, các moment từ trong nguyên tử sắp xếp song song với nhau, tạo nên một từ trường bên trong rất lớn. Khi nhiệt độ lớn hơn nhiệt độ Curie (hay nhiệt độ Néel đối với vật liệu phản sắt từ), dao động nhiệt đủ lớn để thắng lại các lực liên kết bên trong, làm cho các moment từ của nguyên tử từ song song trở thành dao động tự do, do đó triệt tiêu từ trường bên trong và
  20. 11 vật liệu thể hiện tính thuận từ. Khái niệm siêu thuận từ được Frenkel và Dorfman đưa ra vào năm 1930, theo đó, trong vật liệu sắt từ được cấu tạo bởi một hệ các hạt (thể tích V) tương tác và liên kết với nhau. Giả sử nếu giảm dần kích thước hạt thì năng lượng dị hướng KV giảm dần, nếu tiếp tục giảm kích thước thì đến một lúc nào đó, KV
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2